首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The uptake of selected polycyclic aromatic hydrocarbons (PAHs) by rice (Oryza sativa) seedlings from spiked aged soils was investigated. When applied to soils aged for 4 months, naphthalene, phenanthrene, and pyrene exhibited volatilization loss of 98, 95, and 30%, respectively, with the remaining fraction being fixed by soil organic matter and/or degraded by soil microbes. In general, concentrations of the three PAHs in rice roots were greater than those in the shoots. The concentrations of root associated PHN and PYR increased proportionally with both soil solution and rhizosphere concentrations. PAH concentrations in shoots were largely independent of those in soil solution, rice roots, or rhizosphere soil. The relative contributions of plant uptake and plant-promoted rhizosphere microbial biodegradation to the total mass balance were 0.24 and 14%, respectively, based on PYR concentrations in rhizosphere and non-rhizosphere soils, the biomass of rice roots, and the dry soil weight.  相似文献   

2.
Options for wetland creation or restoration might be limited because of the presence of contaminants in the soil. The influence of hydrological management on the pore water concentrations of Cd, Cr, Cu, Fe, Mn, Ni and Zn in the upper soil layer of a contaminated overbank sedimentation zone was investigated in a greenhouse experiment. Flooding conditions led to increased Fe, Mn, Ni and Cr concentrations and decreased Cd, Cu and Zn concentrations in the pore water of the upper soil layer. Keeping the soil at field capacity resulted in a low pore water concentration of Fe, Mn and Ni while the Cd, Cu, Cr and Zn concentrations increased. Alternating hydrological conditions caused metal concentrations in the pore water to fluctuate. Formation and re-oxidation of small amounts of sulphides appeared dominant in determining the mobility of Cd, Cu, and to a lesser extent Zn, while Ni behaviour was consistent with Fe/Mn oxidation and reduction. These effects were strongly dependent on the duration of the flooded periods. The shorter the flooded periods, the better the metal concentrations could be linked to the mobility of Ca in the pore water, which is attributed to a fluctuating CO(2) pressure.  相似文献   

3.

The iron (Fe) (hydro)oxides deposited around rice roots play an important role in arsenic (As) sequestration in paddy soils, but there is no systematic study on the relative importance of Fe (hydro)oxides on root surface and in rhizosphere soil in limiting As bioavailability. Twenty-seven rice genotypes were selected to investigate effects of Fe (hydro)oxides on As uptake by rice in an alkaline paddy soil. Results indicated that the As content was positively correlated with the Fe content on root surface, and most of As (88–97%) was sequestered by poorly crystalline and crystalline Fe (hydro)oxides in the alkaline paddy soil. The As sequestration by Fe (hydro)oxides on root surface (IASroot 16.8–25.0 mg As/(g Fe)) was much higher than that in rhizosphere (IASrhizo 1.4–2.0 mg As/(g Fe)); therefore, in terms of As immobilization, the Fe (hydro)oxides on root surface were more important than that in rhizosphere. However, the As content in brown rice did not have significant correlation with the As content on root surface but was significantly correlated (R2?=?0.43, P?<?0.05) with the partition ratio (PRAs?=?IASroot/IASrhizo) of As sequestration on root surface and in rhizosphere, which suggested that Fe (hydro)oxides on root surface did not play the controlling role in lowering As uptake, and the partition ratio PRAs would be a better indicator to evaluate effects of Fe (hydro)oxides around roots on As uptake by rice.

