首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
采用连续流运行方式,将含NO3--N的原水依次通过HABR(复合式厌氧折流板反应器)内添加木屑(第1系统)和硫磺颗粒(第2系统)的2个系统,在温度为(25±1)℃的条件下,将NO3--N容积负荷由72g/(m3·d)逐渐提高至80和96g/(m3·d),在不需投加传统型外加碳源的条件下实现了固相异养与单质硫自养的集成反硝化. 结果表明:进水NO3--N容积负荷为96g/(m3·d)时,系统NO3--N总去除率达到99.0%,第1系统和第2系统对NO3--N的去除率贡献各为50.0%;系统出水ρ(CODMn)为5.74~10.05mg/L,ρ(SO42-)为405~870mg/L,并且没有NH4+-N和NO2--N的积累. 第1系统产生的碱度能部分中和第2系统内产生的酸,进水、第1系统、第2系统出水pH分别为7.5、7.5~7.6、6.5~7.2,使硫自养反硝化系统呈现出较强的pH平衡能力,不需外加石灰石调节碱度即可为反硝化细菌提供较适宜的中性生存环境. 系统在pH平衡能力和NO3--N去除效果2个方面均表现出良好的协同作用,并且通过集成反硝化作用弥补了2个系统单独运行时反硝化过程效率低的缺点,较传统异养型生物反硝化降低了运行成本.   相似文献   

2.
张千  吉芳英  徐璇 《环境科学研究》2015,28(7):1138-1144
为预测反硝化生物滤池深度处理城镇污水处理厂二沉池出水的脱氮效果,优化工艺运行参数,以黏土陶粒反硝化生物滤池作为反应器,以人工合成污水模拟污水处理厂二沉池出水,采用中心组合试验设计,利用响应曲面法研究反应器NO3--N去除率与HRT(水力停留时间)、进水中ρ(CODCr)和ρ(NO3--N)之间的关系. 统计结果显示,NO3--N去除模型极显著(P<0.000 1),并且模型预测值与试验值能很好地吻合. 方差分析结果表明,HRT及其与进水中ρ(NO3--N)和ρ(CODCr)的交互作用对反硝化滤池NO3--N的去除率影响不显著(P>0.05),而进水中ρ(NO3--N)和ρ(CODCr)及其交互作用对反硝化滤池NO3--N的去除具有显著影响(P<0.05). 3个因素对NO3--N去除率影响强弱的顺序为进水ρ(CODCr)>进水ρ(NO3--N)>HRT. 在HRT为2.50 h的条件下,当进水中ρ(NO3--N)<11.00 mg/L及ρ(CODCr)>43.00 mg/L时,反硝化滤池NO3--N的去除率可以达到71.0%以上.   相似文献   

3.
针对养猪废水厌氧消化液高ρ(NH4+-N)的特点,构建了上层填充沸石强化硝化、下层填充砖渣强化反硝化的功能分区型人工湿地,考察其启动阶段运行性能、硝化区及反硝化区污染物去除性能. 结果表明,湿地以间歇方式运行(饱和液位无变化),启动后NO3--N的产生速率为0.014 6 kg/(m3·d),湿地底部出水的ρ(NO3--N)平均值为14.94 mg/L,明显低于沸石层的21.77 mg/L. CODCr主要在湿地上层硝化区被去除,平均去除率为64.82%. 随着湿地启动,下层由于反硝化作用消耗的有机物增至56.67 mg/L. 在进水期的前15 min,CODCr、NH4+-N、TP的去除率最大,NO3--N溶出量(以ρ计)最高,达42.30 mg/L. 沸石层10、20和30 cm处硝化速率基本稳定,沸石层的Eh均在400 mV以上. 与间歇方式相比,湿地以潮汐流方式(进水期与落干期时间比为1 h∶23 h)运行时,CODCr和TN去除率分别由78.45%和41.99%升至82.62%和53.41%. 研究显示,功能分区型人工湿地通过上层硝化、下层反硝化方式可有效去除养殖废水厌氧消化液中的NH4+-N.   相似文献   

