首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several studies have proven the importance of field margins in sustaining biodiversity and other work has been done on the effect of field management on field margin flora. However few models have been built to predict the effects of field management on the flora. Our project addresses this need for a model capable of predicting the effect of cropping techniques and their timing on the flora of field margins. Primula vulgaris is a biodiversity indicator, characteristic of undisturbed flora and found in field margins and woodlands: its population has been declining for several years. We created a temporal matrix model of P. vulgaris populations on field margins, taking into account the effects of field, field margin and roadside management based on literature and expert knowledge. We then analysed its sensitivity to demographic parameters by comparing lambda (growth rate) sensitivity and elasticity. We compared the management parameter effect using the relative growth rate of the population after 6 years of simulation. Sensitivity analysis to biological parameters showed the importance of adult survival and seed production and germination. Results show that P. vulgaris is particularly sensitive to broad-spectrum herbicides and that other management techniques like early mowing, scything and scrub-killer (diluted broad-spectrum herbicide or specific herbicide) are less aggressive. Our simulations show that management of cash crops in Brittany is too aggressive for P. vulgaris populations and that 4-5 years of grassland in the adjacent field are necessary to maintain populations.  相似文献   

2.
A simple simulation model was developed to describe the growth trends of Cymodocea nodosa (Ucria) Ascherson based on data sets from the Venice lagoon. The model reproduces the seasonal fluctuations in the above and belowground biomass and in shoot density. The modeling results are in good agreement with data on net production, growth rates and chemical–physical parameters of water. It was assumed that light and temperature are the most important factors controlling C. nodosa development, and that the growth was not limited by nutrient availability. The aim was to simulate biomass production as a function of external forcing variables (light, water temperature) and internal control (plant density). A series of simulation experiments were performed with the basic model showing that among the most important phenomena affecting C. nodosa growth are: (1) inhibition of production and recruitment of new shoots by high temperature and (2) light attenuation due to seasonal fluctuation.  相似文献   

3.
Proliferation of macroalgal mats is a frequent consequence of nutrient-driven eutrophication in shallow, photic coastal marine ecosystems. These macroalgae have the potential to significantly modify water quality, plankton productivity, nutrient cycling, and dissolved oxygen dynamics. We developed a model for Ulva lactuca and Gracilaria tikvahiae in Greenwich Bay, RI (USA), a shallow sub-estuary of Narragansett Bay, as part of a larger estuarine ecosystem model. The model predicts the biomass of both species in units of carbon, nitrogen, and phosphorus as a function of primary production, respiration, grazing, decay, and physical exchange, with particular attention to the effects of biomass layering on light attenuation and suppression of metabolic rates. The model successfully reproduced the magnitude and seasonal cycle of area-weighted and peak biomass in Greenwich Bay along with tissue C:N ratios, and highlighted the importance of grazing and inclusion of self-limitation primarily in the form of self-shading to overcome an order of magnitude difference in rates of production and respiration. Inclusion of luxury nutrient uptake demonstrated the importance of internal nutrient storage in fueling production when nutrients are limiting. Macroalgae were predicted to contribute a small fraction of total system primary production and their removal had little effect on predicted water quality. Despite a lack of data for calibration and a fair amount of sensitivity to individual parameter values, which highlights the need for further autecological studies to constrain formulations, the model successfully predicted macroalgal biomass dynamics and their role in ecosystem functioning. Our formulations should be exportable to other temperate systems where macroalgae occur in abundance.  相似文献   

4.
A population model for the peach fruit moth, Carposina sasakii Matsumura, was constructed to understand the population dynamics of this pest species and to develop an effective management strategy for various orchard (apple, peach, apple + peach) systems. The model was structured by the five developmental stages of C. sasakii: egg, larva, pupa, larval-cocoon (overwintering larva), and adult. The model consisted of a series of component models: (1) a bimodal spring adult emergence model, (2) an adult oviposition model, (3) stage emergence models of eggs, larvae, and pupae, (4) a larval survival rate model in fruits, (5) a larval-cocoon formation model, and (6) an insecticide effect model. Simulations using the model described the typical patterns of C. sasakii adult abundance in various orchard systems well, and was specific to the composition of host plants: three adult abundance peaks (first peak, mid-season peak, and last peak) a year with decreased peaks after the first peak in monoculture orchards of late apple, two adult peaks a year with a much higher last peak in monoculture orchards of early peach, and three adult peaks a year with much higher later peaks in mixed orchards of late apple and early peach. The average deviation between model outputs and actual records for first and second adult peak dates was 2.8 and 3.9 d, respectively, in simulations without an insecticide effect. The deviation decreased when insecticide effects were incorporated into the model. We also performed a sensitivity analysis of our model, and suggest possible applications of the model.  相似文献   

