首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reduction in air pollution level was prime observation during COVID-19 lockdown globally. Here, the study was conducted to assess the impact of lockdown on the elemental profile of PM10 in ambient aerosol to quantify the elemental variation. To quantify the variation, phase-wise sampling of air pollutants was carried out using the gravimetric method for PM10, while NO2 and SO2 were estimated through the chemiluminescence and fluorescent spectrometric method respectively. The elemental constituents of PM10 were carried out using an Inductively Coupled Plasma Optical Emission Spectrometer and their source apportionment was carried out using the Positive Matrix Factorization model. The results showed that PM10, NO2 and SO2 reduced by 86.97%, 83.38%, and 88.60% respectively during the lockdown sampling phase. The highest mean elemental concentration reduction was found in Mn (97.47%) during the lockdown. The inter-correlation among the pollutants exhibited a significant association indicating that they originate from the same source. The metals like Mn and Cu were found at a higher concentration during the lockdown phase corresponding to vehicular emissions. The comparative analysis of the elemental profile of PM10 concluded that the lockdown effectuated in reduction of the majority of elements present in an aerosol enveloping metropolitan like Kolkata.  相似文献   

2.
长沙市空气自动站周边区域大气污染物排放源清单   总被引:1,自引:0,他引:1       下载免费PDF全文
以长沙市空气自动站周边3 km为研究对象,基于统计年鉴和实地调查,获得了该地区2015年储存运输源、废弃物处理源、工艺过程源、化石燃料固定燃烧源、农业源、生物质燃烧源、扬尘源、移动源8个源类的活动水平数据。以大气污染物排放源清单编制技术指南为依据,建立了2015年长沙市空气自动站周边3 km区域NH_3、NO_x、PM_(10)、PM_(2.5)、SO_2、VOCs等6项污染物的源排放清单。结果表明,2015年长沙空气自动站周边3 km内,8类大气污染源排放的NH_3、NO_x、PM_(2.5)、PM_(10)、SO_2、VOCs总量分别为53.65t、4 899.35t、1 846.09t、6 257.75t、989.49t、4 383.31t。NH_3、NO_x、PM_(2.5)、PM_(10)、SO_2、VOCs排放量最大的源分别是农业源、移动源、扬尘源、扬尘源、化石燃料固定燃烧源和移动源,贡献率分别为98.45%、84.24%、60.82%、85.90%、97.33%、49.88%。优化道路交通、减少燃煤、减少建筑工地扬尘排放可促进长沙市空气自动站周边空气质量改善。  相似文献   

3.
The relationship between specific particulate emission control and ambient levels of some PM10 components (Zn, As, Pb, Cs, Tl) was evaluated. To this end, the industrial area of Castellón (Eastern Spain) was selected, where around 40% of the EU glazed ceramic tiles and a high proportion of EU ceramic frits are produced. The PM10 emissions from the ceramic processes were calculated over the period 2000–2006, taking into account the degree of implementation of corrective measures throughout the study period. Abatement systems were implemented in the majority of the fusion kilns for frit manufacture in the area as a result of the application of the Directive 1996/61/EC, leading to a marked decrease in PM10 emissions. By contrast, emissions from tile manufacture remained relatively constant because of the few changes in the implementation of corrective measures. On the other hand, ambient PM10 levels and composition measurements were carried out from 2002 to 2006. A high correlation between PM10 emissions from frit manufacture and ambient levels of Zn, As, Pb and Cs (R2 from 0.61 to 0.98) was observed. On the basis of these results, the potential impact of the implementation of corrective measures to reduce emissions from tile manufacture was quantified, resulting in a possible decrease of 3–5 μg/m3 and 2 μg/m3 in ambient mineral PM10 (on an annual basis) in urban and suburban areas, respectively. This relatively simple methodology allows us to estimate the direct effect of a reduction in primary particulate emissions on ambient levels of key particulate components, and to make a preliminary quantification of the possibilities of air quality improvement by means of further emission reduction. Therefore, it is a useful tool for developing future air quality plans in the study area and in other industrialised areas.  相似文献   

