首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 343 毫秒
1.
基于环境一号卫星的太湖叶绿素a浓度提取   总被引:4,自引:1,他引:3       下载免费PDF全文
综合环境一号小卫星的CCD数据和同步地面水质监测数据,发现可见光红波段与近红外波段的波段组合与叶绿素a实测浓度存在较高相关性,并以此为基础建立了3个提取水体表层叶绿素a浓度的遥感信息模型.经验证分析,基于近红外波段与红波段比值的模型用于叶绿素a浓度反演提取的精度良好,RMSE达到了6.04mg/m3.将该模型应用于环境一号卫星CCD数据,生成了2009年5~12月共8幅太湖水体叶绿素a浓度分布图,并对其进行了时空分析,结果符合实际,并与以往的研究结果相一致.但模型不适用于水生植被覆盖较多区域叶绿素a浓度估算.  相似文献   

2.
湖泊富营养化状态的地面高光谱遥感评价   总被引:18,自引:6,他引:12  
分别于2004-06和2004-08在太湖的21个固定监测站点进行原位水质取样分析和波谱实测,进而利用地面实测高光谱数据评价太湖水体富营养化状态.水体富营养化程度的评价指标为营养状态指数(TSI).首先,根据太湖水体固有光学特性,用分析模型的方法建立水体反射率模拟模型,进而用求解优化函数的方法,利用Matlab软件反演叶绿素a浓度;其次,利用反演的叶绿素a浓度,计算采样点位的营养状态指数,并利用ArcView软件进行插值,制作太湖富营养状态评价图.结果表明,2004-06和2004-08太湖富营养化程度差  相似文献   

3.
华祖林  汪靓 《环境科学》2013,34(6):2134-2138
在确立湖泊营养物基准的过程中,湖泊水体参照状态的确定是十分重要的一个步骤.本文基于广义极值分布理论,发展提出了一种确定湖泊参照状态浓度的新方法.该方法克服了频率分析法等描述性统计方法存在的数据分组可能造成人为误差和不便于统计推断,难以进行可信度评价的缺陷,能有效地推断给出参数和物质浓度置信区间.将该方法应用到太湖的水质基准参照状态中,通过对太湖湖心两个站点1995~2006年总氮(total nitrogen,TN),总磷(total phosphorus,TP)和叶绿素a(chlorophyll a,Chl-a)的数据进行分析,其年最小值的相反数符合广义极值分布,验证了方法的可行性.推荐采用25%分位点的值作为太湖总氮,总磷和叶绿素a的参照状态,即太湖的参照状态是:总氮0.71 mg·L-1,总磷0.025 mg·L-1,叶绿素a为1.81μg·L-1,并分别得出了它们各自的95%置信区间.  相似文献   

4.
基于GF-1 WFV影像和BP神经网络的太湖叶绿素a反演   总被引:7,自引:0,他引:7  
叶绿素a浓度是可直接遥感反演的重要水质参数之一,常用来评价湖泊水体的富营养化程度.太湖是典型的二类水体,光学性质复杂,应用一类水体线性反演模式拟合较为片面且难以找到最佳拟合模型.BP神经网络模型具有模拟复杂非线性问题的功能.为研究高分一号卫星16m多光谱相机WFV4结合BP神经网络进行太湖叶绿素a浓度监测的可行性,实验利用GF-1 WFV4影像和实时的地面采样数据,建立了BP神经网络模型,同时采用波段比值经验模型进行对比.经精度检验,BP神经网络模型预测值与实测值之间的可决系数R2高达0.9680,而波段比值模型的R2为0.9541,且均方根误差RMSE由波段比值模型的18.7915降低为BP神经网络模型的7.6068,平均相对误差e也由波段比值模型的19.16%降低为BP神经网络模型的6.75%.结果证明,GF-1 WFV4影像应用BP神经网络模型反演太湖叶绿素a浓度较波段比值模型精度有所提高.将经过水体掩膜的GF-1 WFV4影像用于训练好的BP神经网络反演太湖叶绿素a浓度分布,结果显示,叶绿素a高浓度区集中分布在湖心区北部、竺山湾、梅梁湾区域,与之前的研究一致.本文研究结果验证了采用BP神经网络模型对GF-1 WFV4影像进行太湖叶绿素a浓度反演的可行性.  相似文献   