5.
Effective conservation of amphibian populations requires the prediction of how amphibians use and move through a landscape. Amphibians are closely coupled to their physical environment. Thus an approach that uses the physiological attributes of amphibians, together with knowledge of their natural history, should be helpful. We used Niche Mapper™ to model the known movements and habitat use patterns of a population of Western toads (Anaxyrus (=Bufo) boreas) occupying forested habitats in southeastern Idaho. Niche Mapper uses first principles of environmental biophysics to combine features of topography, climate, land cover, and animal features to model microclimates and animal physiology and behavior across landscapes. Niche Mapper reproduced core body temperatures (Tc) and evaporation rates of live toads with average errors of 1.6 ± 0.4 °C and 0.8 ± 0.2 g/h, respectively. For four different habitat types, it reproduced similar mid-summer daily temperature patterns as those measured in the field and calculated evaporation rates (g/h) with an average error rate of 7.2 ± 5.5%. Sensitivity analyses indicate these errors do not significantly affect estimates of food consumption or activity. Using Niche Mapper we predicted the daily habitats used by free-ranging toads; our accuracy for female toads was greater than for male toads (74.2 ± 6.8% and 53.6 ± 15.8%, respectively), reflecting the stronger patterns of habitat selection among females. Using these changing to construct a cost surface, we also reconstructed movement paths that were consistent with field observations. The effect of climate warming on toads depends on the interaction of temperature and atmospheric moisture. If climate change occurs as predicted, results from Niche Mapper suggests that climate warming will increase the physiological cost of landscapes thereby limiting the activity for toads in different habitats.  相似文献   

6.
The growth patterns of macroalgae in three-dimensional space can provide important information regarding the environments in which they live, and insights into changes that may occur when those environments change due to anthropogenic and/or natural causes. To decipher these patterns and their attendant mechanisms and influencing factors, a spatially explicit model has been developed. The model SPREAD (SPatially-explicit Reef Algae Dynamics), which incorporates the key morphogenetic characteristics of clonality and morphological plasticity, is used to investigate the influences of light, temperature, nutrients and disturbance on the growth and spatial occupancy of dominant macroalgae in the Florida Reef Tract. The model species, Halimeda and Dictyota spp., are modular organisms, with an “individual” being made up of repeating structures. These species can also propagate asexually through clonal fragmentation. These traits lead to potentially indefinite growth and plastic morphology that can respond to environmental conditions in various ways. The growth of an individual is modeled as the iteration of discrete macroalgal modules whose dynamics are affected by the light, temperature, and nutrient regimes. Fragmentation is included as a source of asexual reproduction and/or mortality. Model outputs are the same metrics that are obtained in the field, thus allowing for easy comparison. The performance of SPREAD was tested through sensitivity analysis and comparison with independent field data from four study sites in the Florida Reef Tract. Halimeda tuna was selected for initial model comparisons because the relatively untangled growth form permits detailed characterization in the field. Differences in the growth patterns of H. tuna were observed among these reefs. SPREAD was able to closely reproduce these variations, and indicate the potential importance of light and nutrient variations in producing these patterns.  相似文献   