  相似文献   

4.
The disposal of fly-ash (FA) from coal-fired power stations causes significant economic and environmental problems. Use of such contaminated sites for crop production and use of contaminated water for irrigation not only decreases crop productivity but also poses health hazards to humans due to accumulation of toxic metals in edible grains. In the present investigation, three rice cultivars viz., Saryu-52, Sabha-5204, and Pant-4 were grown in garden soil (GS, control) and various amendments (10%, 25%, 50%, 75% and 100%) of FA for a period of 90 days and effect on growth and productivity of plant was evaluated vis-a-vis metal accumulation in the plants. The toxicity of FA at higher concentration (50%) was reflected by the reduction in photosynthetic pigments, protein and growth parameters viz., plant height, root biomass, number of tillers, grain and straw weight. However, at lower concentrations (10-25%), FA enhanced growth of the plants as evident by the increase of studied growth parameters. The cysteine and non-protein thiol (NP-SH) content showed increase in their levels up to 100% FA as compared to control, however, maximum content was found at 25% FA in Saryu-52 and Pant-4 and at 50% FA in Sabha-5204. Accumulation of Fe, Si, Cu, Zn, Mn, Ni, Cd and As was investigated in roots, leaves and seeds of the plants. Fe accumulation was maximum in all the parts of plant followed by Si and both showed more translocation to leaves while Mn, Zn, Cu, Ni and Cd showed lower accumulation and most of the metal was confined to roots in all the three cultivars. As was accumulated only in leaves and was not found to be in detectable levels in roots and seeds. The metal accumulation order in three rice cultivars was Fe > Si > Mn > Zn > Ni > Cu > Cd > As in all the plant parts. The results showed that rice varieties Saryu-52 and Sabha-5204 were more tolerant and could show improved growth and yield in lower FA application doses as compared to Pant-4. Thus, Sabha-5204 and Saryu-52 are found suitable for cultivation in FA amended agricultural soils for better crop yields.  相似文献   

5.

Purpose

We used a sequential extraction to investigate the effects of compost amendment on Cd fractionation in soil during different incubation periods in order to assess Cd stabilization in soil over time.

Methods

Pot experiments using rice plants growing on Cd-spiked soils were carried out to evaluate the influence of compost amendment on plant growth and Cd accumulation by rice. Two agricultural soils (Pinchen and Lukang) of Taiwan were used for the experiments. The relationship between the redistribution of Cd fractions and the reduction of plant Cd concentration due to compost amendment was then investigated.

Results and discussion

Compost amendment in Pinchen soil (lower pH) could transform exchangeable Cd into the Fe- and Mn-oxide-bound forms. With increasing incubation time, exchangeable Cd tended to transform into carbonate- and Fe- and Mn-oxide-bound fractions. In Lukang soil (higher pH), carbonate- and Fe- and Mn-oxide-bonded Cd were the main fractions. Exchangeable Cd was low. Compost amendment transformed the carbonate-bound form into the Fe and Mn oxide form. Pot experiments of rice plants showed that compost amendment enhanced plant growth more in Pinchen soil than in Lukang soil. Compost amendment could significantly reduce Cd accumulation in rice roots in both Pinchen and Lukang soils and restrict internal transport of Cd from the roots to the shoots. Because exchangeable Cd can be transformed into the stronger bonded fractions quickly in Pinchen soil, a reduction of Cd accumulation in rice due to compost amendment of Pinchen soil was significant by 45?days of growth. However, carbonate-bonded fractions in Lukang soil may provide a source of available Cd to rice plants, and exchangeable and carbonate-bonded fractions are transformed into the other fractions slowly. Thus, reduction of Cd accumulation by rice due to compost amendment in Lukang soil was significant by 75?days of growth.

Conclusions

The results of the study suggest that the effectiveness of compost amendment used for stabilization of Cd and to decrease the phytoavailability of Cd for rice plants is different in acidic and alkaline soils. In acidic soil, Cd fractionation redistributes quickly after compost amendment and shows a significant reduction of Cd accumulation by the plant within a few weeks. In alkaline soil, due to the strongly bound fractions of Cd being in greater quantity than the weakly bound ones, a longer period (a few months) to redistribute Cd fractions is needed.  相似文献   

