首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Orlofske SA  Jadin RC  Preston DL  Johnson PT 《Ecology》2012,93(6):1247-1253
While often studied in isolation, host-parasite interactions are typically embedded within complex communities. Other community members, including predators and alternative hosts, can therefore alter parasite transmission (e.g., the dilution effect), yet few studies have experimentally evaluated more than one such mechanism. Here, we used data from natural wetlands to design experiments investigating how alternative hosts and predators of parasites mediate trematode (Ribeiroia ondatrae) infection in a focal amphibian host (Pseudacris regilla). In short-term predation bioassays involving mollusks, zooplankton, fish, larval insects, or newts, four of seven tested species removed 62-93% of infectious stages. In transmission experiments, damselfly nymphs (predators) and newt larvae (alternative hosts) reduced infection in P. regilla tadpoles by -50%, whereas mosquitofish (potential predators and alternative hosts) did not significantly influence transmission. Additional bioassays indicated that predators consumed parasites even in the presence of alternative prey. In natural wetlands, newts had similar infection intensities as P. regilla, suggesting that they commonly function as alternative hosts despite their unpalatability to downstream hosts, whereas mosquitofish had substantially lower infection intensities and are unlikely to function as hosts. These results underscore the importance of studying host-parasite interactions in complex communities and of broadly linking research on predation, biodiversity loss, and infectious diseases.  相似文献   

2.
Frost PC  Ebert D  Smith VH 《Ecology》2008,89(2):313-318
Host nutrition is thought to affect the establishment, persistence, and severity of pathogenic infections. Nutrient-deficient foods possibly benefit pathogens by constraining host immune function or benefit hosts by limiting parasite growth and reproduction. However, the effects of poor elemental food quality on a host's susceptibility to infection and disease have received little study. Here we show that the bacterial microparasite Pasteuria ramosa is affected by the elemental nutrition of its aquatic invertebrate host, Daphnia magna. We found that high food carbon:phosphorus (C:P) ratios significantly reduced infection rates of Pasteuria in Daphnia and led to lower within-host pathogen multiplication. In addition, greater virulent effects of bacterial infection on host reproduction were found in Daphnia-consuming P-deficient food. Poor Daphnia elemental nutrition thus reduced the growth and reproduction of its bacterial parasite, Pasteuria. The effects of poor host nutrition on the pathogen were further evidenced by Pasteuria's greater inhibition of reproduction in P-limited Daphnia. Our results provide strong evidence that elemental food quality can significantly influence the incidence and intensity of infectious disease in invertebrate hosts.  相似文献   

3.
Chiba S 《Ecology》2007,88(7):1738-1746
The relationship between species richness and environmental variables may change depending on habitat structure, dispersal ability, species mixing, and community adaptation to the environment. It is crucial to know how these factors regulate the environment-diversity relationship. The land molluscan fauna of the Ogasawara Islands in the West Pacific is an excellent model system to address this question because of the high species endemicity (> 90%), small area, and simple habitat structure of the islands. I examined relationships among indigenous species composition, richness, and habitat condition, and especially productivity and forest moisture on the island of Anijima. Two major communities of snails could be distinguished by detrended correspondence analysis (DCA): one group dominated in a moist habitat with high productivity, and the other group dominated in a dry habitat with low productivity. However, species richness became highest at the intermediate condition between the habitats in which the two snail communities were dominant, so that species richness showed a hump-shaped relationship with moisture and productivity. In contrast, the species richness of the snail community in the moist habitat showed a monotonically positive correlation, and that in the dry habitat showed a monotonically negative correlation with moisture and productivity. Thus, the greater species richness in intermediate moisture and productivity resulted from the ecotone effect or community overlap at the transitional areas, where faunas with different ecologies can meet in a single site. These findings suggest that hump-shaped productivity-diversity relationships in land Mollusca would reflect the ecotone effect as a result of the mixing of species adapted to either fertile habitats or sterile habitats.  相似文献   