5.
基于MODIS数据的乌梁素海水体遥感监测   总被引:2,自引:2,他引:0  
近年来,内蒙古乌梁素海水体富营养化日益严重,致使藻类"黄苔"频繁暴发,对该湖泊的生态系统及湖泊周围地区饮用水安全造成了严重影响。利用遥感技术监测湖泊水体具有时效性强、监测范围广、成本低等优点。本文基于高时间分辨率MODIS数据,对乌梁素海水体进行了遥感监测。利用各个采样点的经纬度提取了各个采样点的反射率,建立了叶绿素浓度的对数反演模型、总氮浓度的多项式反演模型、总磷浓度的多项式反演模型,并将反演出的叶绿素、总氮、总磷值与实测值进行了相关性分析。结果表明,乌梁素海叶绿素、总氮、总磷值的反演值与实测值的相关系数均在0.6以上,说明所建立的反演模型可以较好的反演相应的水质参数。  相似文献   

6.
基于集合均方根滤波的太湖叶绿素a浓度估算与预测   总被引:1,自引:0,他引:1  
叶绿素a浓度作为表征水质状况的重要参数之一,反映了水体富营养化程度和藻类含量,是决定水体的反射光谱特征的重要因素,也是水质遥感领域研究较多的一项水质参数.研究叶绿素a浓度的遥感定量反演可以为湖泊水质监测与评价提供新的思路和方法.本研究发展了一个基于集合均方根滤波和风生流的污染物扩散模型的数据同化方案,并结合2010年5月20日的太湖3个浮标观测站点的观测数据进行了同化实验.首先对太湖叶绿素a浓度进行同化估算,然后利用优化后的估算结果对太湖叶绿素a浓度进行了为期6 h的预报.在同化阶段,均方根误差分别从1.58、1.025、2.76降低到了0.465、0.276、1.01,平均相对误差也从0.2降低到了0.05、0.046、0.069.在预报阶段,均方根误差从1.486、1.143、2.38降低到了0.017、0.147、0.23,平均相对误差也从0.2降低到了0.002、0.025、0.019.结果表明,利用集合均方根滤波的数据同化方法可以有效地提高太湖叶绿素a浓度的估算与预报精度.  相似文献   

7.
叶绿素a和悬浮物是衡量湖泊水质状况好坏的重要指标。该文利用太湖Landsat TM遥感影像和准同步的65个实测样点数据,分别分析了Landsat TM中对太湖水体叶绿素a及悬浮物浓度的相关性。采用波段组合的方式,通过回归方程建立起叶绿素a和悬浮物的估测模型。结果表明(TM1+TM3)/TM1/TM3与叶绿素a相关性达到0.842,TM2+TM3与悬浮物相关性达到0.934。估测模型显示叶绿素a和悬浮物均有较好的估测结果。  相似文献   

8.
为研究滇池的叶绿素a含量与气象条件、水质因子的关系,利用滇池地区气候资料检测数据和滇池草海水质理化指标监测数据,运用多层线性模型来分析叶绿素a与总磷、总氮、透明度、生化需氧量、溶解氧等水质因子及光照、温度、风速、降水等气象条件的关系。模型分析结果表明:(1)水质因子中总磷与滇池草海叶绿素a含量正相关,而总氮、透明度分别与叶绿素a负相关;(2)气象条件中总辐射、降水量对滇池草海叶绿素a含量影响显著。滇池草海中总氮已经超过常规研究中对叶绿素a限制的上限,已经完全不再限制叶绿素a的生长。因此滇池草海水体可能是磷限制性湖泊。因此现阶段滇池富营养化的控制以控制总磷水平为主,同时提高水体透明度,短期控制中可以考虑采用人工降雨等气象控制予以辅助。  相似文献   