6.
Arsenic (As) is highly mobilized when paddy soil is flooded, causing increased uptake of As by rice. We investigated factors controlling soil-to-solution partitioning of As under anaerobic conditions. Changes in As and iron (Fe) speciation due to flooded incubation of two paddy soils (soils A and B) were investigated by HPLC/ICP-MS and XANES. The flooded incubation resulted in a decrease in Eh, a rise in pH, and an increase in the As(III) fraction in the soil solid phase up to 80% of the total As in the soils. The solution-to-soil ratio of As(III) and As(V) (RL/S) increased with pH due to the flooded incubation. The RL/S for As(III) was higher than that for As(V), indicating that As(III) was more readily released from soil to solution than was As(V). Despite the small differences in As concentrations between the two soils, the amount of As dissolved by anaerobic incubation was lower in soil A. With the development of anaerobic conditions, Fe(II) remained in the soil solid phase as the secondary mineral siderite, and a smaller amount of Fe was dissolved from soil A than from soil B. The dissolution of Fe minerals rather than redox reaction of As(V) to As(III) explained the different dissolution amounts of As in the two paddy soils. Anaerobic incubation for 30 d after the incomplete suppression of microbial activity caused a drop in Eh. However, this decline in Eh did not induce the transformation of As(V) to As(III) in either the soil solid or solution phases, and the dissolution of As was limited. Microbial activity was necessary for the reductive reaction of As(V) to As(III) even when Eh reached the condition necessary for the dominance of As(III). Ratios of released As to Fe from the soils were decreased with incubation time during both anaerobic incubation and abiotic dissolution by sodium ascorbate, suggesting that a larger amount of As was associated with an easily soluble fraction of Fe (hydr) oxide in amorphous phase and/or smaller particles.  相似文献   

7.
The rhizosphere plays an important role in altering cadmium (Cd) solubility in paddy soils and Cd accumulation in rice. However, more studies are needed to elucidate the mechanism controlling rice Cd solubility and bioavailability under different rhizosphere conditions to explain the discrepancy of previous studies. A rice culture with nutrient solution and vermiculite was conducted to assess the effects of pH, Eh, and iron (Fe) concentration on Cd, Fe fractions on the vermiculite/root surface and their uptake by rice. The solution pH was set from 4.5 to 7.5, with additions of Fe (30 and 50 mg L?1) and Cd (0.5 and 0.9 mg L?1). At pH 5.5, the Eh in the rice rhizosphere was higher whereas transpiration, Cd2+, and Fe2+ adsorption on the vermiculite/root surface and accumulation in rice were lower than the other pH treatments. Cadmium addition had no impact on pH and Eh in rice rhizosphere while Fe addition decreased pH and increased Eh significantly. Compared with control, Fe addition resulted in the decrease of rhizosphere Cd, Fe solubility and bioavailability. Higher redox potential in the rice rhizosphere resulted in the decline of transpiration, Cd, and Fe accumulation in the rice tissues, suggesting that the transfer of two elements from soil to rice was depressed when the rhizosphere was more oxidized.  相似文献   

8.
The objectives of this research were to study the effects of Na2SiO3 application on the uptake, translocation, and accumulation of Pb in rice and to investigate the mechanisms of Pb immobilization by Na2SiO3 in paddy rice soils and rice plants. Pot experiments were conducted using a Cd-Pb-Zn-polluted soil and Oryza sativa L. ssp. indica cv. Donglian 5. L3-edge X-ray absorption spectroscopy was used to identify Pb species in soils and roots. The results showed that the application of Na2SiO3 increased soil pH and available soil Si but decreased DTPA-extractable Pb in the soil. High dose of Na2SiO3 (12.5 g/kg) reduced the Pb level in brown rice as it inhibited Pb transfer from soil to rice grains, especially Pb transfer from the root to the stem. The Pb X-ray absorption near-edge spectroscopic analysis revealed that application of high dose of Na2SiO3 increased Pb-ferrihydrite and PbSiO3 precipitates in the soil and in the root while it reduced Pb-humic acids (Pb-HAs) in the soil and Pb-pectin in the root. The decrease in Pb availability in the soil can be partly attributed to increase the precipitation of PbSiO3 and the association of Pb2+ with Fe oxides in the soil. The inhibition of the root-to-stem translocation of Pb was partially due to the precipitation of PbSiO3 on the root surfaces or inside the roots.  相似文献   

