首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 466 毫秒
1.
Life history trade-offs in tropical trees and lianas   总被引:1,自引:0,他引:1  
It has been hypothesized that tropical trees partition forest light environments through a life history trade-off between juvenile growth and survival; however, the generality of this trade-off across life stages and functional groups has been questioned. We quantified trade-offs between growth and survival for trees and lianas on Barro Colorado Island (BCI), Panama using first-year seedlings of 22 liana and 31 tree species and saplings (10 mm < dbh < 39 mm) of 30 tree species. Lianas showed trade-offs similar to those of trees, with both groups exhibiting broadly overlapping ranges in survival and relative growth rates as seedlings. Life history strategies at the seedling stage were highly correlated with those at the sapling stage among tree species, with all species showing an increase in survival with size. Only one of 30 tree species demonstrated a statistically significant ontogenetic shift, having a relatively lower survival rate at the sapling stage than expected. Our results indicate that similar life history trade-offs apply across two functional groups (lianas and trees), and that life history strategies are largely conserved across seedling and sapling life-stages for most tropical tree species.  相似文献   

2.
We use permanent-plot data from the USDA Forest Service's Forest Inventory and Analysis (FIA) program for an analysis of the effects of competition on tree growth along environmental gradients for the 14 most abundant tree species in forests of northern New England, USA. Our analysis estimates actual growth for each individual tree of a given species as a function of average potential diameter growth modified by three sets of scalars that quantify the effects on growth of (1) initial target tree size (dbh), (2) local environmental conditions, and (3) crowding by neighboring trees. Potential growth of seven of the 14 species varied along at least one of the two environmental axes identified by an ordination of relative abundance of species in plots. The relative abundances of a number of species were significantly displaced from sites where they showed maximum potential growth. In all of these cases, abundance was displaced to the more resource-poor end of the environmental gradient (either low fertility or low moisture). The pattern was most pronounced among early successional species, whereas late-successional species reached their greatest abundance on sites where they also showed the highest growth in the absence of competition. The analysis also provides empirical estimates of the strength of intraspecific and interspecific competitive effects of neighbors. For all but one of the species, our results led us to reject the hypothesis that all species of competitors have equivalent effects on a target species. Most of the individual pairwise interactions were strongly asymmetric. There was a clear competitive hierarchy among the four most shade-tolerant species, and a separate competitive hierarchy among the shade-intolerant species. Our results suggest that timber yield following selective logging will vary dramatically depending on the configuration of the residual canopy, because of interspecific variation in the magnitude of both the competitive effects of different species of neighbors and the competitive responses of different species of target trees to neighbors. The matrix of competition coefficients suggests that there may be clear benefits in managing for specific mixtures of species within local neighborhoods within stands.  相似文献   

3.
Robust predictions of competitive interactions among canopy trees and variation in tree growth along environmental gradients represent key challenges for the management of mixed-species, uneven-aged forests. We analyzed the effects of competition on tree growth along environmental gradients for eight of the most common tree species in southern New England and southeastern New York using forest inventory and analysis (FIA) data, information theoretic decision criteria, and multi-model inference to evaluate models. The suite of models estimated growth of individual trees as a species-specific function of average potential diameter growth, tree diameter at breast height, local environmental conditions, and crowding by neighboring trees. We used ordination based on the relative basal area of species to generate a measure of site conditions in each plot. Two ordination axes were consistent with variation in species abundance along moisture and fertility gradients. Estimated potential growth varied along at least one of these axes for six of the eight species; peak relative abundance of less shade-tolerant species was in all cases displaced away from sites where they showed maximum potential growth. Our crowding functions estimate the strength of competitive effects of neighbors; only one species showed support for the hypothesis that all species of competitors have equivalent effects on growth. The relative weight of evidence (Akaike weights) for the best models varied from a low of 0.207 for Fraxinus americana to 0.747 for Quercus rubra. In such cases, model averaging provides a more robust platform for prediction than that based solely on the best model. We show that predictions based on the selected best models dramatically overestimated differences between species relative to predictions based on the averaged set of models.  相似文献   

