首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Organic acids as important constituents of organic aerosols not only influence the aerosols' hygroscopic property, but also enhance the formation of new particles and secondary organic aerosols. This study reported organic acids including C14–C32fatty acids, C4–C9dicarboxylic acids and aromatic acids in PM2.5collected during winter 2009 at six typical urban, suburban and rural sites in the Pearl River Delta region. Averaged concentrations of C14–C32fatty acids, aromatic acids and C4– C9 dicarboxylic acids were 157, 72.5 and 50.7 ng/m3, respectively. They totally accounted for 1.7% of measured organic carbon. C20–C32fatty acids mainly deriving from higher plant wax showed the highest concentration at the upwind rural site with more vegetation around, while C14–C18fatty acids were more abundant at urban and suburban sites, and dicarboxylic acids and aromatic acids except 1,4-phthalic acid peaked at the downwind rural site. Succinic and azelaic acid were the most abundant among C4–C9dicarboxylic acids, and 1,2-phthalic and 1,4-phthalic acid were dominant aromatic acids. Dicarboxylic acids and aromatic acids exhibited significant mutual correlations except for 1,4-phthalic acid, which was probably primarily emitted from combustion of solid wastes containing polyethylene terephthalate plastics. Spatial patterns and correlations with typical source tracers suggested that C14–C32fatty acids were mainly primary while dicarboxylic and aromatic acids were largely secondary. Principal component analysis resolved six sources including biomass burning, natural higher plant wax, two mixed anthropogenic and two secondary sources; further multiple linear regression revealed their contributions to individual organic acids. It turned out that more than 70% of C14–C18fatty acids were attributed to anthropogenic sources, about 50%–85% of the C20–C32fatty acids were attributed to natural sources, 80%–95% of dicarboxylic acids and 1,2-phthalic acid were secondary in contrast with that 81% of 1,4-phthalic acid was primary.  相似文献   

2.
低分子量有机酸提取土壤中部分重金属的拟合模型研究   总被引:1,自引:0,他引:1  
为研究不同浓度低分子量有机酸与提取的土壤重金属含量之间的关系,本文以采自安徽省安庆市某铜矿区及其周围的土壤为例,通过浸提法,研究了不同浓度苹果酸、甲酸对采样点土壤中重金属Cu、Mn、Zn、Pb提取能力的影响并进行模型拟合.结果表明:不同浓度苹果酸和甲酸对采样点土壤中重金属的提取量不同,两种有机酸对低pH、高重金属含量采样点及其周围土壤中的重金属提取量较大,两种低分子量有机酸对S6采样点的重金属Mn的提取量最大,分别为322.5 mg·kg~(-1)和193.58 mg·kg~(-1),提取率达70.02%和42.03%,Zn、Pb次之,Cu最低;随着苹果酸、甲酸浓度的升高,土壤中重金属Cu、Mn、Zn、Pb的提取量增加,苹果酸对土壤中重金属的提取能力大于甲酸;拟合模型对于两种低分子量有机酸与其提取的土壤中部分重金属含量之间的关系,具有较好的拟合性,其决定系数R~2在0.8293~0.9990之间,都具有显著性(p0.05),该模型可以定量表征低分子量有机酸对土壤重金属的提取能力,此研究结果为土壤中重金属的固定化和增强植物修复受重金属污染的土壤提供了理论支持.  相似文献   

3.
膜生物反应器处理甲苯性能及机制   总被引:6,自引:5,他引:1  
采用膜生物反应器处理甲苯有机废气,研究了进气浓度、停留时间、循环液喷淋密度和pH值对甲苯去除率的影响.膜生物反应器能高效净化挥发性有机废气,甲苯去除率可达99%.适宜运行条件为:pH值为7.2、停留时间为6.4 s、循环液喷淋密度为2.5 m3.(m2.h)-1.采用GC-MS分析出口气样,研究结果表明乙醛酸(C2H2O3)和乙烯基甲酸(C3H4O2)为甲苯生物降解的中间产物.膜生物反应器处理甲苯机制为甲苯气体通过中空纤维膜传质到生物膜,被生物降解为乙醛酸和乙烯基甲酸,然后继续好氧降解为最终产物二氧化碳和水.  相似文献   