4.
董磊  林莉  李青云  吴敏  郦超 《环境科学研究》2017,30(7):1112-1119
地下水是我国重要的饮用水源之一,国内部分地区地下水NO3--N含量超标,对人体健康造成潜在威胁.采用模拟装置考察改性凹凸棒土/纳米铁复合材料、反硝化细菌及其耦合体系对地下水NO3--N去除效果及脱氮产物的变化特征.结果表明,在模拟地下水溶解氧[ρ(DO)为0.3 mg/L]、温度(15℃)和黑暗环境下,50 mg改性凹凸棒土/纳米铁复合材料与50 mg/L NO3--N反应,7 d后NO3--N去除率为43.7%,其中63.6%的还原产物转化为NH4+-N,几乎无NO2--N生成,TN去除率为15.9%;反硝化细菌体系中,7 d后NO3--N去除率仅为9.7%,其中NO2--N占4.1%,几乎无NH4+-N生成,TN去除率为5.3%;在改性凹凸棒土/纳米铁复合材料-反硝化细菌耦合体系中,7 d后NO3--N去除率为80.6%,其中NH4+-N占33.2%、NO2--N占12.1%,TN去除率为35.2%.研究显示,模拟地下水环境下,改性凹凸棒土/纳米铁复合材料-反硝化细菌耦合体系对NO3--N去除效果最好,TN去除率高.   相似文献   

5.
UASB1-A/O-UASB2深度处理垃圾渗滤液   总被引:1,自引:0,他引:1       下载免费PDF全文
针对传统垃圾渗滤液生物处理TN去除率低、投加碳源成本高的问题,采用UASB1-A/O-UASB2(单级上流式厌氧污泥床+缺氧/好氧+后置上流式厌氧污泥床)工艺处理实际垃圾渗滤液,实现NH4+-N和TN的同步深度脱除,并且定量解析了A/O反应器实现并维持稳定短程硝化的影响因素. 结果表明:以V(垃圾渗滤液)∶V(生活污水)为1∶5的混合液作为进水,其ρ(CODCr)、ρ(TN)和ρ(NH4+-N)分别为1 700~1 800、660~700和650~680 mg/L,最终出水CODCr、TN和NH4+-N去除率均在95%以上,出水ρ(TN)为38 mg/L,满足GB 16889—2008《生活垃圾填埋场污染控制标准》的排放要求. 在好氧反应器中,FA(游离氨)与FNA(游离亚硝酸)对NOB(硝化细菌)的联合抑制作用是实现NO2--N积累率稳定在80%以上的主要原因,而产生的NO2--N和NO3--N可在UASB2中以难降解的有机物为碳源,通过反硝化途径被去除. 研究显示,组合系统可实现对TN的深度去除.   相似文献   

6.
采用硫自养反硝化工艺处理模拟污水厂二沉尾水,分别以硫磺/白云石、黄铁矿/白云石为填料,考察不同填料下生物滤池的脱氮除磷效果.结果表明,在HRT(水力停留时间)为1 h的条件下,硫磺/白云石反应器在10 d内能迅速启动,出水ρ(NO3--N)小于1.00 mg/L,去除率高达99%,反应器的最佳实际HRT为45 min.进水中的DO对硫磺/白云石反应器反硝化效果没有明显影响,但会对黄铁矿/白云石反应器的反硝化效果产生影响.去除进水中的DO后,在HRT为4 d下,黄铁矿/白云石反应器出水NO3--N和TP的质量浓度分别为10.31和0.10 mg/L,其去除率分别为67.2%和90.7%.采用高速水流反冲洗后,两个反应器的脱氮效果均能在2 d内迅速恢复.在12 ℃的低温条件下,硫磺/白云石和黄铁矿/白云石反应器的处理效果均变化不大.去除一定量的NO3--N时,硫磺/白云石反应器的SO42-生成量与理论值相符合,黄铁矿/白云石反应器的略高于理论值.研究显示,硫磺/白云石体系可有效去除二沉尾水中的NO3--N,而黄铁矿/白云石体系具有同时脱氮除磷的功能.   相似文献   