9.
叶绿素是城市水体富营养化的重要表征参数.以北京城区重点水体为研究对象,利用2011年6月8日TM遥感影像及同步获取的实测数据,在对TM数据进行几何校正和大气校正等预处理的基础上,选取相关性最大的TM2/(TM1 +TM4)波段组合进行叶绿素a浓度反演;利用2008 ~ 2010年的历史TM影像及人工水质站点准同步的实测数据,对模型的精度及适用性进行分析得出:回归模型适用于30 m以上的北京城区水体叶绿素a浓度监测,相对误差为17.04%.  相似文献   

10.
建立了太湖藻类生长的动态模型,并将其与水动力模型和水质模型相耦合,利用2001年7~8月太湖的实测资料对模型进行了率定。借助该模型,对2004年8月太湖水体中TN、TP的变化以及藻类生长过程进行了模拟。利用中分辨率成像光谱仪EOS/MODIS的数据对太湖叶绿素a浓度进行遥感定量,将遥感监测数据和模型计算结果进行了比较。结果表明:该模型可进行风生湖流、TN、TP的模拟,以叶绿素a浓度描述的藻类浓度的模拟值能较好地拟合遥感监测值,且遥感监测图和模型模拟图所反映的全太湖叶绿素浓度分布基本一致。最后根据遥感和模拟对太湖全区的藻类分布作了具体的分析。  相似文献   

11.
随着富营养化程度的加剧,太湖近30年来水华频发.为了探讨太湖西部沿岸水华暴发与环境因子的关系,于2017年4月1-18日(当地历年蓝藻暴发早期)在太湖西部沿岸进行了密集原位调查.共采集样品72个,测定了水温、溶解氧、各形态氮、磷营养盐浓度以及风速等环境指标,并利用GAM(广义相加模型)定量分析了叶绿素a含量与各环境因子间的关系.结果表明:①叶绿素a含量波动幅度较大(17.10~795.89 mg/m3),太湖西部沿岸带有明显的蓝藻水华暴发现象.②水温、风速以及硝态氮浓度与叶绿素a含量的变化显著相关(P<0.05),各环境因子按其对叶绿素a含量变化的解释率排序为水温>风速>硝态氮浓度.其中水温是影响叶绿素a含量最为重要的环境因子,叶绿素a含量随着水温的升高呈现明显上升趋势.风速也是影响叶绿素a含量的关键因子之一,较低的风速(<3 m/s)有利于蓝藻的漂移集聚从而形成水华,引起叶绿素a含量的升高.研究显示,GAM模型较好地解释了叶绿素a的含量变化,模型总体解释度达到70.6%,可为太湖西部沿岸蓝藻水华早期的预测预警提供一定的基础支撑.   相似文献   

12.
太湖水体Chl-a预测模型ARIMA的构建及应用优化   总被引:2,自引:0,他引:2  
李娜  李勇  冯家成  单雅洁  钱佳宁 《环境科学》2021,42(5):2223-2231
叶绿素a(Chl-a)是湖泊浮游植物生物量的重要指标,其含量能反映水中浮游植物的丰度和变化规律.以1999年12月~2019年8月太湖水体Chl-a和环境因子的逐月监测数据为基础,运用主成分分析方法探讨了Chl-a与环境因子的关系,据此建立了Chl-a与主要环境因素之间的多元线性逐步回归模型及自回归综合移动平均模型(ARIMA).结果表明:①太湖Chl-a浓度存在着明显的季节变化,且总体处于上升趋势.总磷(TP)、高锰酸盐指数、月均气温(MAT)和月度降雨量(MR)与Chl-a浓度存在较好的变化同步性,总氮(TN)和氨氮(NH4+-N)则表现出明显的滞后性.②主成分分析结果表明,太湖水体藻类暴发条件不仅仅是基于N和P等限制性因素,而是发展为TN、NH4+-N、TP和高锰酸盐指数、MR和MAT等多元因素的综合影响.③两种模型经验证比较,基于1999~2019年逐月资料建立的Chl-a浓度的ARIMA模型模拟效果和预测精度明显优于所建立的多元线性逐步回归模型,特别是在考虑主要环境因素作为自变量及优化自变量取值情况下其预测效果得到进一步提升.建立的ARIMA(0,1,1)(0,1,1)模型将有助于太湖藻类暴发的预报和预警,并为及时有效地安排水资源调度及调控等水环境管理措施提供依据.  相似文献   