4.
Abstract: Inventories of tree species are often conducted to guide conservation efforts in tropical forests. Such surveys are time consuming, demanding of expertise, and expensive to perform and interpret. Approaches to make survey efforts simpler or more effective would be valuable. In particular, it would be good to be able to easily identify areas of old‐growth forest. The average density of the wood of a tree species is closely linked to its successional status. We used tree inventory data from eastern Borneo to determine whether wood density can be used to quantify forest disturbance and conservation importance. The average density of wood in a plot was significantly and negatively related to disturbance levels, with plots with higher wood densities occurring almost exclusively in old‐growth forests. Average wood density was unimodally related to the diversity of tree species, indicating that the average wood density in a plot might be a better indicator of old‐growth forest than species diversity. In addition, Borneo endemics had significantly heavier wood than species that are common throughout the Malesian region, and they were more common in plots with higher average wood density. We concluded that wood density at the plot level could be a powerful tool for identifying areas of conservation priority in the tropical rain forests of Southeast Asia.  相似文献   

5.
Edwards KF  Stachowicz JJ 《Ecology》2010,91(11):3146-3152
For competing species limited by one or few resources, diversity is thought to be maintained by trade-offs that allow niche differentiation without resource partitioning. However, few studies have quantified multiple key traits for each species in a guild and shown that trade-offs among these traits apply across the guild. Here we document strong bivariate and multivariate relationships among growth rate, fecundity, longevity, and overgrowth ability for six co-occurring colonial invertebrates. We find that all four of these traits are constrained to a single "fast-slow" niche axis that mechanistically relates life history variation to a colonization-competition trade-off. The location of species on this axis strongly predicts the timing of their peak abundance during succession. We also find that species closer to each other on the fast-slow axis are more likely to differ in reproductive phenology, suggesting a secondary dimension of niche differentiation for otherwise similar species.  相似文献   

6.
Peay KG  Garbelotto M  Bruns TD 《Ecology》2010,91(12):3631-3640
Dispersal limitation plays an important role in a number of equilibrium and nonequilibrium theories about community ecology. In this study we use the framework of island biogeography to look for evidence of dispersal limitation in ectomycorrhizal fungal assemblages on "tree islands," patches of host trees located in a non-host vegetation matrix. Because of the potentially strong effects of island area on species richness and immigration, we chose to control island size by sampling tree islands consisting of a single host individual. Richness on tree islands was high, with estimates ranging up to 42 species of ectomycorrhizal fungi associating with a single host individual. Species richness decreased significantly with increasing isolation of tree islands, with our regression predicting a 50% decrease in species richness when tree islands are located distances of approximately 1 km from large patches of contiguous forests. Despite the fact that fungal fruit bodies produce large numbers of spores with high potential for long-distance travel, these results suggest that dispersal limitation is significant in ectomycorrhizal assemblages. There were no discernible effects of isolation or environment on the species identity of tree island fungal colonists. In contrast to the highly predictable patterns of tree island colonization we observed in a previous study on early successional forests, we suggest that over longer time periods the community assembly process becomes more dominated by stochastic immigration and local extinction events.  相似文献   

7.
Rain forest fragmentation and the proliferation of successional trees   总被引:9,自引:0,他引:9  
The effects of habitat fragmentation on diverse tropical tree communities are poorly understood. Over a 20-year period we monitored the density of 52 tree species in nine predominantly successional genera (Annona, Bellucia, Cecropia, Croton, Goupia, Jacaranda, Miconia, Pourouma, Vismia) in fragmented and continuous Amazonian forests. We also evaluated the relative importance of soil, topographic, forest dynamic, and landscape variables in explaining the abundance and species composition of successional trees. Data were collected within 66 permanent 1-ha plots within a large (approximately 1000 km2) experimental landscape, with forest fragments ranging from 1 to 100 ha in area. Prior to forest fragmentation, successional trees were uncommon, typically comprising 2-3% of all trees (> or =10 cm diameter at breast height [1.3 m above the ground surface]) in each plot. Following fragmentation, the density and basal area of successional trees increased rapidly. By 13-17 years after fragmentation, successional trees had tripled in abundance in fragment and edge plots and constituted more than a quarter of all trees in some plots. Fragment age had strong, positive effects on the density and basal area of successional trees, with no indication of a plateau in these variables, suggesting that successional species could become even more abundant in fragments over time. Nonetheless, the 52 species differed greatly in their responses to fragmentation and forest edges. Some disturbance-favoring pioneers (e.g., Cecropia sciadophylla, Vismia guianensis, V. amazonica, V. bemerguii, Miconia cf. crassinervia) increased by >1000% in density on edge plots, whereas over a third (19 of 52) of all species remained constant or declined in numbers. Species responses to fragmentation were effectively predicted by their median growth rate in nearby intact forest, suggesting that faster-growing species have a strong advantage in forest fragments. An ordination analysis revealed three main gradients in successional-species composition across our study area. Species gradients were most strongly influenced by the standlevel rate of tree mortality on each plot and by the number of nearby forest edges. Species-composition also varied significantly among different cattle ranches, which differed in their surrounding matrices and disturbance histories. These same variables were also the best predictors of total successional-tree abundance and species richness. Successional-tree assemblages in fragment interior plots (>150 m from edge), which are subjected to fragment area effects but not edge effects, did not differ significantly from those in intact forest, indicating that area effects per se had little influence on successional trees. Soils and topography also had little discernable effect on these species. Collectively, our results indicate that successional-tree species proliferate rapidly in fragmented Amazonian forests, largely as a result of chronically elevated tree mortality near forest edges and possibly an increased seed rain from successional plants growing in nearby degraded habitats. The proliferation of fast-growing successional trees and correlated decline of old-growth trees will have important effects on species composition, forest dynamics, carbon storage, and nutrient cycling in fragmented forests.  相似文献   