7.
为探究低C/N[ρ(CODCr)/ρ(NO3--N),下同]水体的脱氮技术,分别以火山岩、火山岩/铁碳颗粒、火山岩/硫磺颗粒、火山岩/铁碳颗粒/硫磺颗粒作为填料构建R1、R2、R3和R4反应器,考察反硝化系统在不同C/N下的脱氮效果.结果表明:①随着进水C/N的降低,R1、R2和R3反应器的NO3--N去除率逐渐降低,R4反应器则是先升后降;在C/N为1.5~2.0、系统温度为30℃、进水pH为7.0±0.2、HRT(水力停留时间)为4.0 h、进水ρ(NO3--N)为30 mg/L时,R4反应器中NO3--N去除率最高,平均值为90.1%.②在R2反应器中,随着反应器的运行,铁碳颗粒自身氧化表面形成氧化膜,使得铁自养反硝化作用不断减弱,脱氮效率与R1反应器相近.③运行前期,R2和R4反应器保持着较高的ρ(NH4+-N),随着反应器的运行,4个反应器的ρ(NH4+-N)相当.④与R3反应器相比,R4反应器中不存在NO2--N的累积情况,同时铁自养过程产生的碱能被硫自养过程所消耗,系统pH更适合反硝化菌生存.研究显示,C/N为1.5~2.0时,异养-铁-硫自养反硝化系统可提供充足的电子供体,减少对有机碳源的依赖,保证了稳定高效的脱氮效果.   相似文献   

8.
3DBER-S反硝化脱氮性能及其菌群特征   总被引:2,自引:0,他引:2       下载免费PDF全文
针对污水处理厂尾水TN去除问题,采用16S rDNA克隆文库法,探究了3DBER-S(三维电极生物膜耦合硫自养脱氮工艺)的强化脱氮机制及其菌群特征. 结果表明,I(电流)和HRT(水力停留时间)对3DEBR-S中氢自养和硫自养反硝化作用所占比例的影响较大,但对脱氮效率影响不显著. 当进水C/N〔ρ(CODCr)/ρ(TN)〕为1、ρ(NO3--N)为35 mg/L、I为300 mA、HRT为4 h时,NO3--N和TN去除率可分别稳定在80%和74%以上. 16S rDNA克隆文库结果显示,反应器中β变形菌纲为优势菌群,占47.89%〔以OUT(操作单元)计〕. 在β变形菌纲中,与具有反硝化功能的陶厄氏菌属(Thauera)相似的细菌所占比例最大,为52.94%;与可分别利用硫和氢为电子供体进行反硝化脱氮的硫杆菌属(Thiobacillus)和食酸菌属(Acidovorax)相似的细菌分别占17.65%和14.71%. 3DBER-S中存在异养联合氢自养和硫自养反硝化协同去除硝酸盐氮的作用,可为反硝化脱氮提供充足的电子供体,节约了有机碳源消耗,并保证了稳定高效的脱氮效果.   相似文献   

9.
采用连续流分段进水短程反硝化-厌氧氨氧化(partial denitrification-anaerobic ammonium oxidation,PD-Anammox)耦合反硝化工艺处理低C/N生活污水,研究了污染物去除、典型周期COD及氮素沿程变化特征、短程反硝化-厌氧氨氧化和反硝化对TN去除贡献。结果表明:在平均进水ρ(COD)、ρ(NH4+-N)、ρ(TN)为193.1,58.6,60.3 mg/L的条件下,系统出水平均ρ(COD)、ρ(NH4+-N)、ρ(TN)分别为46.3,1.5,13.4 mg/L,低于GB 18918—2002《城镇污水处理厂污染物排放标准》一级A标准。采用NO3--N预缺氧和进水点后置,可实现缺氧区NO3--N→NO2--N转化,同时完成厌氧氨氧化过程;缺氧区设置厌氧氨氧化悬浮填料,可提高系统TN去除率。通过缺氧区物料衡算,缺氧1区厌氧氨氧化对TN去除贡献率(ΔPD-Anammox/ΔTN)均值为54.37%,缺氧2区的ΔPD-Anammox/ΔTN均值为64.17%。  相似文献   