4.
UV/PMS降解水中罗丹明B的动力学及反应机理   总被引:1,自引:1,他引:0  
采用紫外(UV)活化过硫酸氢钾(PMS)产生强氧化性硫酸根自由基(SO_4~·-)降解人工染料罗丹明B(RhB).考察了溶液初始p H、氧化剂剂量、RhB初始浓度、天然有机物(NOM)、Fe~(2+)浓度、自由基淬灭剂(甲醇和叔丁醇)及水体中常见阴离子对降解效果的影响,并探测反应体系中生成的无机阳离子及小分子有机酸的种类和浓度.结果表明,降解反应遵循准一级反应动力学,其降解速率受到溶液初始pH的显著影响,当溶液酸性越强或碱性越强时,RhB的降解效果越好,且酸性条件下降解效果优于碱性条件.同时,加大氧化剂剂量及降低底物浓度也会对RhB的降解起促进作用.体系中投加过渡金属Fe~(2+)可显著促进RhB的降解效果,当Fe~(2+)与PMS的浓度比为1∶1时,降解效果最佳.水体中的NO_3~-对RhB的降解有着显著的促进作用,而H_2PO_4~-、C_2O_4~(2-)、Cl~-和NOM则对RhB的降解有抑制作用.采用离子色谱分析了UV/PMS体系降解RhB所产生的NH_4~+,以及甲酸、乳酸、乙酸和草酸,推测RhB在UV/PMS体系中的降解主要是通过共轭结构的破坏、N-位脱乙基并伴有苯环结构的破坏进行的.综合分析表明,UV/PMS工艺可有效运用于罗丹明B污染水体的修复处理过程.  相似文献   

5.
液相化学过程作为二次有机气溶胶(SOA)形成的一种必不可少的途径,引起了学界对大气化学的广泛关注.由于其反应复杂性,反应机制、产物特性及对SOA质量的贡献还没有完全理解.本文选择四乙基愈创木酚(4-ethylguaiacol,EG)为前体物,系统地研究了初始浓度(0.03、0.3和3 mmol·L-1)的EG液相·OH氧化形成的液相二次有机气溶胶(aqSOA)特性的影响.用黑炭-气溶胶质谱(SP-AMS)测定aqSOA产率和氧化特性,气相色谱-质谱联用仪(GC/MS)、离子色谱(IC)测定产物和低分子有机酸.紫外分光光度计(UV-vis)和高效液相色谱测定了类腐殖质(HULIS)等表征光吸光产物的形成.结果表明,不同初始浓度(mmol·L-1)下aqSOA的O/C都表现为随着反应时间延长而升高,分别在0.42~0.61(0.03 mmol·L-1)、0.49~0.84(0.3 mmol·L-1)和0.49~0.63(3 mmol·L-1)之间变化.SP-AMS测定aqSOA组分发现高初始浓度时二聚体(C16H18 O2+,m/z 302)量明显高,说明高浓度下更容易发生聚合反应.UV-vis分析表明,随光氧化反应的进行,250 nm处吸光明显增强,可能是由于250 nm处新的吸光性产物生成所致.反应过程中生成的HULIS浓度不断升高,与UV-vis测定的300~400 nm区域内吸光度增强结论一致,说明水相反应形成了棕色碳.IC检测到产物中含有小分子有机酸:甲酸、乙醇酸和草酸,其中甲酸浓度最高.GC/MS检测到aqSOA中含酮、单聚体和二聚体等,说明发生了官能团化和聚合化过程.  相似文献   

