首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 171 毫秒
1.
重庆主城区大气PM10及PM2.5来源解析   总被引:8,自引:0,他引:8       下载免费PDF全文
为探讨重庆主城区4个季节大气PM10和PM2.5的主要来源,于2012年2—12月在重庆主城区的工业区、文教区和居住区5个环境监测点同步采集PM10及PM2.5样品,分析了无机元素、水溶性离子、有机碳和元素碳含量及其分布特征. 采集了重庆主城区土壤尘、建筑水泥尘、扬尘、移动源(包括机动车、施工机械及船舶)、工业源(包括固定燃烧源及工业工艺过程源)、生物质燃烧源及餐饮源等7类污染源,建立了重庆市本地化的污染源成分谱库. 利用CMB(化学质量平衡)受体模型及二重源解析技术分析了PM10及PM2.5的来源. 结果表明:重庆主城区大气中ρ(PM10)及ρ(PM2.5)的年均值分别为153.2和113.1 μg/m3,超过GB 3095—2012《环境空气质量标准》二级标准限值2倍以上. 大气PM10的主要来源为扬尘、二次粒子和移动源(贡献率分别为23.9%、23.5%和23.4%),大气PM2.5主要来源于二次粒子和移动源(贡献率分别为30.1%和27.9%).PM10和PM2.5的主要源类贡献率差别不大,表明研究区域内大气颗粒物污染控制应采取多源控制原则. 大气PM10来源的季节性变化特征表现为春季和秋季主要以扬尘为主、夏季和冬季主要以二次粒子为主.   相似文献   

2.
乌鲁木齐市重污染期间PM2.5污染特征与来源解析   总被引:4,自引:0,他引:4  
目前有关我国城市大气重污染期间PM2.5污染特征及其来源的研究较少,为深入了解典型城市大气重污染期间PM2.5的污染特征与来源构成,于2013年1月19—30日在乌鲁木齐市采集PM2.5样品,并依据相关划分标准,确定1月19—28日为重污染天气. 分析了重污染天气下ρ(PM2.5)及主要化学组成(包括水溶性离子、无机元素和碳组分),运用统计学方法研究了重污染期间PM2.5的污染特征,并且采用富集因子法和CMB受体模型解析了PM2.5的来源构成.结果表明:大气重污染期间ρ(PM2.5)严重超标,其中米东区环境保护局采样点的ρ(PM2.5)最高,其次是铁路局、市监测站;PM2.5化学组分以SO42-、TC、Si和NO3-为主,其中二次离子占ρ(PM2.5)的43.1%;城市扬尘、煤烟尘和二次粒子是环境空气中PM2.5的主要污染源类,三者在乌鲁木齐市以及米东区的分担率分别为24.7%、15.6%、38.0%和20.8%、28.0%、36.2%,其中二次硫酸盐的分担率在两地更分别达到28.6%和27.0%.   相似文献   

3.
为了研究漯河市PM2.5和PM10及其水溶性离子变化特征,于2017年5月—2018年2月在漯河市3个采样点同步采集PM2.5和PM10样品,分别获得PM2.5和PM10有效样品191和190个.用离子色谱法分析样品中F-、Cl-、NO3-、SO42-、Na+、NH4+、K+、Mg2+、Ca2+等9种水溶性无机离子.结果表明:在采样期间,漯河市ρ(PM2.5)平均值为72.42 μg/m3,其中ρ(总无机水溶性离子)的年均值为34.76 μg/m3,占ρ(PM2.5)的46.72%;ρ(PM10)平均值为126.52 μg/m3,其中ρ(总无机水溶性离子)的年均值为46.40 μg/m3,占ρ(PM10)的35.67%.2种颗粒物水溶性离子质量浓度的季节性变化均呈冬季高、夏季低的趋势.PM2.5/PM10〔ρ(PM2.5)/ρ(PM10)〕在四季分别为0.50、0.61、0.56、0.57.采样期间漯河市PM2.5中NOR(氮氧化率)和SOR(硫氧化率)的年均值分别为0.17和0.30,PM10中NOR和SOR的年均值分别为0.22和0.34,说明颗粒物中SO42-的二次转化效率高于NO3-.PM2.5和PM10在采样期间均呈弱碱性,且碱性在夏季最强,秋季最弱.利用PMF模型分析PM2.5和PM10中水溶性离子的主要来源发现,PM2.5中水溶性离子来源主要包括生物质燃烧源、燃煤源、建筑扬尘源、工业源和二次污染源,PM10中水溶性离子来源主要包括燃煤源、建筑扬尘源、二次污染源、生物质燃烧源和工业源.研究显示,漯河市颗粒物污染中水溶性离子来源复杂,应采取多源控制的污染防治措施.   相似文献   