10.
为探究硫自养反硝化过程中含硫副产物的产生规律,建立了上流式硫自养固定床生物反应器,考察HRT(水力停留时间)对水中NO3--N去除的影响,运用零级和1/2级反应动力学模型对NO3--N还原过程进行拟合,通过测定与理论计算分析含硫副产物的产生趋势及规律,利用高通量测序技术(high-throughput sequencing)测定微生物群落结构空间分布特征.结果表明:①当进水NO3--N浓度为(30.45±0.38)mg/L,HRT为4和1 h时,NO3--N去除率达到98%以上.硫自养反硝化过程符合1/2级反应动力学模型,1/2K1/2V(1/2级反应动力学速率常数)为5.69 mg1/2/(L1/2·h).②出水SO42-的产生量接近理论值,S2-在反应器中部出现微量的积累,在出水口处浓度进一步降低(< 0.5 mg/L).③HRT的缩短改变了反应器内部微生物群落α多样性的变化规律;Proteobacteria成为了最主要的优势菌群,各阶段所占比例均大于59%,Sulfurimonas为最常见的反硝化菌,在HRT为1 h时,反应器中部其丰度达到36%,成为反应器中的优势菌属;Desulfurella为SRB(硫酸盐还原菌),其丰度的增加与反应器内部S2-的积累一致.研究显示,硫自养反硝化过程中产生的SO42-与理论值接近,S2-产生量沿反应器高度方向呈现先增加后降低的趋势,微生物群落结构分布情况与反应器高度有关.   相似文献   

11.
将膨胀颗粒污泥床(EGSB)和曝气生物滤池(BAF)集成,EGSB出水进入BAF进行短程硝化,BAF出水外回流至EGSB反应器为后者提供亚硝态氮,在不需外部投加亚硝态氮的条件下,实现厌氧氨氧化、甲烷化和短程硝化反硝化的耦合, 系统地处理ρ(氨氮)为50 mg/L和ρ(CODCr)为500 mg/L的合成废水.结果表明:当外回流比为200%时,系统CODCr,氨氮和总氮的去除率分别为92.4%,97.4%和80.6%;出水ρ(氨氮),ρ(亚硝态氮),ρ(硝态氮)和ρ(CODCr)分别为1.05,4.30,2.56和35.3 mg/L;CODCr,总氮和氨氮的去除负荷速率分别为1.770,0.137和0.164 kg/(m3·d). 与传统的活性污泥过程相比,EGSB-BAF集成系统回收甲烷1.03  L/d,占系统CODCr去除量的37.0%;在系统总氮的去除过程中,厌氧氨氧化途径占35.9%,短程反硝化途径占47.4%,全程反硝化途径占16.7%.   相似文献   

12.
不同填埋结构渗滤液中的氮动态变化特性   总被引:4,自引:2,他引:2  
建立了准好氧和厌氧的垃圾填埋模拟试验装置,研究了渗滤液中ρ(NH4+-N),ρ(NO3--N),ρ(NO2--N)和ρ(TN)的动态变化特性. 结果表明:装入模拟装置的城市生活垃圾,经过12个月的降解后,准好氧填埋结构渗滤液中的ρ(NH4+-N)和ρ(TN)显著下降,分别降至945和986 mg/L,下降率(分别为79.2%和77.3%)远远大于厌氧填埋结构;ρ(NO3--N)和ρ(NO2--N)变化波动较大,在第25~31周时,NO3--N与NO2--N都有一个累积的过程;厌氧填埋结构中,ρ(NH4+-N)由初始的4 599 mg/L降至2 812 mg/L,ρ(TN)则降至2 859 mg/L,其降解效果远不如准好氧填埋,而ρ(NO3--N)和ρ(NO2--N)较低,波动不大.   相似文献   