6.
The distribution of polyfluoroalkyl compounds (PFCs) in the dissolved and particulate phase and their discharge from the river Elbe into the North Sea were studied. The PFCs quantified included C4-C8 perfluorinated sulfonates (PFSAs), 6:2 fluorotelomer sulfonate (6:2 FTS), C6 and C8 perfluorinated sulfinates (PFSiAs), C4-C12 perfluorinated carboxylic acids (PFCAs), perfluoro-3,7-dimethyl-octanoic acid (3,7m2-PFOA), perfluorooctane sulfonamide (FOSA), and n-ethyl perfluroctane sulfonamidoethanol (EtFOSE). PFCs were mostly distributed in the dissolved phase, where perfluorooctanoic acid (PFOA) dominated with 2.9–12.5 ng/L. In the suspended particulate matter FOSA and perfluorooctane sulfonate (PFOS) showed the highest concentrations (4.0 ng/L and 2.3 ng/L, respectively). The total flux of ΣPFCs from the river Elbe was estimated to be 802 kg/year for the dissolved phase and 152 kg/year for the particulate phase. This indicates that the river Elbe acts as a source of PFCs into the North Sea. However, the concentrations of perfluorobutane sulfonate (PFBS) and perfluorobutanoic acid (PFBA) in the North Sea were higher than that in the river Elbe, thus an alternative source must exist for these compounds.  相似文献   

7.
Indoor air quality (IAQ) directly affects the health of occupants. Household manufacturing equipment (HME) used for hobbies or educational purposes is a new and unexplored source of air pollution. In this study, we evaluated the characteristics of particulate and gaseous pollutants produced by a household laser processing equipment (HLPE). Various target materials were tested using a commercial HLPE under various operating conditions of laser power and sheath air flow rate. The mode diameters of the emitted particles gradually decreased as laser power increased, while the particle number concentration (PNC) and particle emission rate (PER) increased. In addition, as the sheath air flow rate quadrupled from 10 to 40 L/min, the mode diameter of the emitted particles decreased by nearly 25%, but the effect on the PNC was insignificant. When the laser induced the target materials at 53 mW, the mode diameters of particles were <150 nm, and PNCs were >2.0 × 104 particles/cm3. Particularly, analyses of sampled aerosols indicated that harmful substances such as sulfur and barium were present in particles emitted from leather. The carcinogenic gaseous pollutants such as acrylonitrile, acetaldehyde, 1,3-butadiene, benzene, and C8 aromatics (ethylbenzene) were emitted from all target materials. In an actual indoor environment, the PNC of inhalable ultrafine particles (UFPs) was >5 × 104 particles/cm3 during 30 min of HLPE operation. Our results suggest that more meticulous control methods are needed, including the use of less harmful target materials along with filters or adsorbents that prevent emission of pollutants.  相似文献   

8.
施用有机肥能够降低污染土壤重金属溶解性和生物可利用性,但在淹水厌氧等环境中,有机肥会分解产生大量低分子有机酸,会抑制嗜酸性硫杆菌的生物活性.通过摇瓶实验研究了低分子有机酸对硫杆菌的毒害抑制效果和不同硫杆菌对各类有机酸的耐受水平.结果表明,纯体系培养下,A.ferrooxidans和A.thiooxidans活性抑制率在72 h内达到90%以上,所需甲、乙、丙、丁酸最低浓度分别为41.2、78.3、43.2、123.4 mg·L~(-1)和81.9、230.4、170.1、123.4 mg·L~(-1).其中,甲酸对A.ferrooxidans和A.thiooxidans的抑制作用最显著,A.thiooxidans相比A.ferrooxidans对4种有机酸具有更高的耐受性.新鲜重金属污染土壤在生物酸化初期(0 h)加入4种有机酸对后续土壤酸化过程影响较小,但12 h后加入有机酸却能使土壤生物酸化基本停止,导致土壤重金属脱除率大幅度下降.这为有机肥改良重金属污染土壤的生物修复可行性提供一定理论依据.  相似文献   