9.
A three-step sequential extraction procedure was applied to measure the concentrations of dichlorodiphenyltrichloroethane (DDT) on rice root surface and in root tissues collected from two sites in Tianjin. Bulk and rhizosphere soils were also analyzed. The measured DDXs in the rhizosphere soils were significantly higher than those in the bulk soils. On average, p,p'-DDT, p,p'-DDD, and p,p'-DDE in the soil accounted for 38%, 47% and 15% of the total. For total DDXs, approximately one third remained on the outer surface of the roots. The partition of DDXs between rhizosphere soil and root surface depend on contaminant affinity to soil organic matter, soil organic matter content and root specific area. A case specific equation was developed to quantitatively describe the partition of DDXs between soil and root surface.  相似文献   

10.
The concentrations of Cd, Co, Cu, Ni, Pb, Zn, Fe and Mn in different inorganic fertilizers (urea, calcium superphosphate, iron sulphate and copper sulphate) and in pesticides (two herbicides and one fungicide) are evaluated together with the contribution of these metals in soils from their use. The study was made in rice farming areas to the north of Albufera Natural Park (Valencia, Spain). The results obtained show that superphosphate is the fertilizer that contains the highest concentrations of Cd, Co, Cu and Zn as impurities. Copper sulphate and iron sulphate have the most significant concentrations of Pb, and are the only fertilizers in which Ni was detected. The three pesticides analysed show similar Cd contents and the highest levels of Fe, Mn, Zn, Pb and Ni are found in the herbicides. The most significant additions of heavy metals as impurities that soil receives from agricultural practices, are Mn, Zn, Co and Pb. Three contamination indexes have been applied to provide a basis for comparison of potential heavy metal toxicity. These results denote the potential toxicity of heavy metals in the studied soils.  相似文献   

11.

The natural abundance of Cr and Ni in serpentine soils is well-known, but the food safety of rice grown in these hazardous paddy soils is poorly understood. The study evaluated the bioaccumulation of chromium (Cr) and nickel (Ni) in rice (Oryza sativa) grown in serpentine-derived paddy soils in the Philippines. Surface soil (0–20 cm) samples were collected and characterized across three (i.e., Masinloc, Candelaria, and Sta. Cruz) paddy areas in Luzon Island, Philippines. At least 3 to 4 whole rice plants at mature stage were uprooted manually in each sampling point where the soil samples were collected. The total Cr and Ni concentrations in rice (i.e., roots, shoots, and grains) and soil, soil physicochemical properties, bioaccumulation factor (BAF), translocation factor (TF), and the hazard quotients (HQ) were determined. Results revealed that Cr and Ni in rice were accumulated mostly in the roots. Although paddy soils had elevated total Cr and Ni concentrations, the BAF and soil-to-root TF values for Cr and Ni were < 1. In terms of human health risks, results further revealed low risk for both male and female Filipino adults as HQ values for Cr and Ni were < 1. While it is safe to consume rice grown in the area in terms of Cr and Ni dietary intake, more studies are necessary to understand the dynamics and bioavailability of these heavy metals in other crops and drinking water from tube wells in these areas in order to provide a more holistic human health-based assessments and to ensure consumer safety in serpentine areas. In addition, a more reliable data on Cr and Ni speciation in serpentine soils and crops is critically important. Further studies are also needed to understand the contribution of bioavailable heavy metals in improving the soil health to achieve food safety.

  相似文献   

12.
Much research has focused on changes in solubility and mobility of trace metals in soils under incubation. In this experiment, changes in solubility and mobility of trace metals (Pb, Cu and As) and Fe in two contaminated soils from Tampa, Florida and Montreal, Canada were examined. Soils of 30 g were packed in columns and were incubated for 3-80 days under water-flooding incubation. Following incubation, metal concentrations in pore water (water soluble) and in 0.01 M CaCl2 leachates (exchangeable+water soluble) were determined. While both soils were contaminated with Pb (1600-2500 mg kg(-1)), Tampa soil was also contaminated with As (230 mg kg(-1)). Contrast to the low pH (3.8) of Tampa soil, Montreal soil had an alkaline pH of 7.7 and high Ca of 1.6%. Concentrations of Fe(II) increased with incubation time in the Tampa soil mainly due to reductive Fe dissolution, but decreased in the Montreal soil possibly due to formation of FeCO3. The inverse relationship between concentrations of Pb and Fe(II) in pore water coupled with the fact that Fe(II) concentrations were much greater than those of Pb in pore water may suggest the importance of Fe(II) in controlling Pb solubility in soils. However, changes in concentrations of Fe(II), Pb, Cu and As in pore water with incubation time were similar to those in leachate, i.e. water soluble metals were positively related to exchangeable metals in the two contaminated soils. This research suggests the importance of Fe in controlling metal solubility and mobility in soils under water-flooded incubation.  相似文献   