13.
响应面法优化CANON工艺处理猪场沼液脱氮性能研究   总被引:3,自引:2,他引:1       下载免费PDF全文
王子凌  信欣  刘琴  杨豪  曹惜霜 《环境科学研究》2020,33(10):2326-2334
为了得到全程自养脱氮(completely autotrophic nitrogen removal over nitrite,CANON)工艺处理猪场沼液脱氮性能的最佳工艺条件,以处理实际猪场沼液的连续流CANON工艺为研究对象,采用BBD响应面法优化其关键运行参数,探究了HRT(水力停留时间)、温度和进水ρ(NH4+-N)各因素的交互作用.结果表明:①HRT、温度和进水ρ(NH4+-N)对反应器脱氮效率均有显著影响,且数学模型拟合度良好,各因素对TN、NH4+-N去除率的影响程度由强到弱依次为进水ρ(NH4+-N)> HRT >温度.②通过BBD响应面法获得最佳脱氮条件为HRT 1.35 d、温度34.4℃、进水ρ(NH4+-N)415 mg/L.在接近响应面优化后的条件下进行验证试验,得到出水ρ(NH4+-N)平均值为74.68 mg/L,NH4+-N去除率为83.05%;出水ρ(TN)平均值为108.28 mg/L,TN去除率为73.91%,与模型预测值较接近.研究显示,BBD响应面法能在较少的试验次数下检验影响因素之间的交互作用,可科学地优化CANON工艺处理猪场沼液的脱氮性能.   相似文献   

14.
为解决ZVI(零价铁)电极表面的钝化问题,实现anammox(厌氧氨氧化)工艺稳定、高效地运行,采用EEZVI-UASB(电增强零价铁-升流式厌氧污泥床)技术处理养猪废水,研究了EEZVI电极电压、ρ(CODCr)及脱氮贡献率的相关性. 结果表明,在温度为(35±1)℃、pH为6.80~7.10、电极电压为0.60 V的条件下,EEZVI-UASB对NH4+-N和NO2--N的去除率均维持在较高的水平;NH4+-N去除率>90.00%,NO2--N去除率>96.00%,TN平均去除率>90.00%. 当EEZVI电极电压为0.60 V时,AAOB(厌氧氨氧化菌)的活性为91.10 mg/(g·d)(以NH4+-N计);EEZVI-UASB中的优势功能菌主要为Pseudomonas属,其菌属16S rDNA的PCR扩增相似性达97%;系统中同时存在着反硝化、anammox、甲烷化等反应;其中anammox占主导作用,其对TN去除率的贡献率为54.10%~93.30%,反硝化及其他反应对TN去除率的贡献率为6.70%~45.90%.   相似文献   

15.
为了解复合人工湿地系统对低污染水中总氮的处理效果及微生物群落结构特征,以表流-潜流-沉水植物塘构建的复合人工湿地系统为研究对象,研究该系统对低污染水中TN、NH4+-N、NO3--N、NO-2-N的去除效果,并采用高通量测序揭示各级单元微生物群落结构与差异性.结果表明:复合人工湿地系统在0.12~0.24 m3/(m2...  相似文献   

16.
探究NH4+-N冲击对微压反应器(MPR)污染物去除效率的影响,通过提高单周期瞬时进水NH4+-N浓度至40,50 mg/L,对MPR进行冲击。结果表明:常规负荷下,MPR具有良好的污染物去除效果。冲击周期降解历时数据显示,在进水40 mg/L NH4+-N冲击周期内进水ρ(COD)、ρ(NH4+-N)、ρ(TP)分别为192.58,40.96,2.52 mg/L,出水分别为38.16,0.70,0.26 mg/L,去除效果无显著变化,出水TN浓度上升至16.04 mg/L。增加NH4+-N冲击浓度至50 mg/L,冲击周期内NH4+-N降解速率不变,反硝化速率提高,出水ρ(NH4+-N)、ρ(TN)升高至4.95,17.62 mg/L,TN降解主要受碳源不足影响;TP去除效果无变化,冲击后57个周期内除磷系统受到影响,出水TP出现较大波动,最高浓度达到2.6 mg/L。以上结果表明,MPR系统受到NH4+-N冲击后1个周期内,脱氮性能即可恢复,说明冲击对脱氮系统造成了可逆的短期影响,但对除磷系统造成不可逆的长期影响。  相似文献   