13.
环境一号卫星是我国2008年自主发射的环境与灾害监测小卫星,其2d的时间分辨率使其成为环境变化监测的重要数据源.根据实测的太湖、巢湖、滇池和三峡水库的水面光谱信息以及水质参数,构建基于环境一号卫星多光谱数据的富营养化评价模型,对太湖、巢湖、滇池和三峡水库2009年水体营养状况进行了评价分析.研究结果表明:利用环境一号卫...  相似文献   

14.
在太湖草、藻型湖区采样,分别测定了1,3,5,10,15cm 5层沉积物和沉积物表面以上5,20,35cm处及水表面以下20cm处4层水的多项指标.结果表明:草型湖泊水柱中SS总、SS有机、Ch1-a、TN、TDN、TP和TDP等指标显著低于藻型湖区;草型湖区水柱中SS总、SS有机、TN、TDN和TP都呈现出越往下浓度越高的趋势,而藻型湖区各水层间差异不明显.两类湖区沉积物的TN、TP、TOC和粒径都在3~5cm处出现拐点;草型湖区沉积物溶解氧层厚度(<1mm)小于藻型湖区(<2.5mm).可见在不同的生境类型以及不同的指标体系下,沉积物-水界面的厚度也相应不同.  相似文献   

15.
太湖湖表反照率时空特征及影响因子   总被引:3,自引:0,他引:3  
曹畅  李旭辉  张弥  刘寿东  肖薇  肖启涛  徐家平 《环境科学》2015,36(10):3611-3619
湖表反照率是影响水-气界面能量平衡和水体内部光温环境的重要因子,受到太阳高度角、云量、风速和水质等环境因子的多重影响.基于太湖中尺度涡度通量网4个涡度通量观测站点(梅梁湾、大浦口、避风港和小雷山)的辐射和风速资料,结合晴空指数和水质数据,分析上述因子对太湖湖表反照率的影响及太湖湖表反照率空间差异的原因.主要结果为:太阳高度角是控制湖表反照率日变化、季节变化的主要因子;太阳高度角低于35°且当晴空指数在0~0.1和0.4~0.6之间时湖表反照率出现高值.反照率值呈现随风速、浊度和叶绿素a浓度升高而增大的趋势,而风浪通过影响浅水湖泊浊度、叶绿素a浓度从而间接影响湖表反照率.各站点湖表反照率关系为:小雷山避风港大浦口梅梁湾,其中小雷山站位于草型和藻型湖区过渡区而梅梁湾站位于藻型湖区.反照率与叶绿素a浓度水平之间的关系对蓝藻暴发及其严重程度并不敏感.本研究为湖体反照率的参数化过程提供参考依据.  相似文献   

16.
太湖水华期营养盐空间分异特征与赋存量估算   总被引:11,自引:5,他引:6  
基于2013年7月的空间高密度采样数据,对太湖水华期水体营养盐进行了空间分异特征分析及赋存量估算,探讨了大型浅水湖泊不同生态类型湖区水华与营养盐的相关关系及样点设置的代表性.结果发现,水华期太湖水体营养盐及叶绿素a浓度(CHL)总体上均呈现由西北向东南降低的趋势;氮主要以溶解态存在,占总氮(TN)的76.28%,磷主要以颗粒态赋存,占总磷(TP)的66.38%.采用主成分分析和聚类分析,可以将采样点分为相互之间具有显著性差异的4个区域:第一区位于西北湖区,代表水华严重的重富营养湖区;第二区主要包括梅梁湾及南太湖的入湖河口一带湖区,代表水华和富营养化程度都相对中等的湖区;第三区包括湖心区和西南湖区,代表中等污染但水华频现湖区;第四区包括贡湖湾、胥口湾和东太湖等其他区域,代表水华影响较弱、水质较好湖区.分区统计分析表明,不同湖区影响浮游藻类生长的因子也不同:从全湖来看,与CHL显著相关的营养盐指标为TP、TN、溶解性总氮(TDN)和硝态氮(NO-3-N),而在第一区则为TP和TDN,第二区为TN和TDN,第三区为TP、磷酸盐(PO3-4-P)和TDN,第四区为PO3-4-P、溶解性总磷(TDP)和亚硝酸盐(NO-2-N).基于空间插值获得调查期间太湖水体TN、TDN、TP和TDP的赋存量分别为12 800、9 800、445和150 t.研究表明,作为一个大型浅水湖泊,因蓝藻水华空间迁移积聚特征和生态类型异化等特征,太湖水华期的营养盐具有高度空间异质性,对于此类大型浅水湖泊的监测与评价,应当考虑点位的合理布设及结果的恰当解读,避免因监测布点和统计方法不当而以偏概全.  相似文献   