4.
Johnson PT  Buller ID 《Ecology》2011,92(3):535-541
Within most free-living species exists a cryptic community of interacting parasites. By combining multiscale field data with manipulative experiments, we evaluated patterns of parasite coinfection in amphibian hosts and their underlying mechanisms. Surveys of 86 wetlands and 1273 hosts revealed positive correlations between two pathogenic trematodes (Ribeiroia ondatrae and Echinostoma trivolvis) both between wetlands and within individual hosts. In infection and coinfection experiments, Ribeiroia caused greater pathology than Echinostoma, including high host mortality (24%) and severe limb malformations (75%). No interactive effects were noted for host pathology, but both parasites decreased the per capita persistence of one another by 17-36%. Thus, in spite of consistently positive associations from field data, these parasites negatively affected the persistence of one another, likely via cross immunity (apparent competition). These findings underscore the danger of inferring parasite interactions from coinfection patterns and emphasize the potential disconnect between within-host processes (e.g., competition) and between-host processes (e.g., exposure and transmission). Here, correlated coinfections likely resulted from similarities in the parasites' host requirements and heterogeneity in host susceptibility or exposure. Understanding complex interactions among parasites depends critically on the scale under consideration, highlighting the importance of combining coinfection field studies with mechanistic experiments.  相似文献   

5.
Parasite assemblages are increasingly being used as indicators of their hosts’ biology and ecology, especially for economically important marine species such as the Soleidae. In this study, seven species inhabiting Portuguese coastal waters were examined for external and internal macroparasite infections using standard procedures: Dicologlossa cuneata, Microchirus azevia, Microchirus variegatus, Solea lascaris, Solea senegalensis, Solea solea and Synaptura lusitanica. Despite being closely related, these species present different life history patterns and ecological preferences which were expected to be mirrored by their macroparasite assemblages. The aim of the study was, therefore, to study the variation of these assemblages, within and between host species, along the Portuguese coast in order to evaluate the importance of the hosts’ features and environmental factors in the assemblage compositions. Flatfish were obtained seasonally from commercial fishing vessels operating in three areas (northern, central and southern) along the Portuguese coast. Prevalence and mean abundance were calculated and tested for differences between host sex, areas and seasons. The host specificity index and the importance of the host–parasite relationship were computed based on mean abundance. The total number of parasite individuals, species richness, total prevalence, total mean abundance, diversity and evenness were also calculated. A canonical correspondence analysis (CCA) was performed using prevalence and mean abundance data. A total of 44 macroparasite species were found. No significant differences were observed in prevalence and mean abundance between sexes and sampling seasons but, for three of the parasite species, significant differences were found between areas. The highest values of the parasitological and ecological indices were generally registered in the hosts S. lascaris and S. senegalensis and in the southern area. The CCA using the prevalence data revealed the differentiation of S. lascaris samples, which was mainly related to the total prevalence and to the number of important species of macroparasites. When using mean abundance data, the CCA revealed the differentiation of D. cuneata from the south, S. lascaris from the three areas and S. senegalensis from the south, mainly related to total prevalence and richness. The differences found between infection levels and assemblages’ composition were mainly due to differences in hosts’ diet, namely prey type consumption, given that most macroparasites found were transmitted through the food web. However, environmental factors were also important given that they regulate the distribution of ectoparasites and the availability of prey, and therefore the infections’ pattern. These findings were in agreement with the ones from similar studies performed in other species, revealing the importance of parasites as indicators of their hosts’ ecology.  相似文献   

6.
Deer support high tick intensities, perpetuating tick populations, but they do not support tick-borne pathogen transmission, so are dilution hosts. We test the hypothesis that absence of deer (loss of a dilution host) will result in either an increase or a reduction in tick density, and that the outcome is scale dependent. We use a complementary methodological approach starting with meta-analysis, followed up by a field experiment. Meta-analysis indicated that larger deer exclosures reduce questing (host-seeking) tick density, but as the exclosure becomes smaller (<2.5 ha) the questing tick density is increased (amplified). To determine the consequences for tick-borne pathogen transmission we carried out a field experiment, comparing the intensity of ticks that fed on hosts competent for tickborne pathogen transmission (rodents) in two small (<1 ha) deer exclosures and their replicated controls. Intensity of larval ticks on rodents was not significantly different between treatments, but nymph intensity, the tick stage responsible for tick-borne encephalitis (TBE) transmission, was higher in deer exclosures. TBE seropositive rodents were found in a deer exclosure but not in the controls. We propose that localized absence of deer (loss of a dilution host) increases tick feeding on rodents, leading to the potential for tick-borne disease hotspots.  相似文献   