4.
A detailed sensitivity analysis was conducted to quantify the contributions of various emission sources to ozone (O3), fine particulate matter (PM2.5), and regional haze in the Southeastern United States. O3 and particulate matter (PM) levels were estimated using the Community Multiscale Air Quality (CMAQ) modeling system and light extinction values were calculated from modeled PM concentrations. First, the base case was established using the emission projections for the year 2009. Then, in each model run, SO2, primary carbon (PC), NH3, NOx or VOC emissions from a particular source category in a certain geographic area were reduced by 30% and the responses were determined by calculating the difference between the results of the reduced emission case and the base case.The sensitivity of summertime O3 to VOC emissions is small in the Southeast and ground-level NOx controls are generally more beneficial than elevated NOx controls (per unit mass of emissions reduced). SO2 emission reduction is the most beneficial control strategy in reducing summertime PM2.5 levels and improving visibility in the Southeast and electric generating utilities are the single largest source of SO2. Controlling PC emissions can be very effective locally, especially in winter. Reducing NH3 emissions is an effective strategy to reduce wintertime ammonium nitrate (NO3NH4) levels and improve visibility; NOx emissions reductions are not as effective. The results presented here will help the development of specific emission control strategies for future attainment of the National Ambient Air Quality Standards in the region.  相似文献   

5.
In this article, we analyzed the mass concentrations of particulate matter 2.5 micrometers (µm) or less in size (PM2.5), particulate matter 10 µm or less in size (PM10), sulfur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO), and ozone (O3) in Lanzhou, the capital of Gansu province, China. We analyzed monitoring data collected from five air quality monitoring stations during the spring–summer period from 2014 to 2016. Our comparison of contaminant concentrations and average diurnal, daily, monthly, and annual concentrations revealed that the average concentrations of PM2.5 and PM10 amounted to 128.57 and 46.4 micrograms per cubic meters (µg/m3), respectively, exceeding the Chinese National Ambient Air Quality Standard (NAAQS). We used the Pearson correlation coefficient to establish connections between particulate matter and gaseous pollutants. The results show significant differences in the concentration levels of airborne pollutants. The Pearson correlation coefficient between PM2.5 and PM10 had the highest coefficient of r = 0.842. A correlation between the two particulate matter sizes (PM2.5 and PM10) and SO2 was PM2.5 and SO2 r = 0.313; PM10 and SO2 r = 0.279; and CO and the two particulate matter sizes, PM2.5 and CO r = 0.304; and PM10 and CO r = 0.203. The average monthly ratio for the study months of PM2.5 to PM10 was 0.361. In addition, we used the hybrid single particle Lagrangian integrated trajectory model for tracking sources and pathways of the air pollutants in Lanzhou.  相似文献   

6.
The present study was carried out to determine the impacts of SO2, NO x , SPM and RSPM, the most common air pollutants, generated mainly due to industries and vehicles, on some biochemical parameters and yield in wheat and mustard plants during 2006. The concentration of SO2, NO x , SPM and RSPM was determined at the polluted sites across the seasons, which ranged between 14.29–18.10, 20.81–22.43, 483.65–500.85 and 160.67–171.18 μg m−3, respectively. The wheat and mustard plants grown at polluted sites showed significant reduction in chlorophyll ‘a’, chlorophyll ‘b’, total chlorophyll, carotenoid, ascorbic acid, pH, relative water content and yield. The data were further analyzed using a two way ANOVA. It is concluded that the ambient air pollutants have a potential adverse impact on biochemical parameters, which further leads to a reduction in the yield of wheat and mustard crops.  相似文献   

7.
Studies of the kinetics of sulfur dioxide (SO2)- and oxygen (O2)-induced degradation of aqueous monoethanolamine (MEA) during the absorption of carbon dioxide (CO2) from flue gases derived from coal- or natural gas-fired power plants were conducted as a function of temperature and the liquid phase concentrations of MEA, O2, SO2 and CO2. The kinetic data were based on the initial rate which shows the propensity for amine degradation and obtained under a range of conditions typical of the CO2 absorption process (3–7 kmol/m3 MEA, 6% O2, 0–196 ppm SO2, 0–0.55 CO2 loading, and 328–393 K temperature). The results showed that an increase in temperature and the concentrations of MEA, O2 and SO2 resulted in a higher MEA degradation rate. An increase in CO2 concentration gave the opposite effect. A semi-empirical model based on the initial rate, ?rMEA = {6.74 × 109 e?(29,403/RT)[MEA]0.02([O]2.91 + [SO2]3.52)}/{1 + 1.18[CO2]0.18} was developed to fit the experimental data. With the higher order of reaction, SO2 has a higher propensity to cause MEA to degrade than O2. Unlike previous models, this model shows an improvement in that any of the parameters (i.e. O2, SO2, and CO2) can be removed without affecting the usability of the model.  相似文献   