4.
无锡市区环境空气中PM10来源解析   总被引:12,自引:8,他引:4  
于2005年采集了无锡市区PM10源和受体样品,并测定了无机元素、水溶性离子和碳等组分的含量. 采用OC/EC〔即ρ(OC)/ρ(EC)〕最小比值法确定了二次有机碳(Secondary Organic Carbon)对PM10的贡献,并据此重新构建了受体化学成分谱,使用化学质量平衡受体模型(CMB)和二重源解析技术对无锡市区的PM10来源进行了解析. 结果表明:城市扬尘是无锡市环境空气中PM10的主要来源,其分担率达50.49%;煤烟尘和机动车尾气尘的分担率也分别为13.97%和7.80%;其他重要源类按分担率依次为二次有机碳,SO42-,建筑水泥尘,NO3-,土壤尘和钢铁尘等,其中二次有机碳年贡献值为6.94 μg/m3,年分担率为6.18%.   相似文献   

5.
成都市冬季大气颗粒物组成特征及来源变化趋势   总被引:7,自引:0,他引:7  
年冬季分别在成都市8个环境受体采样点采集PM10、PM2.5样品,同时采集颗粒物源类样品,分析上述样品质量浓度及多种无机元素、水溶性离子和碳组分的含量,以对这3 a冬季大气颗粒物浓度、特征组分、来源及变化趋势进行分析. 使用CMB-iteration模型对成都市中心城区的PM10、PM2.5进行来源解析. 结果表明: 成都市冬季ρ(PM10)在工业区最高,PM2.5污染呈现区域性特征;冬季PM10的主要来源有扬尘、二次硫酸盐、煤烟尘、二次硝酸盐和机动车尾气尘,上述5类源在2010─2012年的分担率分别为24%~29%、17%~22%、13%~16%、6%~12%、6%~11%;对PM2.5有重要贡献的源类有二次硫酸盐、扬尘、煤烟尘、二次硝酸盐和机动车尾气尘,这5类源在2010─2012年的分担率范围分别为25%~27%、19%~22%、12%~15%、11%~13%、8%~11%. 二次粒子、扬尘等是成都市大气颗粒物的主要污染源,其中扬尘、建筑水泥尘等以粗粒子为主的源类浓度贡献呈逐年下降趋势,而二次粒子等以细粒子为主的源类浓度贡献则逐年上升,成都市冬季大气细颗粒物污染加重.   相似文献   

6.
为了研究焦作市大气中PM2.5和PM10污染状况,基于2018—2020年焦作市50个环境空气质量监测站点的PM2.5和PM10浓度逐时观测资料,结合气象资料,分析了焦作市PM2.5和PM10浓度的时空分布特征及气象因素影响。结果表明:1)焦作市PM2.5和PM10呈双峰型日变化,且具有显著的U形逐月变化规律及冬高夏低、春秋居中的季节性特征。2)2018—2020年PM2.5和PM10浓度年均值呈西南高东北低的空间差异性特征。与2018年相比,2020年修武县PM2.5和PM10浓度的下降幅度最大,分别为30.25%、22.72%。3) Spearman相关性分析表明,PM2.5和PM10浓度与气温、风速呈显著负相关;与气压呈显著正相关;相对湿度与PM2.5浓度呈显著正相关,与PM10浓度呈显著负相关。焦作市环保局监测站在东北风、西南风风向PM2.5和PM10浓度污染较重,博爱县清化镇、沁阳市西万镇和武陟县乔庙乡监测站在西南风风向易出现高浓度颗粒物。该研究结果可为日后工业地区大气污染防治,生产生活的合理规划与布局提供重要参考。  相似文献   

7.
2014年5~6月在东海海域采集PM2.5和PM10气溶胶样品,通过离子色谱法对样品中主要水溶性阳离子(Na+、K+、NH4+、Mg2+、Ca2+)和阴离子(Cl-、NO3-、SO42-、MSA)的浓度进行测定,并结合相关数理统计方法探讨了其主要来源.结果表明,PM2.5和PM10样品中主要水溶性离子的总浓度范围分别为7.9~23.7μg/m3和10.4~47.9μg/m3,平均值分别为(14.9±5.8)μg/m3和(21.3±10.7)μg/m3.二次离子(nss-SO42-、NO3-和NH4+)浓度最高,分别占测定离子总浓度的80.8%和73.3%,其中SO42-和NH4+主要富集在细颗粒物(PM2.5)中,NO3-主要富集在粗颗粒物(PM10)中.富集因子及相关性分析表明K+主要来自陆源,Mg2+受海源和陆源双重输入影响.阴阳离子浓度平衡计算结果表明,细颗粒物样品呈弱碱性;粗颗粒物样品酸碱基本中和.两种样品中NH4+的主要结合方式均为(NH42SO4和NH4NO3.来源分析结果表明,PM2.5和PM10样品中生源硫化物对nss-SO42-的贡献率分别为13.7%和8.7%.根据估算的干沉降通量结果,NH4+对氮沉降的贡献程度小于NO3-.  相似文献   