13.
Sequential extractions of metals can be useful to study metal distributions in various soil fractions. Although several sequential extraction procedures have been suggested in the literature, most were developed for temperate soils and may not be suitable for tropical soils with high contents of Mn and Fe oxides. The objective of this study was to develop a sequential fractionation procedure for Cu and Zn in tropical soils. Extractions were performed on surface (0–20 cm) samples of ten representative soils of Sao Paulo State, Brazil. Chemically reactive Mn forms were satisfactorily assessed by the new modified procedure. Amorphous and crystalline Fe oxides were more selectively extracted in a new two-step extraction. Soil-born Zn and Cu were primarily associated with recalcitrant soil fractions. The proposed procedure provided more detailed information on metal distribution in tropical soils and better characterization of the various components of the soil matrix. The new procedure is expected to be an important tool for predicting the potential effects of environmental changes and land application of metals on the redistribution of chemical forms of metals in tropical soils.  相似文献   

14.
The mobility of the rice pesticides thiobencarb (S-[(4-chlorophenyl) methyl] diethylcarbamothioate) and fipronil ([5-amino-3-cyano-1-[2,6-dichloro-4-(trifluoromethyl)phenyl]-4-[(trifluoromethyl)sulfinyl]pyrazole) were investigated in the glasshouse under flooded conditions using two Australian rice-growing soils. When using leakage rates of 10 mm day(-1), less than 20% of applied thiobencarb and fipronil remained in the water column after 10 days due to rapid transfer to the soil phase. Up to 70% and 65% of the applied thiobencarb and fipronil, respectively, were recovered from the 0-1 cm layer of soils. Only 5-7% of each pesticide was recovered from the 1-2 cm layer, and less than 2% was recovered from each 1 cm layer in the 2-10 cm region of the soils. Analysis of the water leaking from the base of the soil cores showed between 5-10% of the applied thiobencarb and between 10-20% of the applied fipronil leaching from the soil cores. The high levels of pesticide in the effluent was attributed to preferential flow of pesticide-laden water via soil macropores resulting from the wetting and drying process, worm holes and root channels.  相似文献   

15.
Chemical behavior of Cd in rice rhizosphere   总被引:8,自引:0,他引:8  
Lin Q  Chen YX  Chen HM  Yu YL  Luo YM  Wong MH 《Chemosphere》2003,50(6):755-761
Chemical behavior of Cd in rice rhizosphere as affected or not by Pb was investigated. The NH4OAc extractable Cd in the rhizosphere was distinctly lower than that in bulk soil. The depletion of Cd in the rhizosphere could not be simply attributed to Cd uptake by rice. The observed phenomena could be attributed to the decreasing pH in the rhizosphere and the complexing capabilities of soluble exudates for Cd. Extractable Cd increased in both the rhizosphere and bulk soil after the addition of Pb, which might be caused by the replacement of Pb for Cd. The extractable Cd in the non-rhizosphere varied with the distance from the root surface, especially within 0-1 mm, which was greatly affected by the combined effects of mass flow, activation and fixation, and had the lowest extractable Cd. Pb addition affected the distribution of extractable Cd in the non-rhizosphere, implying that the affinity of Pb for organic matter was greater than that of Cd. The difference of Cd species between rhizosphere and bulk soil demonstrated that the transformation of exchangeable Cd (EXC-Cd) to OM-Cd (bound to organic matter) and FMO-Cd (bound to iron and manganese oxide) occurred in the rice rhizosphere due to the exudations from the rice root, the activity of microorganisms on the root surface and the activation of Fe and Mn oxides. The interaction between Pb and Cd resulted in the content of EXC-Cd being higher in the presence of Pb, whereas the OM-Cd content was lower in the presence of Pb.  相似文献   