8.
Acid gas geological disposal is a promising process to reduce CO2 atmospheric emissions and an environment-friendly and economic alternative to the transformation of H2S into sulphur by the Claus process. Acid gas confinement in geological formations is to a large extent controlled by the capillary properties of the water/acid–gas/caprock system, because a significant fraction of the injected gas rises buoyantly and accumulates beneath the caprock. These properties include the water/acid gas interfacial tension (IFT), to which the so-called capillary entry pressure of the gas in the water-saturated caprock is proportional. In this paper we present the first ever systematic water/acid gas IFT measurements carried out by the pendant drop technique under geological storage conditions. We performed IFT measurements for water/H2S systems over a large range of pressure (up to P = 15 MPa) and temperature (up to T = 120 °C). Water/H2S IFT decreases with increasing P and levels off at around 9–10 mN/m at high T (≥70 °C) and P (>12 MPa). The latter values are around 30–40% of water/CO2 IFTs, and around 20% of water/CH4 IFTs at similar T and P conditions. The IFT between water and a CO2 + H2S mixture at T = 77 °C and P > 7.5 MPa is observed to be approximately equal to the molar average IFT of the water/CO2 and water/H2S binary mixtures. Thus, when the H2S content in the stored acid gas increases the capillary entry pressure decreases, together with the maximum height of acid gas column and potential storage capacity of a given geological formation. Hence, considerable attention should be exercised when refilling with a H2S-rich acid gas a depleted gas reservoir, or a depleted oil reservoir with a gas cap: in the case of hydrocarbon reservoirs that were initially (i.e., at the time of their discovery) close to capillary leakage, acid gas leakage through the caprock will inevitably occur if the refilling pressure approaches the initial reservoir pressure.  相似文献   

9.
Effect of oxygenated liquid additives on the urea based SNCR process   总被引:1,自引:0,他引:1  
An experimental investigation was performed to study the effect of oxygenated liquid additives, H2O2, C2H5OH, C2H4(OH)2 and C3H5(OH)3 on NOx removal from flue gases by the selective non-catalytic reduction (SNCR) process using urea as a reducing agent. Experiments were performed with a 150 kW pilot scale reactor in which a simulated flue gas was generated by the combustion of methane operating with 6% excess oxygen in flue gases. The desired levels of initial NOx (500 ppm) were achieved by doping the fuel gas with ammonia. Experiments were performed throughout the temperature range of interest, i.e. from 800 to 1200 °C for the investigation of the effects of the process additives on the performance of aqueous urea DeNOx. With H2O2 addition a downward shift of 150 °C in the peak reduction temperature from 1130 to 980 °C was observed during the experimentation, however, the peak reduction efficiency was reduced from 81 to 63% when no additive was used. The gradual addition of C2H5OH up to a molar ratio of 2.0 further impairs the peak NOx reduction efficiency by reducing it to 50% but this is accompanied by a downward shift of 180 °C in the peak reduction temperature. Further exploration using C2H4(OH)2 suggested that a 50% reduction could be attained for all the temperatures higher than 940 °C. The use of C3H5(OH)3 as a secondary additive has a significant effect on the peak reduction efficiency that decreased to 40% the reductions were achievable at a much lower temperature of 800 °C showing a downward shift of 330 °C.  相似文献   

10.
The hydrochemical study of the surface water along with land-use/land-cover study of its catchment area is useful for determining its suitability for support to aquatic ecosystem and agricultural purposes. The surface water quality around the wetland in Sugadaira region, Japan, is being affected both by complex hydrogeochemical processes and by anthropogenic activity, mainly intensive agricultural practices. Statistical analysis was carried out in this study using surface water chemistry data to enable hydrochemical evaluation of the water quality based on the ionic constituents, water types, and factors controlling water quality. Results show that the general trend of various ions was found to be Ca2+ > Mg2+ > Na+ > K+ and HCO3  > NO3  > SO4 2− > Cl. Spatial distribution of water chemistry shows that enrichment of NO3 has taken place along one side of the wetland that is exposed directly to human settlement and agricultural practices. This study is vital considering that pollution in a wetland indicates that poor health of water resources in the region not only makes the situation alarming but also calls for immediate attention.  相似文献   