7.
Parasitic species, which depend directly on host species for their survival, represent a major regulatory force in ecosystems and a significant component of Earth's biodiversity. Yet the negative impacts of parasites observed at the host level have motivated a conservation paradigm of eradication, moving us farther from attainment of taxonomically unbiased conservation goals. Despite a growing body of literature highlighting the importance of parasite‐inclusive conservation, most parasite species remain understudied, underfunded, and underappreciated. We argue the protection of parasitic biodiversity requires a paradigm shift in the perception and valuation of their role as consumer species, similar to that of apex predators in the mid‐20th century. Beyond recognizing parasites as vital trophic regulators, existing tools available to conservation practitioners should explicitly account for the unique threats facing dependent species. We built upon concepts from epidemiology and economics (e.g., host‐density threshold and cost‐benefit analysis) to devise novel metrics of margin of error and minimum investment for parasite conservation. We define margin of error as the risk of accidental host extinction from misestimating equilibrium population sizes and predicted oscillations, while minimum investment represents the cost associated with conserving the additional hosts required to maintain viable parasite populations. This framework will aid in the identification of readily conserved parasites that present minimal health risks. To establish parasite conservation, we propose an extension of population viability analysis for host–parasite assemblages to assess extinction risk. In the direst cases, ex situ breeding programs for parasites should be evaluated to maximize success without undermining host protection. Though parasitic species pose a considerable conservation challenge, adaptations to conservation tools will help protect parasite biodiversity in the face of an uncertain environmental future.  相似文献   

8.
Wojdak JM  Mittelbach GG 《Ecology》2007,88(8):2072-2083
While the number of studies investigating the effects of species diversity on ecosystem properties continues to expand, few have explicitly examined how ecosystem functioning depends quantitatively on the degree of niche complementarity among species. We report the results of a microcosm experiment where similarity in habitat use among aquatic snail species was evaluated as a predictor of changes in community and ecosystem properties due to increasing species richness. Replicate microcosms with all possible one- and two-species combinations of a guild of six snail species were stocked with identical initial snail biomass. Microcosms with two species of snails had greater final snail biomass, lower attached algae biomass, and less total organic matter than monocultures. Snail species differed in their use of five distinct habitat types in the microcosms. Similarity in habitat use between a species pair was negatively related to the magnitude of change (e.g., deltaEF [change in ecosystem function]) in dissolved oxygen. periphyton biomass, and accrual of organic matter with a change in diversity. However, using the most stringent criterion for complementarity effects (e.g., Dmax [proportional deviation of the total polyculture yield from the highest yielding monoculture]), a relationship between species' niche similarity and changes in function with increasing species richness was only observed for dissolved oxygen. The identity of snail species present in the microcosms had strong effects on total organic matter, snail biomass, dissolved oxygen, periphyton biomass, and sedimentation rate. In this study, herbivore identity, sampling effects, and niche complementarity all appear to contribute to species richness effects on pond ecosystem properties and community structure. The analytical approach employed here may profitably be used in other systems to quantify the role of niche complementarity in species richness-ecosystem function relationships.  相似文献   

9.
Peay KG  Garbelotto M  Bruns TD 《Ecology》2010,91(12):3631-3640
Dispersal limitation plays an important role in a number of equilibrium and nonequilibrium theories about community ecology. In this study we use the framework of island biogeography to look for evidence of dispersal limitation in ectomycorrhizal fungal assemblages on "tree islands," patches of host trees located in a non-host vegetation matrix. Because of the potentially strong effects of island area on species richness and immigration, we chose to control island size by sampling tree islands consisting of a single host individual. Richness on tree islands was high, with estimates ranging up to 42 species of ectomycorrhizal fungi associating with a single host individual. Species richness decreased significantly with increasing isolation of tree islands, with our regression predicting a 50% decrease in species richness when tree islands are located distances of approximately 1 km from large patches of contiguous forests. Despite the fact that fungal fruit bodies produce large numbers of spores with high potential for long-distance travel, these results suggest that dispersal limitation is significant in ectomycorrhizal assemblages. There were no discernible effects of isolation or environment on the species identity of tree island fungal colonists. In contrast to the highly predictable patterns of tree island colonization we observed in a previous study on early successional forests, we suggest that over longer time periods the community assembly process becomes more dominated by stochastic immigration and local extinction events.  相似文献   