9.
The photodegradation of gaseous dichloromethane (DCM) by a vacuum ultraviolet (VUV) light in a spiral reactor was investigated with different reaction media and initial concentrations. Through the combination of direct photolysis, O3 oxidation and HO. oxidation, DCM was ultimately mineralized into inorganic compounds (such as HCl, CO2, H2O, etc.) in the air with relative humidity (RH) of 75%-85%. During the photodegradation process, some small organic acids (including formic acid, acetic acid) were also detected and the intermediates were more soluble than DCM, providing a possibility for its combination with subsequent biodegradation. Based on the detected intermediates and the confirmed radicals, a photodegradation pathway of DCM by VUV was proposed. With RH 75%-80% air as the reaction medium, the DCM removal followed the second-order kinetic model at inlet concentration of 100-1000 mg/m3. Kinetic analysis showed that the reaction media affected the kinetic constants of DCM conversion by a large extent, and RH 80% air could cause a much lower half-life for its conversion. Such results supported the possibility that VUV photodegradation could be used not only for the mineralization of DCM but also as a pretreatment before biodegradation.  相似文献   

10.
High values of ozone (O3) occur frequently in the dry spring season; thus, understanding the evolution characteristics of volatile organic compounds (VOCs) in spring is of great significance for preventing O3 pollution. In this study, a total of 101 VOCs from April 16 to May 21, 2019, were quantified using an online gas chromatography mass spectrometer/flame ionization detector (GCMS/FID). The results indicated that the observed concentration of total VOCs (TVOCs) was 30.4 ± 17.0 ppbv, and it was dominated by alkanes (44.3%), followed by oxygenated VOCs (OVOCs) (17.4%), halocarbons (12.7%), aromatics (9.5%), alkenes (8.2%), acetylene (5.3%) and carbon disulfide (2.5%). The average mixing ratio of VOCs showed obvious diurnal variation (high at night, low during daytime). We conducted a source apportionment study based on 32 major VOCs using positive matrix factorization (PMF), and coal + biomass burning (25.2%), diesel exhaust (16.0%), gasoline exhaust + evaporation (17.4%), secondary + long-lived species (16.7%), biogenic sources (4.3%), industrial emissions (9.3%) and solvent use (11.2%) were identified as major sources of VOCs. In addition to local emissions, most of the atmospheric VOCs were derived from long-distance air masses (65.7%), and the average mixing ratio of VOCs in the northwest direction was 29.4 ppbv. Combined with the results of the potential source contribution function (PSCF) indicate that research should focus on the local emissions of combustion, transportation sources and solvents usage to control atmospheric VOCs. Additionally, transmission of the northwest air mass is an important component that cannot be ignored during spring in Beijing.  相似文献   

11.
厦门城区大气颗粒物PM10中有机酸源谱特征分析   总被引:5,自引:5,他引:0  
对厦门城区大气颗粒物PM10中有机酸的可能来源,如烹调油烟、生物质燃烧颗粒、汽车尾气和土壤/路面扬尘等4种不同排放源,采用再悬浮混合箱得到PM10样品.采用BF3/正丁醇衍生-GC/MS分析方法,测定了包括二元羧酸、脂肪酸和芳香酸共15种有机酸.结果表明,烹调油烟中有机酸的含量远高于其它颗粒物,最高可达53%,其中亚油酸和油酸的含量最高,为24%±14%;而汽车尾气颗粒物中乙二酸的含量最高,其次为邻苯二甲酸Ph;汽油燃烧颗粒物中己二酸与壬二酸的比值显著高于其它样品,可用于环境大气中二元羧酸的人为和生物来源的定性判断.除发电机排放样品外,其它样品中丙二酸与丁二酸的比值(0.07~0.44)远低于环境样品中该比值范围(0.61~3.93),表明丙二酸与丁二酸的比值可用于环境大气中二元羧酸的一次/二次来源的定性判断.  相似文献   