11.
近年来,城市空气污染日益严重,已成为公众广泛关注的环境问题之一。柳州是中国西部的工业重镇、广西有名的工业城市,位列国家划定的113个大气污染防治重点城市之中,是广西第一个开展PM2.5监测的城市。本研究于2009—2014年连续6年对柳州市大气主要污染物SO2、NO2、PM10和PM2.5的浓度进行在线观测,获得了污染物的长期时间和空间分布特征。结果显示,SO2浓度呈逐年下降趋势,并于2011年达标之后显著下降,2014年相比2009年下降了50.0%;NO2浓度一直在低于标准以下波动(24.6~35.1μg/m3);PM10浓度呈逐年增长趋势,并从2011年开始超标,2014年相对于2009年增长了69.3%。各污染物浓度都具有显著的季节变化:冬季秋季春季夏季。SO2、NO2、PM10和PM2.5的浓度冬季相比夏季分别提高82.9%、56.3%、66.9%和133.6%。冬季SO2和秋冬季PM10超标,PM2.5除7月外全线超标。PM2.5/PM10的比值冬季也高于夏季,表明冬季更易富集细颗粒。各污染物浓度也表现出不同的空间分布。九中各污染物的浓度都最高,可能与其离柳州钢铁公司距离较近有关。SO2除九中外,其他站点均达标。NO2全部达标。PM10市监测站和九中超标。PM2.5所有站点超标严重。本研究结果表明,柳州市煤烟型污染得到有效控制,但颗粒物污染,尤其是细颗粒物污染日益严重。  相似文献   

12.
Following the feasibility study of sour compression process as a novel purification method of producing NOx-free, SO2-free oxyfuel-derived CO2 using actual fluegas, in this paper, we present the study of the individual reactions taking place in the process in a controlled environment. We have previously showed that an increase of NO/NO2 concentration in the inlet stream is beneficial for SO2 removal as NO2 promotes SO2 oxidation and the further removal as liquid acid. In this study we show that the reaction SO2 + NO2  SO3 + NO does not take place significantly in the absence of liquid water at a range of conditions relevant to the sour compression process. When liquid water is present, SO2 is oxidised by NO2 regenerating NO with the rate of conversion of SO2 being dependent on the acid concentration in the liquid. The formation of small liquid droplets where very low levels of pH (?0) can be reached is shown to be of great importance to the SO2 + NO2 conversion process.  相似文献   

13.
This study addressed the effects of land use and slope position on soil inorganic nitrogen and was conducted in small watersheds. The study covered three land use types: tropical cloud forest, grassland, and coffee crop. To conduct this research, typical slope small watersheds were chosen in each land use type. Slopes were divided into three positions: shoulder, backslope, and footslope. At the center of each slope position, soil sampling was carried out. Soil inorganic nitrogen was measured monthly during a period of 14 months (July 2005–August 2006) with 11 observations. Significant differences in soil NH4 +–N and NO3 –N content were detected for both land use and sampling date effects, as well as for interactions. A significant slope position-by-sampling date interaction was found only in coffee crop for NO3 –N content. In tropical cloud forest and grassland, high soil NH4 +–N and low NO3 –N content were recorded, while soil NO3 –N content was high in coffee crop. Low NO3 –N contents could mean a substantial microbial assimilation of NO3 –N, constituting an important mechanism for nitrogen retention. Across the entire land use set, the relationship between soil temperature and soil inorganic N concentration was described by an exponential decay function (N = 33 + 2459exp−0.23T, R 2 = 0.44, P < 0.0001). This study also showed that together, soil temperature and gravimetric soil water content explained more variation in soil inorganic N concentration than gravimetric soil water content alone.  相似文献   