7.
The benefits of genetically modified herbicide-tolerant (GMHT) sugar beet (Beta vulgaris) varieties stem from their presumed ability to improve weed control and reduce its cost, particularly targeting weed beet, a harmful annual weedy form of the genus Beta (i.e. B. vulgaris ssp. vulgaris) frequent in sugar beet fields. As weed beet is totally interfertile with sugar beet, it is thus likely to inherit the herbicide-tolerance transgene through pollen-mediated gene flow. Hence, the foreseeable advent of HT weed beet populations is a serious threat to the sustainability of GM sugar beet cropping systems. For studying and quantifying the long-term effects of cropping system components (crop succession and cultivation techniques) on weed beet population dynamics and gene flow, we developed a biophysical process-based model called GeneSys-Beet in a previous study. In the present paper, the model was employed to identify and rank the weed life-traits as function of their effect on weed beet densities and genotypes, using a global sensitivity analysis to model parameters. Monte Carlo simulations with simultaneous randomization of all life-trait parameters were carried out in three cropping systems contrasting for their risk for infestation by HT weed beets. Simulated weed plants and bolters (i.e. beet plants with flowering and seed-producing stems) were then analysed with regression models as a function of model parameters to rank processes and life-traits and quantify their effects. Key parameters were those determining the timing and success of growth, development, seed maturation and the physiological end of seed production. Timing parameters were usually more important than success parameters, showing for instance that optimal timing of weed management operations is more important than its exact efficacy. The ranking of life-traits though depended on the cropping system and, to a lesser extent, on the target variable (i.e. GM weeds vs. total weed population). For instance, post-emergence parameters were crucial in rotations with frequent sugar beet crops whereas pre-emergence parameters were most important when sugar beet was rare. In the rotations with frequent sugar beet and insufficient weed control, interactions between traits were small, indicating diverse populations with contrasted traits could prosper. Conversely, when sugar beet was rare and weed control optimal, traits had little impact individually, indicating that a small number of optimal combinations of traits would be successful. Based on the analysis of sugar beet parameters and genetic traits, advice for the future selection of sugar beet varieties was also given. In climatic conditions similar to those used here, the priority should be given to limiting the presence of hybrid seeds in seed lots rather than decreasing varietal sensitivity to vernalization.  相似文献   

8.
This study aims to provide a quantitative framework to model the dynamics of Mediterranean coniferous forests by integrating existing ecological data within a generic mathematical simulator. We developed an individual-based vegetation dynamics model, constrained on long-term field regeneration data, analyses of tree-rings and seed germination experiments. The simulator implements an asymmetric competition algorithm which is based on the location and size of each individual. Growth is parameterized through the analysis of tree-rings from more than thirty individuals of each of the three species of interest. A super-individual approach is implemented to simulate regeneration dynamics, constrained with available regeneration data across time-since-disturbance and light-availability gradients. The study concerns an insular population of an endemic to Greece Mediterranean fir (Abies cephalonica Loudon) on the island of Cephalonia (Ionian Sea) and two interacting populations of a Mediterranean pine (Pinus brutia Ten.) and a more temperate-oriented pine (Pinus nigra Arn. ssp. pallasiana) on the island of Lesbos (NE Aegean Sea), Greece. The model was validated against plot-level observations in terms of species standing biomass and regeneration vigour and adequately captured regeneration patterns and overall vegetation dynamics in both study sites. The potential effects of changing climatic patterns on the regeneration dynamics of the three species of interest were subsequently explored. With the assumption that a warmer future would probably cause changes in the duration of cold days, we tested how this change would affect the overall dynamics of the study sites, by focusing on the process of cold stratification upon seed germination. Following scenarios of a warmer future and under the current model parameterization, changes in the overall regeneration vigour controlled by a reduction in the amount of cold days, did not alter the overall dynamics in all plant populations studied. No changes were identified in the relative dominance of the interacting pine populations on Lesbos, while the observed reduction in the amount of emerging seedlings of A. cephalonica on Cephalonia did not affect biomass yield at later stages of stand development.  相似文献   

9.
The most studied and commonly applied model of fish growth is the von Bertalanffy model. However, this model does not take water temperature into account, which is one of the most important environmental factors affecting the life cycle of fish, as many physiological processes that determine growth, e.g. metabolic rate and oxygen supply, are directly influenced by temperature. In the present study we propose a version of the von Bertalanffy growth model that includes mean annual water temperatures by correlating the growth coefficient, k, explicitly and the asymptotic length, L, implicitly to water temperature. All relationships include parameters with an obvious biological relevance that makes them easier to identify. The model is used to fit growth data of bullhead (Cottus gobio) at different locations in the Bez River network (Drme, France). We show that temperature explains much of the growth variability at the different sampling sites of the network.  相似文献   