17.
太湖水体中氮、磷空间分布特征及环境效应   总被引:32,自引:12,他引:20  
研究分析了太湖水体中氮、磷空间分布规律. 结果表明,太湖水体中各种形态氮、磷的空间分布呈现出非均一性特征,梅梁湾、竺山湾、贡湖湾、西岸区和湖心区水体中总氮、总磷浓度显著高于其他湖区,溶解态氮/磷、碎屑氮/磷的空间分布规律与总氮/磷的基本一致. 总氮与溶解态氮、碎屑态氮之间存在显著的线性正相关,且相关系数分别为rDN=0.819 2和rDeN=0.696 9;总磷与溶解态磷、碎屑态磷也存在极显著的线性正相关,对应的相关系数为rDP=0.747 7和rDeP=0.926 0. 水体中叶绿素a的空间分布差异较大,最高浓度出现在太湖的西部(179.2 μg·L-1±25.9 μg·L-1),最低的则出现在东太湖七都水域附近(11.3 μg·L-1±2.7 μg·L-1). 叶绿素a与总氮、碎屑态氮、总磷、溶解态磷、碎屑态磷、高锰酸盐指数、pH值和悬浮质存在显著的线性正相关,对应相关系数为rTN=0.662 2、rDeN=0.873 9、rTP=0.813 0、rDP=0.407 7、rDeP=0.878 1、rCOD=0.868 9、rpH=0.517 3和rSS=0.533 4,与溶解态氮、电导率和碱度之间相关不显著.  相似文献   

18.
针对河湖氮磷控制标准不衔接问题,以大型浅水湖泊太湖为例,基于2013—2018年环太湖主要入湖河流和湖体总氮浓度〔ρ(TN)〕、总磷浓度〔ρ(TP)〕、叶绿素a浓度〔ρ(Chla)〕、水量等监测数据资料,采用湖盆模型(Bathtub模型),构建太湖主要入湖河流与湖体ρ(TN)、ρ(TP)和ρ(Chla)的响应关系,分析了主要入湖河流ρ(TN)、ρ(TP)和水量对湖体富营养化的影响,探讨了太湖主要入湖河流水量及其与湖体氮磷协同控制限值. 结果表明:①太湖主要入湖河流氮磷的输入仍显著影响湖体ρ(TN)、ρ(TP),尤其是对西北部湖区的富营养化水平产生了显著影响;②在入湖水量方面,湖西区入湖水量增加可导致太湖富营养化程度增加,而“引江济太”水量输入在一定程度上改善了太湖水质. 建议分区域控制直接入湖河流水量,其中,湖西区直接入湖水量控制在60×108~70×108 m3之间,望虞河“引江济太”水量控制在15×108~20×108 m3之间;③针对太湖流域而言,现行《地表水质量标准》(GB 3838—2002)在协同控制河、湖氮磷方面存在一定的不足,仅通过控制入湖河流ρ(TN)、ρ(TP),太湖ρ(TN)、ρ(TP)难以达到Ⅲ类水质标准;④与全湖平均值相比,湖西区要达到同一标准限值,入湖河流协同控制限值要更为严格. 在河湖氮磷衔接目标制定上,建议湖西区单独设定协同控制目标浓度值. 另外,建议结合《地表水质量标准》(GB 3838—2002),开展太湖流域水质、水量协同控制,有效约束入湖通量,达到河湖氮磷协同控制目的.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号