8.
Reviews that summarize the genetic diversity of plant species in relation to their life history and ecological traits show that forest trees have more genetic diversity at population and species levels than annuals or herbaceous perennials. In addition, among-population genetic differentiation is significantly lower in trees than in most herbaceous perennials and annuals. Possible reasons for these differences between trees and herbaceous perennials and annuals have not been discussed critically. Several traits, such as high rates of outcrossing, long-distance pollen and seed dispersal, large effective population sizes (Ne), arborescent stature, low population density, longevity, overlapping generations, and occurrence in late successional communities, may make trees less sensitive to genetic bottlenecks and more resistant to habitat fragmentation or climate change. We recommend that guidelines for genetic conservation strategies be designed differently for tree species versus other types of plant species. Because most tree species fit an LH scenario (low [L] genetic differentiation and high [H] genetic diversity), tree seeds could be sourced from a few populations distributed across the species’ range. For the in situ conservation of trees, translocation is a viable option to increase Ne. In contrast, rare herbaceous understory species are frequently HL (high differentiation and low diversity) species. Under the HL scenario, seeds should be taken from many populations with high genetic diversity. In situ conservation efforts for herbaceous plants should focus on protecting habitats because the typically small populations of these species are vulnerable to the loss of genetic diversity. The robust allozyme genetic diversity databases could be used to develop conservation strategies for species lacking genetic information. As a case study of reforestation with several tree species in denuded areas on the Korean Peninsula, we recommend the selection of local genotypes as suitable sources to prevent adverse effects and to insure the successful restoration in the long term.  相似文献   

9.
Trade-offs in species’ traits can mediate competition and enable coexistence. A key challenge in ecology is understanding the role of species’ trade-offs in maintaining diversity, and evolutionary trade-offs between the abilities of competing species are best understood by considering how competitive advantages change along an environmental gradient. Previous studies of such trade-offs are generally limited to two-species systems and a single trade-off. In this study, I consider the effect of trade-offs in search efficiency and competitive abilities on habitat use patterns among a diverse avian scavenger guild. I hypothesize that species’ dominance status and search efficiency will both be correlated with patch quality. Using counts of searching birds in areas that vary in habitat quality in terms of both wildlife and human settlement density and observations at experimental carcasses, I assess the competitive ability, search efficiency, and habitat use of seven avian scavenger species in Masai Mara National Reserve, Kenya. Findings support the hypothesis with Bateleurs, a species with high search efficiency, and Ruppell’s, Lappet-faced, and White-backed vultures, species with high individual or social dominance, preferentially exploiting habitats of high quality, while Tawny eagles and Hooded vultures, species with low search efficiency and competitive ability, prefer habitats of low quality. This paper demonstrates the importance of considering multiple strategies for assessing the effect of competition on habitat use within complex communities.  相似文献   