10.
Coastal swamps are among the rapidly vanishing wetland habitats in Louisiana. Increased flooding, nutrient and sediment deprivation, and salt-water intrusion have been implicated as probable causes of the decline of coastal swamps. We developed a two-species individual-based forest succession model to compare the growth and composition of a cypress-tupelo swamp under various combinations of flooding intensity and salinity levels, using historical time-series of stage and salinity data as inputs. Our model simulates forest succession over 500 years by representing the growth, mortality, and reproduction of individual Taxodium distichum (baldcypress) and Nyssa aquatica (water tupelo) trees in a 1-km2 spatial grid of 10 m × 10 m cells that vary in water levels and salinity through differences in elevation. We independently adjusted the elevations of each cell to obtain different grid-wide mean elevations and standard deviations of elevation; this affected the temporal and spatial pattern of flooding. We calibrated the model by adjusting selected parameters until averaged basal area, stem density and wood production rates under two different mean elevations (partially versus highly flooded) were qualitatively similar to comparable values reported for swamps in the literature. Corroboration involved comparing model predictions to four well-monitored contrasting habitat sites within the Maurepas Basin, Louisiana, USA. Model predictions of both species combined showed the same patterns among sites as the data, but the model overestimated wood production and the dominance of T. distichum. Exploratory simulations predicted that increased flooding leads to swamps with reduced basal areas and stem densities, while increased salinity resulted in lower basal areas at low salinity concentration (∼1-3 psu) and complete tree mortality at higher salinity concentrations (∼2-6 psu). Our model can provide insight into the succession dynamics of coastal swamps and information for the effective design of restoration actions.  相似文献   

11.
The cotton bollworm Helicoverpa armigera (Lepidoptera: Noctuidae) is one of the most serious crop pests in northern China, calling for accurate prediction of pest outbreaks and strategies for pest control. A computer model is developed to simulate the population dynamics of H. armigera over a wide area in northern China. The area considered covers 12 provinces where serious outbreaks of H. armigera have been observed. In this model, pest development is driven by local ambient temperature, and adults migrate long distances between regions and select preferred hosts for oviposition within a region. Six types of host including cotton, wheat, corn, peanut, soybean and a single category composed of all other minor hosts are considered in this model. Survival rates of eggs and larvae are based on life-table data, and simulated as a function of host type, host phenology and temperature. The incidence of diapause depends on temperature and photoperiod experienced during the larval stage. Survival rate of non-diapause pupae is a nonlinear function of rainfall, and overwinter survival rate is a nonlinear function of temperature. Insecticide is applied when population density exceeds the economic threshold on a host crop within a region. Comparisons of model output with light-trap data indicate that our model reflects the pest population dynamics over a wide area, and could potentially be used for testing novel pest control strategies in northern China.  相似文献   

12.
In integrated pest management (IPM), biological control is one of the possible options for the prevention or remediation of an unacceptable pest activity or damage. The success of forecast models in IPM depends, among other factors, on the knowledge of temperature effect over pests and its natural enemies. In this work, we simulated the effects of parasitism of Lysiphlebus testaceipes (Cresson, 1880) (Hymenoptera: Aphidiidae) on Aphis gossypii (Glover, 1877) (Hemiptera: Aphididae), a pest that is associated to crops of great economic importance in several parts of the world. We made use of experimental data relative to the host and its parasitoid at different temperatures. Age structure was incorporated into the dynamics through the Penna model. The results obtained showed that simulation, as a forecast model, can be a useful tool for biological control programs.  相似文献   

13.
Enchytraeids are regarded as keystone soil organisms in forest ecosystems. Their abundance and biomass fluctuate widely. Predicting the consequences of anthropogenic disturbances requires an understanding of the mechanisms underlying enchytraeid population dynamics. Here I develop a simple model, which predicts that the type of dynamics is controlled by resource input rate. If fungal resource input is a discrete event once a year, an exponential growth phase is followed by starvation and sharp decline of enchytraeid abundance. Model simulations with three different forcing functions were compared to field data. Initial parameter values were obtained from various independent sources, and parameters were estimated by minimizing the residual sum of squares. The best fitting model with resource addition once a year explained 39% of the variation in enchytraeid biomass over an 8-year study period. Further, variation in rainfall explained 59% of the variation in R2 of the exponential phase models, which is also an index of the stability of population size-structure. The results emphasize the importance of resource limitation for enchytraeid population dynamics and support the hypothesis that the mortality during the decline phase is size-dependent.  相似文献   