16.
This study quantified Cd, Pb, and Cu content, and the soil–plant transfer factors of these elements in rice paddies within Cam Pha, Quang Ninh province, northeastern Vietnam. The rice paddies are located at a distance of 2 km from the large Coc Sau open-pit coal mine. Electron microprobe analysis combined with backscattered electron imaging and energy-dispersive spectroscopy revealed a relatively high proportion of carbon particles rimmed by an iron sulfide mineral (probably pyrite) in the quartz–clay matrix of rice paddy soils at 20–30 cm depth. Bulk chemical analysis of these soils revealed the presence of Cd, Cu, and Pb at concentrations of 0.146?±?0.004, 23.3?±?0.1, and 23.5?±?0.1 mg/kg which exceeded calculated background concentrations of 0.006?±?0.004, 1.9?±?0.5, and 2.4?±?1.5 mg/kg respectively at one of the sites. Metals and metalloids in Cam Pha rice paddy soils, including As, Cd, Cr, Cu, Hg, Mn, Ni, Pb, and Zn, were found in concentrations ranging from 0.2?±?0.1 to 140?±?3 mg/kg, which were in close agreement with toxic metal contents in mine tailings and Coc Sau coal samples, suggesting mining operations as a major cause of paddy soil contamination. Native and model Oryza sativa L. rice plants were grown in the laboratory in a growth medium to which up to 1.5 mg/kg of paddy soil from Cam Pha was added to investigate the effects on plant growth. A decrease in growth by up to 60 % with respect to a control sample was found for model plants, whereas a decrease of only 10 % was observed for native (Nep cai hoa vang variety) rice plants. This result suggests an adaptation of native Cam Pha rice plants to toxic metals in the agricultural lands. The Cd, Cu, and Pb contents of the native rice plants from Cam Pha paddies exceeded permitted levels in foods. Cadmium and Pb were highest in the rice plant roots with concentrations of 0.84?±?0.02 and 7.7?±?0.3 mg/kg, suggesting an intake of these metals into the rice plant as shown, for example, by Cd and Pb concentrations of 0.09?±?0.01 and 0.10?±?0.04 mg/kg respectively in the rice grain endosperm. The adaptation of native rice plants, combined with bioaccumulation ratios of 1?±?0.6 to 1.4?±?0.7 calculated for Cd transfer to the rice grain endosperm, and maximum Cd transfer factors of 4.3?±?2.1 to the plant roots, strongly suggest a continuous input of some toxic metals from coal-mining operations to agricultural lands in the region of Cam Pha. In addition, our results imply a sustained absorption of metals by native rice plant varieties, which may lead to metal accumulation (e.g., Cd) in human organs and in turn to severe disease.  相似文献   

17.
Adsorption and absorption of polycyclic aromatic hydrocarbons to rice roots   总被引:3,自引:0,他引:3  
Rice roots and surrounding air, soil and water samples were collected for polycyclic aromatic hydrocarbon (PAH) analysis. The rice roots were separated into lateral roots and nodal roots, and the PAH concentration in the former was found to be higher than that in the latter. In addition, root physiological characteristics including root biotic mass, root lipid content and specific surface area are also discussed. When normalizing the total, adsorption and absorption PAH fractions on a dry root weight basis to root biomass, root lipid, and surface area bases respectively, the differences between PAHs in the two types of roots diminished by 2 to 3 times on average. Results from sequential extraction indicated that PAHs were more easily absorbed by interior rice roots than adsorbed on the surface. In addition, more than 60% of total PAHs accumulated in root tissue for both lateral and nodal roots. However, the results were highly related to the solvent used, extraction time and methodology. Correlation analysis between bioconcentration factors (root over environment) and K(OA), K(OW) showed water to be more significant for PAH adsorption in rice roots than other environmental media.  相似文献   