10.
《Ecological modelling》2005,182(2):113-129
Small-scale disturbances (SSD) creating canopy gaps are fundamental to successional dynamics in temperate forests. As gap-oriented management becomes very popular, spatial aspects of gap dynamics, especially the detailed impact of disturbances on the light environment for different species, remain understudied. The aim of this study is to evaluate this effect using the individual-based model SORTIE. Using different initial conditions, 10 simulated data sets, each representing temperate forests, were artificially disturbed using four disturbance sizes. For each 3D location of the simulation space, light availability was computed using the gap light index to create volumetric light data sets. The growth functions of the nine tree species incorporated in the simulation were mapped to each light data set, generating species-dependent 3D cubes illustrating the effect of small-scale disturbances over the different species according to their autecologic relationship to light. The general impact of the simulated SSD was assessed (1) by extracting the 3D boundaries associated to the absolute spatial influence of each replicated SSD and (2) by analyzing the variation of light inside and outside these boundaries, at different height levels. Results were compared for each disturbance size. The species response to different disturbance sizes was evaluated globally and also as a function of height levels under the canopy. This study revealed that the impact of different SSD schemes is highly variable among replicates. Nonetheless, results revealed that small size disturbances exhibit more heterogeneous impact. A threshold effect was detected around a disturbance size of 1000 m2 suggesting a relative SSD impact that decreases for large SSD sizes. It was also found that species relationship is consistent between different disturbance schemes.  相似文献   

11.
Flinn KM 《Ecology》2007,88(12):3103-3114
Assessing the relative roles of dispersal limitation and environmental effects in population dynamics and community assembly is fundamental to understanding patterns of species distribution and diversity. In forests growing on abandoned agricultural lands, both legacies of vegetation disturbance and changes in the abiotic environment shape the diversity and composition of recovering communities. Here I specify how interactions among historical, environmental, and biological factors influence species distributions, focusing on three fern species with contrasting distributions across forests of different history in central New York, USA: Dryopteris carthusiana, Dryopteris intermedia, and Polystichum acrostichoides. Using population surveys, spore-trap and spore-bank studies, and a three-year field experiment, I compare demographic rates among species and between forest types to determine which life history stages limit colonization and which traits explain species distributions. Adult plants of all three species were larger and more likely to produce spores in post-agricultural forests than in adjacent, uncleared stands. Though lower population densities led to fewer spores in post-agricultural soils, spore availability still exceeded recruitment by four to five orders of magnitude. Sowing additional spores had relatively little effect, while microhabitat conditions had the greatest impact on establishment rates. Given similar microsites, the two forest types had equal rates of establishment, but some forest-floor features preferentially occupied by juvenile plants were less frequent in post-agricultural stands. The availability of suitable sites for establishment, created by small-scale heterogeneity on forest floors, thus limits both the growth of fern populations and the colonization of new habitats. In fact, reduced microtopographic variation in post-agricultural forests may represent a greater hindrance to plant establishment than changes in mean environmental conditions. Among the three fern species, establishment rates differed as species distributions would predict, with the strongest colonizer consistently having the highest rates and the slowest colonizer the lowest. Rather than random or trait-mediated dispersal, the different distributions of these species reflect life history traits that determine establishment rates and thus colonization ability. This case study demonstrates that ecological interactions based on the unique life histories of individual species can override dispersal in determining species distributions.  相似文献   

12.
Using forests to mitigate climate change has gained much interest in science and policy discussions. We examine the evidence for carbon benefits, environmental and monetary costs, risks and trade-offs for a variety of activities in three general strategies: (1) land use change to increase forest area (afforestation) and avoid deforestation; (2) carbon management in existing forests; and (3) the use of wood as biomass energy, in place of other building materials, or in wood products for carbon storage. We found that many strategies can increase forest sector carbon mitigation above the current 162-256 Tg C/yr, and that many strategies have co-benefits such as biodiversity, water, and economic opportunities. Each strategy also has trade-offs, risks, and uncertainties including possible leakage, permanence, disturbances, and climate change effects. Because approximately 60% of the carbon lost through deforestation and harvesting from 1700 to 1935 has not yet been recovered and because some strategies store carbon in forest products or use biomass energy, the biological potential for forest sector carbon mitigation is large. Several studies suggest that using these strategies could offset as much as 10-20% of current U.S. fossil fuel emissions. To obtain such large offsets in the United States would require a combination of afforesting up to one-third of cropland or pastureland, using the equivalent of about one-half of the gross annual forest growth for biomass energy, or implementing more intensive management to increase forest growth on one-third of forestland. Such large offsets would require substantial trade-offs, such as lower agricultural production and non-carbon ecosystem services from forests. The effectiveness of activities could be diluted by negative leakage effects and increasing disturbance regimes. Because forest carbon loss contributes to increasing climate risk and because climate change may impede regeneration following disturbance, avoiding deforestation and promoting regeneration after disturbance should receive high priority as policy considerations. Policies to encourage programs or projects that influence forest carbon sequestration and offset fossil fuel emissions should also consider major items such as leakage, the cyclical nature of forest growth and regrowth, and the extensive demand for and movement of forest products globally, and other greenhouse gas effects, such as methane and nitrous oxide emissions, and recognize other environmental benefits of forests, such as biodiversity, nutrient management, and watershed protection. Activities that contribute to helping forests adapt to the effects of climate change, and which also complement forest carbon storage strategies, would be prudent.  相似文献   