10.
Parasite success typically depends on a close relationship with one or more hosts; therefore, attributes of parasitic infection have the potential to provide indirect details of host natural history and are biologically relevant to animal conservation. Characterization of parasite infections has been useful in delineating host populations and has served as a proxy for assessment of environmental quality. In other cases, the utility of parasites is just being explored, for example, as indicators of host connectivity. Innovative studies of parasite biology can provide information to manage major conservation threats by using parasite assemblage, prevalence, or genetic data to provide insights into the host. Overexploitation, habitat loss and fragmentation, invasive species, and climate change are major threats to animal conservation, and all of these can be informed by parasites.  相似文献   

11.
Grewell BJ 《Ecology》2008,89(6):1481-1488
Outbreaks of infectious agents in natural ecosystems are on the rise. Understanding host-pathogen interactions and their impact on community composition may be central to the conservation of biological diversity. Infectious agents can convey both exploitive and facilitative effects that regulate host populations and community structure. Parasitic angiosperms are highly conspicuous in many plant communities, and they provide a tractable model for understanding parasite effects in multispecies communities. I examined host identity and variation in host infectivity of a holoparasitic vine (Cuscuta salina) within a California salt marsh. In a two-year parasite removal experiment, I measured the effect of C. salina on its most frequent host, a rare hemiparasite, and the plant community. C. salina clearly suppressed the dominant host, but rare plant fitness and plant species diversity were enhanced through indirect effects. Priority effects played a role in the strength of the outcome due to the timing of life history characteristics. The differential influence of parasites on the fecundity of multiple hosts can change population dynamics, benefit rare species, and alter community structure. The continuum of negative to positive consequences of parasitic interactions deserves more attention if we are to understand community dynamics and successfully restore tidal wetlands.  相似文献   

12.
Bracken ME  Jones E  Williams SL 《Ecology》2011,92(5):1083-1093
In order for research into the consequences of biodiversity changes to be more applicable to real-world ecosystems, experiments must be conducted in the field, where a variety of factors other than diversity can affect the rates of key biogeochemical and physiological processes. Here, we experimentally evaluate the effects of two factors known to affect the diversity and composition of intertidal seaweed assemblages--tidal elevation and herbivory--on nitrate uptake by those assemblages. Based on surveys of community composition at the end of a 1.5-year press experiment, we found that both tide height and herbivores affected seaweed community structure. Not surprisingly, seaweed species richness was greater at lower tidal elevations. Herbivores did not affect richness, but they altered the types of species that were present; seaweed species characterized by higher rates of nitrate uptake were more abundant in herbivore-removal plots. Both tide height and herbivores affected nitrate uptake by seaweed assemblages. Individual seaweed species, as well as entire seaweed assemblages, living higher on the shore had greater rates of biomass-specific nitrate uptake, particularly at high ambient nitrate concentrations. Grazed seaweed assemblages exhibited reduced nitrate uptake, but only at low nitrate concentrations. We evaluated the effect of seaweed richness on nitrate uptake, both alone and after accounting for effects of tidal elevation and herbivores. When only richness was considered, we found no effect on uptake. However, when simultaneous effects of richness, tide height, and herbivores on uptake were evaluated, we found that all three had relatively large and comparable effects on nitrate uptake coefficients and that there was a negative relationship between seaweed richness and nitrate uptake. Particularly because effects of richness on uptake were not apparent unless the effects of tide height and herbivory were also considered, these results highlight the importance of considering the effects of environmental context when evaluating the consequences of biodiversity change in more realistic systems.  相似文献   

13.
Feeley KJ  Terborgh JW 《Ecology》2006,87(1):144-150
Habitat fragmentation can alter herbivore abundances, potentially causing changes in the plant community that can propagate through the food web and eventually influence other important taxonomic groups such as birds. Here we test the relationship between the density of red howler monkeys (Alouatta seniculus) and bird species richness on a large set of recently isolated land-bridge islands in Lago Guri, Venezuela (n = 29 islands). Several of these islands host relict populations of howler monkeys at densities up to more than 30 times greater than those on the mainland. These "hyperabundant" herbivores previously have been shown to have a strong positive influence on aboveground plant productivity. We predicted that this should lead to a positive, indirect effect of howler monkey density on bird species richness. After accounting for passive sampling (the tendency for species richness to be positively associated with island area, regardless of differences in habitat quality) we found a significant positive correlation between howler monkey density and bird species richness. A path analysis incorporating data on tree growth rates from a subset of islands (n = 9) supported the hypothesis that the effect of howler monkeys on the resident bird communities is indirect and is mediated through changes in plant productivity and habitat quality. These results highlight the potential for disparate taxonomic groups to be related through indirect interactions and trophic cascades.  相似文献   