18.
Lee JK  Führ F  Kwon JW  Ahn KC 《Chemosphere》2002,49(2):173-181
In order to elucidate the long-term fate of the sulfonylurea herbicide cinosulfuron, the 14C-labelled chemical was applied to a clay loam soil, encased in two lysimeters, 22 days after rice (Oryza sativa L.) transplanting, and rice plants were grown for four consecutive years. Throughout the experimental period, leaching through soil profiles, absorption and translocation by rice plants, and distribution of 14C by downward movement in the soil layers were clarified. The total volume of leachates collected through the lysimeter soil over the four years amounted to 168 and 146 L in lysimeters I and II, respectively. The leachates contained 2.43% and 2.99% of the originally applied 14C-radioactivity, corresponding to an average concentration of 0.29 and 0.41 microg/L as the cinosulfuron equivalent in lysimeters I and II, respectively. The total 14C-radioactivity translocated to rice plants in the third and fourth year was 0.69% and 0.60% (lysimeter I), and 1.02% and 0.84% (lysimeter II) of the 14C applied, respectively. Larger amounts of cinosulfuron equivalents (0.54-0.75%) remained in the straw in the fourth year than in any other parts. The 14C-radioactivities distributed down to a depth of 70 cm after four years were 56.71-57.52% of the 14C applied, indicating the continuous downward movement and degradation of cinosulfuron in soil. The non-extractable residues were more than 88% of the soil radioactivity and some 45-48% of them was incorporated into the humin fraction. The 14C-radioactivity partitioned into the aqueous phase was nearly 30% of the extractable 14C, suggesting strongly that cinosulfuron was degraded into some polar products during the experimental period. It was found out in a supplemental investigation that flooding and constant higher temperature enhanced mineralization of [14C]cinosulfuron to 14CO2 in soil, indicating the possibility of chemical hydrolysis and microbial degradation of the compound in the flooded lysimeter soil.  相似文献   

19.
The growth and metal uptake of two willow clones (Salix fragilis 'Belgisch Rood' and Salix viminalis 'Aage') was evaluated in a greenhouse pot experiment with six sediment-derived soils with increasing field Cd levels (0.9-41.4 mg kg-1). Metal concentrations of eight elements were measured in roots, stems and leaves and correlated to total and soil water metal concentrations. Dry weight root biomass, number of leaves and shoot length were measured to identify eventual negative responses of the trees. No growth inhibition was observed for both clones for any of the treatments (max. 41.4 mg kg-1 Cd, 1914 mg kg-1 Cr, 2422 mg kg-1 Zn, 655 mg kg-1 Pb), allowing their use for phytoextraction on a broad range of contaminated sediments. However, dry weight root biomass and total shoot length were significantly lower for S. viminalis compared to S. fragilis for all treatments. Willow foliar Cd concentrations were strongly correlated with soil and soil water Cd concentrations. Both clones exhibited high accumulation levels of Cd and Zn in aboveground plant parts, making them suitable subjects for phytoextraction research. Cu, Cr, Pb, Fe, Mn and Ni were found mainly in the roots. Bioconcentration factors of Cd and Zn in the leaves were highest for the treatments with the lowest soil Cd and Zn concentration.  相似文献   

20.
The mobility of the rice pesticides thiobencarb (S-[(4-chlorophenyl) methyl] diethylcarbamothioate) and fipronil ([5-amino-3-cyano-1-[2,6-dichloro-4-(trifluoromethyl)phenyl]-4-[(trifluoromethyl)sulfinyl]pyrazole) were investigated in the glasshouse under flooded conditions using two Australian rice-growing soils. When using leakage rates of 10 mm day?1, less than 20% of applied thiobencarb and fipronil remained in the water column after 10 days due to rapid transfer to the soil phase. Up to 70% and 65% of the applied thiobencarb and fipronil, respectively, were recovered from the 0–1 cm layer of soils. Only 5–7% of each pesticide was recovered from the 1–2 cm layer, and less than 2% was recovered from each 1 cm layer in the 2–10 cm region of the soils. Analysis of the water leaking from the base of the soil cores showed between 5–10% of the applied thiobencarb and between 10–20% of the applied fipronil leaching from the soil cores. The high levels of pesticide in the effluent was attributed to preferential flow of pesticide-laden water via soil macropores resulting from the wetting and drying process, worm holes and root channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号