13.
A central goal of comparative plant ecology is to understand how functional traits vary among species and to what extent this variation has adaptive value. Here we evaluate relationships between four functional traits (seed volume, specific leaf area, wood density, and adult stature) and two demographic attributes (diameter growth and tree mortality) for large trees of 240 tree species from five Neotropical forests. We evaluate how these key functional traits are related to survival and growth and whether similar relationships between traits and demography hold across different tropical forests. There was a tendency for a trade-off between growth and survival across rain forest tree species. Wood density, seed volume, and adult stature were significant predictors of growth and/or mortality. Both growth and mortality rates declined with an increase in wood density. This is consistent with greater construction costs and greater resistance to stem damage for denser wood. Growth and mortality rates also declined as seed volume increased. This is consistent with an adaptive syndrome in which species tolerant of low resource availability (in this case shade-tolerant species) have large seeds to establish successfully and low inherent growth and mortality rates. Growth increased and mortality decreased with an increase in adult stature, because taller species have a greater access to light and longer life spans. Specific leaf area was, surprisingly, only modestly informative for the performance of large trees and had ambiguous relationships with growth and survival. Single traits accounted for 9-55% of the interspecific variation in growth and mortality rates at individual sites. Significant correlations with demographic rates tended to be similar across forests and for phylogenetically independent contrasts as well as for cross-species analyses that treated each species as an independent observation. In combination, the morphological traits explained 41% of the variation in growth rate and 54% of the variation in mortality rate, with wood density being the best predictor of growth and mortality. Relationships between functional traits and demographic rates were statistically similar across a wide range of Neotropical forests. The consistency of these results strongly suggests that tropical rain forest species face similar trade-offs in different sites and converge on similar sets of solutions.  相似文献   

14.
Life-history trade-offs allow many animals to maintain reproductive fitness across a range of climatic conditions. When used by parasites and pathogens, these strategies may influence patterns of disease in changing climates. The chytrid fungus, Batrachochytrium dendrobatidis, is linked to global declines of amphibian populations. Short-term growth in culture is maximal at 17 degrees-25 degrees C. This has been used in an argument that global warming, which increases the time that amphibians spend at these temperatures in cloud-covered montane environments, has led to extinctions. Here we show that the amphibian chytrid responds to decreasing temperatures with trade-offs that increase fecundity as maturation rate slows and increase infectivity as growth decreases. At 17 degrees-25 degrees C, infectious zoospores encyst (settle and develop a cell wall) and develop into the zoospore-producing stage (zoosporangium) faster, while at 7 degrees-10 degrees C, greater numbers of zoospores are produced per zoosporangium; these remain infectious for a longer period of time. We modeled the population growth of B. dendrobatidis through time at various temperatures using delayed differential equations and observational data for four parameters: developmental rate of thalli, fecundity, rate of zoospore encystment, and rate of zoospore survival. From the models, it is clear that life-history trade-offs allow B. dendrobatidis to maintain a relatively high long-term growth rate at low temperatures, so that it maintains high fitness across a range of temperatures. When a seven-day cold shock is simulated, the outcome is intermediate between the two constant temperature regimes, and in culture, a sudden drop in temperature induces zoospore release. These trade-offs can be ecologically important for a variety of organisms with complex life histories, including pathogenic microorganisms. The effect of temperature on amphibian mortality will depend on the interaction between fungal growth and host immune function and will be modified by host ecology, behavior, and life history. These results demonstrate that B. dendrobatidis populations can grow at high rates across a broad range of environmental temperatures and help to explain why it is so successful in cold montane environments.  相似文献   