14.
Despite the important roles played by parasites in local population dynamics and community structure of marine ecosystems, there is a lack of information on the geographical variation in infection levels displayed by particular host–parasite species combinations. This study examines geographical variation in infection levels by the metacercarial stages of trematode parasites in crustacean and bivalve second intermediate hosts. Analyses were based on a dataset compiled from the literature, consisting of 164 local samples representing 49 host–parasite species pairs for crustaceans, and 338 entries representing 36 host–parasite species pairs for bivalves. The analyses indicate that for all measures of infection levels [prevalence (percentage of individuals infected), intensity (mean no. of metacercariae per infected individual), abundance (mean no. of metacercariae across all individuals in a sample)], there was statistically significant repeatability of infection values within host–parasite species pairs. However, it is only for values of intensity and abundance of infection in crustacean hosts that the repeatability was strong; this suggests that infection levels are specific properties of crustacean–trematode species pairs, showing significant consistency across localities despite spatial variation in abiotic and biotic conditions. Although the magnitude of variation in infection levels within parasite species pairs (measured as coefficients of variation) was independent of scale in crustacean hosts, infection levels in bivalves increased in variability at large (>100 km) spatial scales. These results suggest that there is a considerable geographical consistency in parasite load, especially in crustacean hosts, which should lead to consistent ecological and ecosystem effects of marine trematodes. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
Blakeslee AM  Byers JE 《Ecology》2008,89(4):1068-1078
Species introduced to novel regions often leave behind many parasite species. Signatures of parasite release could thus be used to resolve cryptogenic (uncertain) origins such as that of Littorina littorea, a European marine snail whose history in North America has been debated for over 100 years. Through extensive field and literature surveys, we examined species richness of parasitic trematodes infecting this snail and two co-occurring congeners, L. saxatilis and L. obtusata, both considered native throughout the North Atlantic. Of the three snails, only L. littorea possessed significantly fewer trematode species in North America, and all North American trematodes infecting the three Littorina spp. were a nested subset of Europe. Surprisingly, several of L. littorea's missing trematodes in North America infected the other Littorina congeners. Most likely, long separation of these trematodes from their former host resulted in divergence of the parasites' recognition of L. littorea. Overall, these patterns of parasitism suggest a recent invasion from Europe to North America for L. littorea and an older, natural expansion from Europe to North America for L. saxatilis and L. obtusata.  相似文献   

16.
Parasitized animals may alter their life histories to minimize the costs of parasitism. Organisms are predicted to decrease investment in current reproduction when parasitism has the greatest impact on current reproductive ability. In contrast, if parasitism decreases residual reproductive value, hosts should increase current reproductive investment, referred to as fecundity compensation or terminal investment. In mammalian hosts, parasitic infection most often leads to reductions in current host reproduction, perhaps attributable to the emphasis on parasites that are unlikely to impact the host’s residual reproductive value. In this study, the life history response of a rodent, Peromyscus maniculatus, to infection with a parasite that should strongly impact the residual reproductive value of its host (Schistosomatium douthitti, Trematoda) was examined. Infection decreased survival for hosts exposed to a high dose of parasites and was chronic in survivors, confirming that infection had strong impacts for the residual reproductive value of the host. As predicted, infected mice increased their reproductive output, producing litters of greater mass due to heavier offspring. However, this increased output was observed after a greater delay to begin breeding in infected mice and was not observed in animals that suffered early mortality. The deer mouse S. douthitti system may provide a rare example of fecundity compensation in mammals.  相似文献   