14.
环境容量资产的核算是自然资源资产负债表编制中的主要组成部分。本文基于环境容量提出京津冀地区环境资产负债表编制方法,阐明该地区环境资产负债表的编制内容、核算范围以及编制路径,对2013年该地区及13个城市的环境容量资产进行核算,并编制了实物量资产负债表。在此基础上,提出了京津冀地区降低环境资产负债的政策建议,指出我国环境资产负债核算工作逐步规范化、制度化的方向。结果表明,京津冀地区大气及水环境容量均处于严重负债状态,其中,主要大气污染物SO2、NOx和PM2.5环境容量资产负债率分别为-235%、-263%和-316%,主要水污染物COD和NH3-N环境容量资产负债率分别为-414%和-850%。本文研究成果可为京津冀地区资源环境与经济发展决策提供科学基础,同时也可为其他地区开展环境资产核算研究提供参考。  相似文献   

15.
In this study the possibility of both chemical and combined chemical + thermal activation of municipal solid waste incinerator bottom ash was investigated. A number of chemical activators including Na2SiO3·9H2O, NaOH, Na2SO4 and CaCl2·2H2O were individually added at varying concentrations to bottom ash/Portland cement mixtures having different bottom ash contents. The effect of the selected compounds was evaluated in terms of macroscopic properties including mechanical strength and composition of cementitious materials/water slurries. The results showed that Na-based activators were not capable of improving the characteristics of the cementitious products if compared to Portland cement under both normal and accelerated curing. Conversely, the use of calcium chloride at 40 °C-curing did promote the pozzolanic properties of bottom ash, leading to UCS values of 45.5 and 60.0 MPa after 10 and 20 days, respectively, as opposed to a value of 43.6 MPa obtained after 28 days for Portland cement under normal curing conditions.  相似文献   

16.
Studies of air quality were carried out in the towns of Kajang, Nilai and Banting in the Langat River Basin, southern region of Kuala Lumpur to determine the status and trend of air quality. The determination of air quality was based on several parameters such as suspended solids with diameters less than 10???m (PM10) and gaseous pollutants of sulphur dioxide (SO2), nitrogen dioxide (NO2), ozone (O3), and carbon monoxide (CO). Primary concentration data of air pollutants were compiled through fieldwork studies and combined with secondary data obtained from the regular monitoring data as collected by Alam Sekitar Malaysia Sdn. Bhd. (ASMA) on behalf of Malaysian Department of Environment (DOE) at their stations in Kajang and Nilai. Results showed that the average concentrations of PM10, SO2, NO2, O3, and CO at all sampling stations were still below the permissible values recommended by the Malaysian DOE. The level of gaseous pollutants of NO2, O3, and CO was recorded at statistically higher levels (p?<?0.05) than values recorded at the control station at Pangsun Recreational Area. These pollutants were suspected to have originated mainly from exhaust systems of motor vehicles. Data for the years 1996 to 2006 as obtained from ASMA showed long-term air quality trends of increasing O3 and NO2 concentrations in Kajang whilst concentrations of PM10 recorded at both Kajang and Nilai stations were mostly expected coming from transboundary sources especially biomass burning and the development activities around the study areas.  相似文献   

17.
In this research, nanoporous zeolite T membranes were synthesized at three levels of synthesis temperature: 100, 120 and 140 °C and synthesis time: 15, 30 and 50 h and characterized by gas permeation. Effects of synthesis parameters on CO2 and CH4 permeances and CO2/CH4 ideal separation factors were studied. All experiments were conducted at 1 bar feed pressure and 30 °C module temperature. Normally, it is anticipated that increasing synthesis temperature and synthesis time increase gas permeances and consequently decrease ideal separation factor. This prediction was not observed in the case of synthesis temperature increase from 100 to 120 °C as well as synthesis time increase from 15 to 30 h, due to the dual effect of increasing synthesis temperature and synthesis time on gas permeances and ideal separation factor. More zeolites are deposited and larger crystals are formed at higher synthesis temperatures and times. Forming the larger crystals accelerates the rate of zeolite layer integration, which is responsible for gas separation, in one hand and reduces the density of deposited zeolite layer on the support, due to the formation of more voids, on the other hand. In terms of maximizing the CO2/CH4 ideal separation factor, medium synthesis temperature and synthesis time (120 °C and 30 h) can be selected, however, maximum gas permeances are obtained at low levels of synthesis temperature and time (100 °C and 15 h). According to the ranges of gas permeances (10−11 to 10−6 mol/m2 s Pa) and CO2/CH4 ideal separation factors (1.4–70.3), it is concluded that the zeolite T membranes synthesized at optimum conditions can be employed for membrane separation of CO2/CH4 mixtures.  相似文献   