15.
Jiang L  Patel SN 《Ecology》2008,89(7):1931-1940
Ecologists know relatively little about the manner in which disturbance affects the likelihood of alternative community stable states and how the history of community assembly affects the relationship between disturbance and species diversity. Using microbial communities comprising bacterivorous ciliated protists assembled in laboratory microcosms, we experimentally investigated these questions by independently manipulating the intensity of disturbance (in the form of density-independent mortality) and community assembly history (including a control treatment with simultaneous species introduction and five sequential assembly treatments). Species diversity patterns consistent with the intermediate disturbance hypothesis emerged in the controls, as several species showed responses indicative of a tradeoff between competitive ability and ability to recover from disturbance. Species diversity in communities with sequential assembly, however, generally declined with disturbance, owing to the increased extinction risk of later colonizers at the intermediate level of disturbance. Similarities among communities subjected to different assembly histories increased with disturbance, a result due possibly to increasing disturbance reducing the importance of competition and hence priority effects. This finding is most consistent with the idea that increasing disturbance tends to reduce the likelihood of alternative stable states. Collectively, these results indicate the strong interactive effects of disturbance and assembly history on the structure of ecological communities.  相似文献   

16.
Abstract: We explored the impact of forest conversion to agricultural mosaic on anuran, lizard, snake, and turtle assemblages of Neotropical dry forests. Over 2 years, we sampled 6 small watersheds on the west coast of Mexico, 3 conserved and 3 disturbed. The disturbed watersheds were characterized by a mosaic of pastures and cultivated fields (corn, beans, squash) intermingled with patches of different successional stages of dry forest. In each watershed, we conducted 11 diurnal and nocturnal time‐constrained searches in 10 randomly established plots. We considered vulnerability traits of species in relation to habitat modification. Eighteen anuran, 18 lizard, 23 snake, and 3 turtle species were recorded. Thirty‐six species (58%) occurred in both forest conditions, and 14 (22%) and 12 species (19%) occurred only in the conserved and disturbed sites, respectively. Assemblages responded differently to disturbance. Species richness, diversity, and abundance of lizards were higher in disturbed forests. Anuran diversity and species richness were lower in disturbed forest but abundance was similar in both forest conditions. Diversity, richness, and abundance of turtles were lower in disturbed forest. The structure and composition of snake assemblages did not differ between forest conditions. We considered species disturbance sensitive if their abundance was significantly less in disturbed areas. Four anuran (22%), 2 lizard (11%), and 3 turtle (100%) species were sensitive to disturbance. No snake species was sensitive. The decline in abundance of disturbance‐sensitive species was associated with the reduction of forest canopy cover, woody stem cover, roots, and litter‐layer ground cover. Anuran species with small body size and direct embryonic development were especially sensitive to forest disturbance. An important goal for the conservation of herpetofauna should be the determination of species traits associated with extinction or persistence in agricultural mosaics.  相似文献   

17.
{en} Over the past decades, much research has focused on understanding the critical factors for marine extinctions with the aim of preventing further species losses in the oceans. Although conservation and management strategies are enabling several species and populations to recover, others remain at low abundance levels or continue to decline. To understand these discrepancies, we used a published database on abundance trends of 137 populations of marine mammals worldwide and compiled data on 28 potentially critical factors for recovery. We then applied random forests and additive mixed models to determine which intrinsic and extrinsic factors are critical for the recovery of marine mammals. A mix of life‐history characteristics, ecological traits, phylogenetic relatedness, population size, geographic range, human impacts, and management efforts explained why populations recovered or not. Consistently, species with lower age at maturity and intermediate habitat area were more likely to recover, which is consistent with life‐history and ecological theory. Body size, trophic level, social interactions, dominant habitat, ocean basin, and habitat disturbance also explained some differences in recovery patterns. Overall, a variety of intrinsic and extrinsic factors were important for species’ recovery, pointing to cumulative effects. Our results provide insight for improving conservation and management strategies to enhance recoveries in the future.  相似文献   