12.
本文针对重庆主城区4个采样点PM2.5中羧酸开展研究,通过GC-MS分析,定量分析了16种饱和脂肪酸、21种不饱和脂肪酸和8种二元羧酸等多种物质的浓度水平,进而对羧酸的季节变化及来源进行了探讨.羧酸日均总浓度为130.42~1953.79 ng·m~(-3),一元脂肪酸和二元羧酸在各采样点浓度差异显著.一元脂肪酸呈明显的季节变化,夏季最高(961.97 ng·m~(-3)),冬季最低(49.24 ng·m~(-3)).饱和脂肪酸中偶数碳优势明显,以C_(16)(棕榈酸)和C_(18)(硬脂酸)最为丰富.二元羧酸也呈明显的季节变化,在冬季最高(432.04 ng·m~(-3)),春季最低(64.57 ng·m~(-3)).二元羧酸以丙二酸、丁二酸和戊二酸为主.细菌活动和烹饪油烟对一元脂肪酸具有较大的贡献,光化学氧化作用则对二元羧酸贡献较大.  相似文献   

13.
非道路柴油车尾气是影响我国空气质量的重要排放源,但目前针对其化学组分及其影响因素的了解仍然非常有限.以6台内燃叉车为研究对象,利用气态组分在线监测结合样品采集离线分析方法,重点探讨了柴油机颗粒物过滤器(DPF)对叉车尾气中的关键化学组分挥发性有机物(VOCs)和正构烷烃含量及其特征的影响.结果 表明,含氧挥发性有机物(...  相似文献   

14.
方华  荆洁  于江华  王铻葶 《环境科学》2015,36(10):3715-3719
以富勒烯(C60)纳米颗粒稳定悬浮液为对象,采用动态光散射技术研究了天然有机物和电解质对其在水中凝聚行为的影响.结果表明,采用甲苯溶剂替换法制备的稳定悬浮液中C60浓度为20 mg·L-1左右,表面呈较高的电负性,粒径在120 nm左右,具有较强的稳定性.投加简单电解质可通过压缩双电层机制使其发生凝聚,并符合经典的胶体稳定性(DLVO)理论.Mg Cl2和Ca Cl2的临界凝聚浓度分别为9.6 mmol·L-1和6.7 mmol·L-1.腐殖酸(humic acid,HA)存在时,投加Na Cl和Mg Cl2可使C60颗粒间有效碰撞概率及凝聚反应速度降低,临界凝聚浓度提高;HA可通过增大C60颗粒间的空间位阻效应,抑制凝聚反应发生,提高其在水中的稳定性.但Ca2+可与HA间发生络合反应,并对C60纳米颗粒产生吸附架桥作用,导致凝聚速度大幅提高,强化凝聚反应发生.水中C60纳米颗粒的凝聚和分散行为将受到有机物性质和电解质种类等复杂因素的影响.  相似文献   

15.
利用Real-time PCR技术,分别对非油气田对照区域、未开发油田、未开发气田地表30、60、100、150、200 cm深度的甲烷氧化菌、C5~C16烃氧化菌进行定量研究,目的在于加深对该类型区域烃氧化菌空间分布特征的了解,为微生物油气勘探技术的发展提供基础资料.结果表明,气田区域甲烷氧化菌(pmoA)含量为1.34E+04~3.90E+05 copies.g-1,并随深度的加深逐渐减少;油田仅为3.14E+02~4.32E+03 copies.g-1.100~200 cm深度,油田C5~C16烃氧化菌(alkB)含量为1.38E+07~3.61E+07 copies.g-1,高于等深度对照(4.24E+06~2.14E+07 copies.g-1)和气田区域(5.82E+06~3.52E+07copies.g-1).甲烷氧化菌分布受全氮、有机碳、pH影响显著,相关系数分别为0.859、0.631、-0.549,而C5~C16烃氧化菌分布受环境因素影响相对较小.100~200 cm深度范围内,该区域全氮、有机碳、pH等理化因素相对稳定,烃氧化菌含量在不同深度间差异较小.因此,本研究表明,气田区域具有明显的甲烷氧化菌异常,油田在100 cm以下深度具有一定的C5~C16烃氧化菌异常;100~200 cm更适于作为统一取样深度进行大范围定量调查,但仍需要进一步的验证.  相似文献   