17.
Salinity levels vary spatially in coastal areas, depending on proximity to freshwater sources, and may also be slowly decreasing as a result of anthropogenic climatic changes. The impact of salinity on host–parasite interactions is potentially a key regulator of transmission processes in intertidal areas, where trematodes are extremely common parasites of invertebrates and vertebrates. We investigated experimentally the effects of long-term exposure to decreased salinity levels on output of infective stages (cercariae) and their transmission success in the trematode Philophthalmus sp. This parasite uses the snail Zeacumantus subcarinatus as intermediate host, in which it asexually produces cercariae. After leaving the snail, cercariae encyst externally on hard substrates to await accidental ingestion by shorebirds, which serve as definitive hosts. We found that at reduced salinities (25 or 30 psu), the cercarial output of the parasite was lower, the time taken by cercariae to encyst was longer, fewer cercariae successfully encysted and encysted parasites had lower long-term survival than at normal seawater salinity (35 psu). The strong effect of salinity on the replication and transmission of this parasite suggests that there may be sources and sinks of transmission to birds along coastal areas, depending on local salinity conditions. Also, unless it evolves to adapt to changing conditions, the predicted reduction in salinity as a consequence of climate change may have negative impact on the parasite’s abundance.  相似文献   

18.
Abstract:  Road disturbances can influence wildlife health by spreading disease agents and hosts or by generating environmental conditions that sustain these agent and host populations. I evaluated field patterns of trematode infections in snails inhabiting ponds at varying distances from the Dalton Highway, a wilderness road that intersects northern Alaska. I also assessed the relationships between trematode infections and snail densities and six environmental variables: calcium concentration, aquatic vegetative cover, canopy cover, temperature, pond size, and community structure. Presence of trematode infections and snail density were negatively correlated with distance from the highway. Of the pond characteristics measured, only calcium concentration and vegetation density declined with distance from road. However, neither variable was positively associated with snail density or trematode presence. One potential explanation for observed patterns is that vehicles, road maintenance, or vertebrate vectors attracted to the highway facilitate colonization of snails or trematodes. Emerging disease threats to biological diversity in northern ecosystems highlight the importance of understanding how roads affect disease transmission.  相似文献   

19.
A community ecology approach to the study of the most common group of zooxanthellae, dinoflagellates in the genus Symbiodinium, was applied to symbiotic invertebrate assemblages on coral reefs in the western Caribbean, off the Yucatan peninsula (Puerto Morelos, Mexico) and over 1000 km away in the northeastern Caribbean, at Lee Stocking Island, Bahamas. Sequence differences and intragenomic variation, as determined by denaturing gradient gel electrophoresis and sequencing of the internal transcribed spacer 2 (ITS 2) region, were used to classify these symbionts. Twenty-eight genetically distinct Symbiodinium types were identified, eleven of which were found in hosts from both Caribbean locations. A single symbiont population was detected in 72% of hosts from the Yucatan and 92% of hosts from the Bahamas. The reef-wide community distribution of these symbionts is dominated by a few types found in many different host taxa, while numerous rare types appear to have high specificity for a particular host species or genus. Clade or lineage A Symbiodinium spp. was restricted to compatible hosts located within 3-4 m of the surface, while Symbiodinium spp. types from other lineages displayed differences in vertical zonation correlated with ITS type but were independent of clade designation. A comparison of the symbiont types found in field-collected hosts with types previously cultured from these hosts indicates the existence of low density or "background"-symbiont populations and cryptic, potentially non-mutualistic types in some hosts.  相似文献   

20.
The drivers of variable disease risk in complex multi-host disease systems have proved very difficult to identify. Here we test a model that explains the entomological risk of Lyme disease (LD) in terms of host community composition. The model was parameterized in a continuous forest tract at the Cary Institute of Ecosystem Studies (formerly the Institute of Ecosystem Studies) in New York State, U.S.A. We report the results of continuing longitudinal observations (10 years) at the Cary Institute, and of a shorter-term study conducted in forest fragments in LD endemic areas of Connecticut, New Jersey, and New York, USA. Model predictions were significantly correlated with the observed nymphal infection prevalence (NIP) in both studies, although the relationship was stronger in the longer-term Cary Institute study. Species richness was negatively, albeit weakly, correlated with NIP (logistic regression), and there was no relationship between the Shannon diversity index (H') and NIP. Although these results suggest that LD risk is in fact dependent on host diversity, the relationship relies explicitly on the identities and frequencies of host species such that conventional uses of the term biodiversity (i.e., richness, evenness, H') are less appropriate than are metrics that include species identity. This underscores the importance of constructing interaction webs for vertebrates and exploring the direct and indirect effects of anthropogenic stressors on host community composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号