18.
Jacobs MW  Sherrard KM 《Ecology》2010,91(12):3598-3608
The presumed trade-off between offspring size and quality predicted by life history theory is often invoked to explain the wide range of propagule sizes observed in animals and plants. This trade-off is broadly supported by intraspecific studies but has been difficult to test in an interspecific context, particularly in animals. We tested the fitness consequences of offspring size both intra- and interspecifically for seven species of ascidians (sessile, suspension-feeding, marine invertebrates) whose offspring volumes varied over three orders of magnitude. We measured two major components of fitness, juvenile growth rates and survival, in laboratory and field experiments encompassing several food conditions. Contrary to the predictions of life history theory, larger offspring size did not result in higher rates of growth or survival, and large offspring did not perform better under nutritional stress, either intraspecifically or interspecifically. In fact, two of the four species with small offspring grew rapidly enough to catch up in size to the species with large offspring in as little as eight weeks, under wild-type food conditions. Trade-offs between growth potential and defense may overwhelm and obscure any trade-offs between offspring size and survival or growth rate. While large initial size may still confer a competitive advantage, we failed to detect any consequences of interspecific variation in initial size. This implies that larger offspring in these species, far from being inherently superior in growth or survival, require compensation in other aspects of life history if reproductive effort is to be efficient. Our results suggest that the importance of initial offspring size is context dependent and often overestimated relative to other life history traits.  相似文献   

19.
This study quantitatively clarifies the life history of a shrub, Sambucus racemosa ssp. sieboldiana, in an old-growth forest, the Ogawa Forest Reserve, Japan, by a demographic approach using a projection matrix model that incorporates interactions between demographic parameters and canopy height dynamics. S. racemosa is a common deciduous shrub in central Japan and is known to grow predominantly at forest edges or roadsides. This indicates that it is a highly light-demanding species, and occurrence in gaps in old-growth stands suggests its "fugitive," gap-dependent life history in old-growth forests. We found that one distinctive feature of this species was that its seedlings can survive well in shaded conditions by alternating stems every year like perennial herb species. Matrix model analyses demonstrated that S. racemosa can continuously regenerate under the present disturbance regime of this forest and is highly adaptable to the structural dynamics of the old-growth forest. The maturity of S. racemosa shrubs depends on their size, and nearly all (>90%) of the mature (reproducing) individuals were found in gaps or near gaps. But wide seed dispersal by birds and the ability to form both seed banks and seedling banks, the latter of which has been regarded as a common characteristic of shade-tolerant climax species, probably increase the species' chances to encounter canopy gaps. Dynamic-canopied matrix models showed that the greatest elasticity is with shaded seedling survival. The frequent stem alternation of shaded seedlings often makes the growth rate negative, but the survival rate of seedlings in low light awaiting new gap creation is remarkably high (0.93 yr(-1)). The lower survival rate of the larger individuals and smaller minimum size to start reproduction than other canopy or subcanopy shade-tolerant species indicate that S. racemosa has the potential to reproduce before the closure of the encountered gaps and to complete its life history rapidly.  相似文献   

20.
Insect disturbance is often thought to increase fire risk through enhanced fuel loadings, particularly in coniferous forest ecosystems. Yet insect disturbances also affect successional pathways and landscape structure that interact with fire disturbances (and vice-versa) over longer time scales. We applied a landscape succession and disturbance model (LANDIS-II) to evaluate the relative strength of interactions between spruce budworm (Choristoneura fumiferana) outbreaks and fire disturbances in the Boundary Waters Canoe Area (BWCA) in northern Minnesota (USA). Disturbance interactions were evaluated for two different scenarios: presettlement forests and fire regimes vs. contemporary forests and fire regimes. Forest composition under the contemporary scenario trended toward mixtures of deciduous species (primarily Betula papyrifera and Populus spp.) and shade-tolerant conifers (Picea mariana, Abies balsamea, Thuja occidentalis), with disturbances dominated by a combination of budworm defoliation and high-severity fires. The presettlement scenario retained comparatively more "big pines" (i.e., Pinus strobus, P. resinosa) and tamarack (L. laricina), and experienced less budworm disturbance and a comparatively less-severe fire regime. Spruce budworm disturbance decreased area burned and fire severity under both scenarios when averaged across the entire 300-year simulations. Contrary to past research, area burned and fire severity during outbreak decades were each similar to that observed in non-outbreak decades. Our analyses suggest budworm disturbances within forests of the BWCA have a comparatively weak effect on long-term forest composition due to a combination of characteristics. These include strict host specificity, fine-scaled patchiness created by defoliation damage, and advance regeneration of its primary host, balsam fir (A. balsamea) that allows its host to persist despite repeated disturbances. Understanding the nature of the three-way interaction between budworm, fire, and composition has important ramifications for both fire mitigation strategies and ecosystem restoration initiatives. We conclude that budworm disturbance can partially mitigate long-term future fire risk by periodically reducing live ladder fuel within the mixed forest types of the BWCA but will do little to reverse the compositional trends caused in part by reduced fire rotations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号