16.
Rainwater samples were collected in Los Angeles, during 1985–1991 to determine concentration levels, sources and deposition rates of atmospheric H2O2, aldehydes and organic acids, in addition to major cations, anions and pH. Volume-weighted mean concentrations of H2O2, aldehydes (formaldehyde + acetaldehyde + glyoxal + methylglyoxal) and organic acids (formic acid + acetic acid) in rain collected at Westwood were 4.4., 3.9 and 16.5 μM, respectively, during the 6-year study period. Monocarboxylic organic acids were estimated to account for 27% (2–80%) of total free acidity (as on overall average) in rain collected at Westwood, whereas sulfuric acid and nitric acid accounted for 39% and 34% of the total acidity, respectively. Concentrations of aldehydes were strongly dependent on precipitation volume and decreased with increasing precipitation volume, whereas H2O2 and organic acids were only weakly dependent on precipitation volume. These results indicate that concentrations of aldehydes in rain are mainly controlled by dilution, whereas H2O2 and organic acid concentrations are controlled by other factors, such as decomposition of H2O2 by reacting with S(IV) and continuous aqueous formation/decomposition of organic acids by reactions involving aldehydes, dissolved OH radicals and H2O2. Principal component analyses indicate that aldehydes in rainwater mainly originate from gases and aerosols derived from anthropogenic sources, whereas the sources of H2O2 and organic acids in rain do not correlate with anthropogenic sources or marine and continental sources. There is good agreement between reported gas-phase concentrations of H2O2, aldehydes and organic acids in Los Angeles and calculated equilibrium concentrations of these chemical species from their rainwater concentrations and Henry's law constants. Temporal variations of concentrations of chemical species indicate that H2O2, aldehydes and organic acids were highest in the early afternoon. Summer rains contained the highest concentration of these chemical species, suggesting the photochemical activities during rain storms significantly affect their concentration levels. Estimation of annual rate of wet and dry depositions of H2O2, aldehydes and organic acids for the period studied, indicates that 84% of H2O2, 97% of aldehydes and 94% of organic acids, respectively, are annually scavenged from the atmosphere, by dry deposition, which is the dominant process for removal of these atmospheric pollutants in Los Angeles.  相似文献   

17.
杭州地区城区降雪中全氟化合物的污染特征   总被引:4,自引:3,他引:1  
通过调查杭州降雪中16种全氟化合物(PFCs)的质量浓度,考察了杭州地区大气中PFCs的污染状况.2016年1月20~22日,在杭州市城区及主要郊县建成区共计11个采样点采集降雪样品,应用固相萃取净化、富集与超高效液相色谱-串联质谱联用相结合的方法,测定样品中PFCs质量浓度.所有采样点降雪均有不同浓度的PFCs检出,全部样品共检出包括C_4和C_8全氟烷基磺酸以及C_4~C_6、C_8和C_9全氟烷基羧酸等7种中短链PFCs.ΣPFCs质量浓度范围为2.85~35.1 ng·L~(-1),其中全氟辛酸(PFOA)质量浓度范围2.15~23.0 ng·L~(-1),为主要污染因子,全氟辛烷磺酸(PFOS)检出浓度较低,为0~0.46 ng·L~(-1).与国内外其它地区相比杭州降雪中PFOA含量居于中等水平,PFOS含量则处于相对较低水平.污染物空间分布城区略高于郊县,其中富阳最高,建德和淳安较低.本次调查,在研究区域降雪中普遍检出以PFOA为主较高浓度的PFCs,表明湿沉降已经成为杭州地区土壤、地表水和地下水等生态系统PFCs污染一个不可忽视的污染源,需要有关部门引起足够的重视.研究结果揭示了杭州地区大气中广泛存在以PFOA为主的PFCs污染,大气因素可能已成为当地人群和生态环境暴露PFCs的重要途径之一.  相似文献   