14.
Changes in carbon use efficiency (CUE), which is defined as the ratio of net primary production (NPP) to gross primary production (GPP), were analyzed for Abies veitchii Lindl. forests with respect to stand development by developing a simple mathematical model incorporating data on physiological variables and leaf mass ratio. A decrease in CUE with stand development was successfully expressed as a function of stand biomass (y) based on the following three assumptions: (1) a power-law relationship between mean respiration and mean individual tree mass, (2) a power-functional relationship between mean gross primary production and mean individual tree mass, and (3) self-thinning relationship between stand biomass and density. Based on this model, a parameter of CUE–y relationship was defined, and it was clarified that CUE decrease with stand development is caused not by the ratio of specific respiration rate to specific gross photosynthetic rate, but by leaf mass ratio. Since CUE is high in young forests, helpful information on selecting woody species when planting seedlings was provided from the viewpoints of reducing CO2 in the atmosphere and global warming.  相似文献   

15.
Changes in carbon use efficiency (CUE), which is defined as the ratio of net primary production (NPP) to gross primary production (GPP), were estimated for the aerial parts of the Hinoki Cypress (Chamaecyparis obtusa (Sieb. et Zucc.) Endl.) with respect to stand development. The analysis incorporated previously published data from the early stages of stand development, namely the seedling stages of the cypress. For this analysis, a simple mathematical model to assess the changes in CUE was developed by incorporating data on physiological variables and mass of woody species. The CUE tended to increase with increases in the aboveground biomass of the stand, and then decreased gradually despite increases in the aboveground biomass. The CUE-value (0.28, 0.39) of the seedling stage was lower than that (0.33-0.58) of the young or mature trees. To examine the effect of physiological variables and mass on CUE, the ratios of the specific respiration rate to the specific photosynthetic rate (r/a) and the leaf biomass to the aboveground biomass or leaf mass ratio (yL/yT) were calculated. The low value of CUE at the seedling stage was due to the high ratio of specific respiration rate to specific photosynthetic rate r/a, but was not due to the high value of the leaf mass ratio yL/yT. In addition, the decline in CUE associated with older stages of stand development was due to the decreasing changes in yL/yT, and the r/a ratio did not influence the change in CUE.  相似文献   

16.
This paper aims to find patterns in nest site selection by Little Terns Sterna albifrons, in the Nakdong estuary in South Korea. This estuary is important waterfowl stopover and breeding habitat, located in the middle of the East Asia-Australasian Flyway. The Little Tern is a common species easily observed near the seashore but their number is gradually declining around the world. We investigated their nests and eggs on a barrier islet in the Nakdong estuary during the breeding season (May to June, 2007), and a pattern for the nest site selection was identified using genetic programming (GP). The GP generated a predictive rule-set model for the number of Little Tern nests (training: R2 = 0.48 and test: 0.46). The physical features of average elevation, variation of elevation, plant coverage, and average plant height were estimated to determine the influence on nest numbers for Little Tern. A series of sensitivity analyses stressed that mean elevation and vegetation played an important role in nest distribution for Little Tern. The influence of these two variables could be maximized when elevation changed moderately within the sampled quadrats. The study results are regarded as a good example of applying GP to vertebrate distribution patterning and prediction with several important advantages compared to conventional modeling techniques, and can help establish a management or restoration strategy for the species.  相似文献   

17.
The brackish water amphipod Corophium orientale is the dominant macroinvertebrate species in the upper Mira estuary, a small mesotidal system located in the southwest coast of Portugal. As climate changes will increase the frequency and intensity of extreme events such as floods and droughts, these will have a negative effect on benthic estuarine invertebrates, namely C. orientale. In order to understand the effects of these events on C. orientale, a dynamic model, based on published information and calibrated with field data, was developed and different scenarios were tested.For model construction, the annual development of three cohorts of C. orientale, their growth rates, and the establishment of the timing of each cohort rise and extinction are introduced. This structure can be repeated indefinitely, for years, and few parameters are required. The model simulations highlight the need for refuge areas that enable a fast recovery of the amphipod population after an extreme event and the recolozination of the affected areas.  相似文献   