17.
潮汐流人工湿地的除氮效果及影响因素   总被引:2,自引:0,他引:2       下载免费PDF全文
为研究TF-CW(tidal flow constructed wetland,潮汐流人工湿地)的除氮效果及其主要影响因素,以连续流模拟装置(A组)为对照,设置3种潮汐进水方式〔RAT(闲置时间∶反应时间)分别为1∶1、1∶2、2∶1,依次记做B组、C组、D组〕,运行175 d,分析不同进水方式下TF-CW模拟装置对TN、NH4+-N、NO3--N、TOC的去除效果及其在不同处理深度上的变化. 结果表明:A、B、C、D组TN平均去除率分别为82.41%±4.84%、84.82%±5.09%、86.09%±3.99%、90.23%±3.05%. A组TN和NH4+-N的去除效果与B、C、D组均差异显著(P<0.05),其中D组TN和NH4+-N的去除效果均最好;A组对NO3--N的总体去除效果较优;RAT并不影响TOC的去除率. 不同进水方式下,NH4+-N的去除率均在0~15 cm深度内最大,ρ(TOC)处于较低水平(0~20 mg/L),二者均随处理深度的不断增加而逐渐下降;ρ(NO3--N)在0~15 cm深度内迅速上升. 随着闲置时间的增加,ρ(DO)逐渐升高. TN和NH4+-N的去除率随着运行时间的增加基本保持恒定,主要影响因子有ρ(DO)、RAT、ORP(oxidation reduction potential,氧化还原电位)和ρ(TOC);而NO3--N的去除率随着运行时间的增加而逐渐降低,其主要影响因子有pH、电导率和水温等.   相似文献   

18.
为探讨养殖废水中兽用抗生素对湿地系统中氮素转化及相关微生物过程的影响,以养殖废水中常见的抗生素SD(磺胺嘧啶)为例,设置0、10、100和1 000 μg/L 4个添加浓度开展模拟试验.通过qPCR(实时荧光定量PCR)技术,测定了湿地底泥中氨氧化和反硝化功能基因丰度,结合Pearson相关分析,分析了养殖废水中不同氮素形态与底泥中氮转化功能基因丰度的关联性.结果表明:①与CK组比较,添加SD对湿地TN的最终去除效果无显著性差异,4个处理组的TN去除率为75.4%~80.5%,但在培养前期(0~14 d),SD对水体NH4+-N和NO3--N转化的抑制率最高分别达53.0%和99.5%,随着SD浓度的增加,抑制作用越强,到培养后期(14~28 d),各处理水体中不同形态的氮浓度无显著差异.②由qPCR测试结果得出,湿地底泥中AOA(氨氧化古菌)的丰度比AOB(氨氧化细菌)高出1~2个数量级,表明AOA在氨氧化过程中起主导作用,另外在培养第7天,AOB发生显著抑制现象,对SD更敏感;与CK相比,在第7天和第14天,反硝化基因narG、nirS、nirK和nosZ丰度随SD浓度的增加而逐渐降低.③相关性分析结果表明,AOA与ρ(NH4+-N)呈极显著正相关(P < 0.01),AOB与ρ(NO3--N)呈极显著正相关(P < 0.01),nirK与ρ(NO2--N)呈极显著正相关(P < 0.01).研究显示,SD能抑制湿地底泥中氮转化微生物及相关氮转化过程,且SD浓度越大,抑制作用也越大,但随着培养时间的增加抑制作用会减弱.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号