18.
Mass level of fine particles (PM2.5) in main cities in China has decreased significantly in recent years due to implementation of Chinese Clean Air Action Plan since 2013, however, O3 pollution is getting worse than before, especially in megacities such as in Shanghai. In this work, O3 and PM2.5 were continuously monitored from May 27, 2018 to March 31, 2019. Our data showed that the annual average concentration of PM2.5 and O3 (O3-8 hr, maximum 8-hour moving average of ozone days) was 39.35 ± 35.74 and 86.49 ± 41.65 µg/m3, respectively. The concentrations of PM2.5 showed clear seasonal trends, with higher concentrations in winter (83.36 ± 18.66 µg/m3) and lower concentrations in summer (19.85 ± 7.23 µg/m3), however, the seasonal trends of O3 were different with 103.75 ± 41.77 µg/m3 in summer and 58.59 ± 21.40 µg/m3 in winter. Air mass backward trajectory, analyzing results of potential source contribution function model and concentration weighted trajectory model implied that pollutants from northwestern China contributed significantly to the mass concentration of Shanghai PM2.5, while pollutants from areas of eastern coastal provinces and South China Sea contributed significantly to the mass level of ozone in Shanghai atmosphere. Mass concentration of twenty-one elements in the PM2.5 were investigated, and their relationships with O3 were analyzed. Mass level of ozone had good correlation with that of Ba (r = 0.64, p < 0.05) and V (r = 0.30, p > 0.05), suggesting vehicle emission pollutants contribute to the increasing concentration of ozone in Shanghai atmosphere.  相似文献   

19.
Atmospheric gas-phase and aqueous-phase (dew and fog) formic and acetic acids were measured over a cloud forest in Venezuela. The gaseous acids showed diurnal cycles, with higher mixing ratios during daytime. Higher concentrations were observed during the dry season (HCOOH 1.7 +/−0.5 ppb; CH3COOH 1.4+/−0.6 ppb) in comparison with the rainy season (HCOOH 0.79+/−0.24 ppb; CH3COOH 0.54+/−0.20 ppb). Liquid-phase concentrations in dew and fog are of the same order and range from 8.1 to 69.5 μM for HCOOH and 4.3 to 15.3 μM for CH3COOH. The field-observed Henry's Law coefficients, calculated from the simultaneous measurements of gas- and liquid-phase acids, do not show a significant trend with the pH of the solution, in contrast to theoretical considerations. Dry deposition velocities to the nighttime dew are 1.1+/−0.6 and 0.68+/−0.42 cm s−1 for formic and acetic acids, respectively. A loss of 0.054 ppb HCOOH and 0.022 ppb CH3COOH from the atmospheric boundary layer to the dew is produced nightly.  相似文献   

20.
有机物是大气细颗粒物(PM_(2.5))的重要组成部分,其来源和组分非常复杂,是大气科学研究的难点和热点.本研究定量表征了上海地区夏季3个不同功能站点PM_(2.5)中78种有机组分,分析了其组成特征及空间差异,并采用后向轨迹、指示物、特征比值等方法对其来源进行了探讨.结果表明,上海西部郊区青浦和徐汇的有机组分检出浓度相近,约为(317±129)ng·m~(-3),高于东部沿海.78种有机组分中,脂肪酸类物质的占比最高,之后依次为左旋葡聚糖、正构烷烃和多环芳烃,藿烷的占比最低.基于示踪物比值法初步分析结果表明,上海地区的颗粒有机物主要来源于汽油车尾气排放,此外中心城区和西部郊区在观测期间受到了一定程度的生物质燃烧污染,可能与西北方向的污染输送有关.就具体组分而言,在西部郊区青浦,脂肪酸主要来自于陆生植物排放,而在东部沿海地区临港,其还会受到海洋浮游植物和微生物的影响;PAH特征比值的分析表明煤燃烧和机动车尾气对多环芳烃具有重要贡献.相关研究结果有助于对上海有机气溶胶的污染特征及来源的深入认识,为开展颗粒有机物的防治提供一定的基础支撑.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号