18.
Awareness of environmental heterogeneity in ecosystems is critical for management and conservation. We used the Xochimilco freshwater system to describe the relationship between heterogeneity and human activities. This tropical aquatic ecosystem south of Mexico City is comprised of a network of interconnected canals and lakes that are influenced by agricultural and urban activities. Environmental heterogeneity was characterized by spatially extensive surveys within four regions of Xochimilco during rainy and dry seasons over 2 years. These surveys revealed a heterogeneous system that was shallow (1.1 m, SD = 0.4 ), warm (17°C, SD = 2.9), well oxygenated (5.0 mg l−1, SD = 3), turbid (45.7 NTU SD = 26.96), and extremely nutrient-rich (NO3–N = 15.9 mg l−1, SD=13.7; NH4–N = 2.88 mg l−1, SD = 4.24; and PO4–P =  8.3 mg l−1, SD = 2.4). Most of the variables were not significantly different between years, but did differ between seasons, suggesting a dynamic system within a span of a year but with a high resilience over longer periods of time. Maps were produced using interpolations to describe distributions of all variables. There was no correlation between individual variables and land use. Consequently, we searched for relationships using all variables together by generating a combined water quality index. Significant differences in the index were apparent among the four regions. Index values also differed within individual region and individual water bodies (e.g., within canals), indicating that Xochimilco has high local heterogeneity. Using this index on a map helped to relate water quality to human activities and provides a simple and clear tool for managers and policymakers.  相似文献   

19.
Geospatial analysis and statistical analysis are coupled in this study to determine the dynamic linkage between landscape characteristics and water quality for the years 1996, 2002, and 2007 in a subtropical coastal watershed of Southeast China. The landscape characteristics include Percent of Built (%BL), Percent of Agriculture, Percent of Natural, Patch Density and Shannon’s Diversity Index (SHDI), with water quality expressed in terms of CODMn and NH4 +–N. The %BL was consistently positively correlated with NH4 +–N and CODMn at time three points. SHDI is significantly positively correlated with CODMn in 2002. The relationship between NH4 +–N, CODMn and landscape variables in the wet precipitation year 2007 is stronger, with R2 = 0.892, than that in the dry precipitation years 1996 and 2002, which had R2 values of 0.712 and 0.455, respectively. Two empirical regression models constructed in this study proved more suitable for predicting CODMn than for predicting NH4 +–N concentration in the unmonitored watersheds that do not have wastewater treatment plants. The calibrated regression equations have a better predictive ability over space within the wet precipitation year of 2007 than over time during the dry precipitation years from 1996 to 2002. Results show clearly that climatic variability influences the linkage of water quality-landscape characteristics and the fit of empirical regression models.  相似文献   

20.
The leaching of salt and mineral elements from three composts prepared with residual vegetable crop biomass (melon, pepper or zucchini) was studied using methacrylate columns and distilled water. The benefits of the leached composts to be used for ornamental potted plant production were also analysed. After leaching 5 container capacities of effluent, both the electrical conductivity and the concentration of soluble mineral elements in compost leachates decreased substantially and remained close to the target levels. Composts reacted differently to leaching due to differences in the raw waste sources and the composting process and hence, in their physical and chemical characteristics. At the end of the experiment, after pouring 8 container capacities of water, the leaching efficiency of the salts was 96%, 93% and 87% for melon, pepper and zucchini-based composts, respectively. Mineral elements differed in their ability to be removed from the composts; N (NH4+ and NO3?), K+, Na+, Cl?, and SO42? were leached readily, whereas H2PO4?, Ca2+, and Mg2+ were removed hardly. Leached composts showed a range of physico-chemical and chemical characteristics suitable for use as growing media constituents. Potted Calendula and Calceolaria plants grew in the substrates prepared with the leached composts better than in those made with the non-leached ones. Finally, special emphasis must be paid to the management of the effluents produced under commercial conditions to avoid environmental pollution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号