18.
A system-dynamic model has been built to evaluate the competition between submerged macrophytes Potamogeton malaianus Miq. (PM) and filamentous green algae Spirogyra sp. (SP). The data background is based on a spring–summer and an autumn–winter experiment carried out in artificial field ponds. The experiments had the aim to acquire a knowledge base necessary to a successful restoration of submerged macrophyte vegetation in Lake Taihu, China by use of P. malaianus Miq. The model mainly focuses on variations in water volume; biomass dynamics of P. malaianus Miq., Spirogyra sp. and zoobenthos; nutrients cycling between water column, P. malaianus Miq., Spirogyra sp., zoobenthos, detritus and sediment. Sixteen state variables are included in the model: biomass of P. malaianus Miq., Spirogyra sp. and zoobenthos; nitrogen in sediments, detritus, in P. malaianus Miq., in Spirogyra sp. and zoobenthos; total dissolved nitrogen; phosphorus in sediments, detritus, in P. malaianus Miq., in Spirogyra sp. and in zoobenthos; total dissolved phosphorus, and water volume of the experiment pond. The calibration and validation of the model show a good accordance with the results of the spring–summer experiment and the autumn–winter experiment.  相似文献   

19.
Ticks act as vectors of pathogens that can be harmful to animals and/or humans. Epidemiological models can be useful tools to investigate the potential effects of control strategies on diseases such as tick-borne diseases. The modelling of tick population dynamics is a prerequisite to simulating tick-borne diseases and the corresponding spread of the pathogen. We have developed a dynamic model to simulate changes in tick density at different stages (egg, larva, nymph and adult) under the influence of temperature. We have focused on the tick Ixodes ricinus, which is widespread in Europe. The main processes governing the biological cycles of ticks were taken into account: egg laying, hatching, development, host (small, mainly rodents, or large, like deer and cattle, mammals) questing, feeding and mortality. This model was first applied to a homogeneous habitat, where simulations showed the ability of the model to reproduce the general patterns of tick population dynamics. We considered thereafter a multi-habitat model, where three different habitats (woodland, ecotone and meadow) were connected through host migration. Based on this second application, it appears that migration from woodland, via the ecotone, is necessary to sustain the presence of ticks in the meadow. Woodland can therefore be considered as a source of ticks for the meadow, which in turn can be regarded as a sink. The influence of woodland on surrounding tick densities increases in line with the area of this habitat before reaching a plateau. A sensitivity analysis to parameter values was carried out and demonstrated that demographic parameters (sex ratio, development, mortality during feeding and questing, host finding) played a crucial role in the determination of questing nymph densities. This type of modelling approach provides insight into the influence of spatial heterogeneity on tick population dynamics.  相似文献   

20.
To better understand the effects of fisheries and ocean productivity on the northeastern Ionian Sea we constructed an Ecopath with Ecosim model with 22 functional groups. Data on biomass, production/biomass, consumption/biomass, and diet for each group were estimated or extrapolated from the literature. Fisheries landings and discards were also included. Temporal trajectories were simulated using Ecosim. The model was fitted with time-series data for the most important groups from 1964 to 2006. Simulations highlighted a decline of top predators and of most of the commercial species since the late 1970s. The model shows that the decline of fish resources was mainly caused by an intensive fishing pressure that occurred in the area until the end of the 1990s and also by changes in primary production that impacted the trajectories of the main functional groups. In particular, simulated changes through time in PP impacted the abundance trends of all the commercial species, showing a cascade-up effect through the ecosystem. The application of Ecopath with Ecosim was a useful tool for understanding the trends of the main functional groups of the northeastern Ionian Sea. The model underlined that management actions are needed to restore and protect target species including marine mammals, pelagic and demersal fishes. In particular, measures to reduce overfishing, illegal fishing activities and to respect existing legislations are in need. Moreover, the adoption of marine protected areas could be an effective management measure to guarantee prey survival and to sustain marine predators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号