8.
重庆主城区春季大气PM10及PM2.5中多环芳烃来源解析   总被引:1,自引:0,他引:1       下载免费PDF全文
于2012年春季采集了重庆主城区和缙云山共6个环境采样点的大气PM10、PM2.5样品,同步采集了燃煤尘、机动车尾气尘、施工机械尾气尘、船舶尾气尘、餐饮油烟尘、生物质燃烧尘及土壤尘等7类污染源,采集到有效受体样品139个、有效源样品233个,使用GC-MS分析样品中18种PAHs的质量浓度(ρ),分析了PM10、PM2.5上载带PAHs的污染特征,并分别运用比值法、主成分分析法及CMB(化学质量平衡)受体模型法对PM10、PM2.5中的PAHs进行来源解析,所得源解析结果较为一致. 结果表明:重庆主城区大气PM10、PM2.5中ρ(PAHs)较低,ρ(PAHs)分别为22.03~31.71、19.02~29.92 ng/m3,其中位于工业区新山村采样点的ρ(PAHs)最高. PM10载带的PAHs有86%~99%集中在PM2.5中,说明PAHs主要富集在PM2.5中. 重庆主城区大气PM10、PM2.5载带的PAHs主要来自机动车尾气尘和燃煤尘的贡献,这2类源对PM10的贡献率分别为25.89%、32.80%;而在PM2.5中,机动车尾气尘的贡献率较高,可达62%左右.   相似文献   

9.
在南京市仙林地区住宅楼内和室外采集PM2.5样品,分析PM2.5中金属的污染特征及主要来源.结果显示,室内外PM2.5平均浓度分别为80.56μg/m3和96.77μg/m3,室内外PM2.5浓度比(I/O)平均值为0.87.除Mg外,室外其他金属平均值均高于室内.元素Pb室内外浓度相关性最高,R值为0.807.室内外PM2.5中金属元素Cd、Cu、Pb、Zn、As、Co、Cr和Ni富集程度较高.主成分分析结果显示,室外PM2.5中金属的主要来源为土壤尘、交通排放、金属冶炼、垃圾焚烧等;室内PM2.5中金属可能的来源为室外颗粒物的渗透及室内烹饪和家具材料等.  相似文献   

10.
为了解沈阳市空气细颗粒物的污染特征及主要来源,于2015年2月、5月、8月和10月在沈阳市采集PM2.5样品,对PM2.5质量浓度及其化学组分(无机元素、含碳组分和水溶性离子)进行测定.结果显示,采样期间沈阳市PM2.5平均质量浓度为69 μg/m3,是《环境空气质量标准》(GB 3095-2012)年均二级标准限值(35 μg/m3)的2.0.水溶性离子在PM2.5中的含量最高,其次为碳组分、无机元素.富集因子结果表明:沈阳市富集因子值最高的元素来自于燃煤、交通污染、工业排放等污染源.正交矩阵因子分析(PMF)结果表明:PM2.5结果中燃煤源、二次源、工业源、扬尘源和交通源的贡献比分别为33.4%、27.2%、16.7%、11.5%、11.2%.  相似文献   

11.
利用基于新型多点位三维受体模型和后轨迹所构建的来向解析技术(SDA),探讨了天津市内陆和近海点位的不同季节不同来向气团载带的颗粒物浓度、组分和源分担率特征,并定量计算了不同来向污染源对受体点位的贡献大小.整体上,渤海来向的气团相对清洁(97.1μg/m3),气团占比较大(23.7%);内蒙-河北-北京-天津来向气团载带的PM2.5浓度高(197μg/m3),但气团占比小(内陆点位春冬季分别为12.5%,11.9%,近海点位春冬季分别为8.6%,10.7%),对PM2.5的综合影响较小.近海点位春夏秋冬季对PM2.5分担率最大的污染源分别为:SSW来向地壳源(12.8%)、SE来向硫酸盐+SOC(二次有机碳)(9.8%)、WSW来向燃煤源(10.3%)、WNW来向硫酸盐+SOC(12.1%).内陆点位分别为SSW来向地壳源(14.5%)、S来向硫酸盐+SOC(13.5%)、SSW来向机动车源(8.9%)、WNW来向硫酸盐+SOC(9.5%).  相似文献   

12.
对邯郸市区内邯郸钢铁集团(邯钢)、邯郸市环境监测中心(环保局)、河北工程大学(矿院)3个点位4个季节代表月大气PM2.5样品进行采集,并对其离子、元素、碳质组分进行测试分析;利用基于排放清单、受体模型与空气质量模型相结合的综合来源解析方法,对邯郸市区大气PM2.5贡献来源进行分析.结果表明:邯郸市区PM2.5年均浓度为85.5μg/m3,秋冬季浓度明显高于春夏季,邯钢点位浓度略高于矿院和环保局;PM2.5中占比较高的组分为NO3-、SO42-、POA、SOA和NH4+,分别占15.7%、14.5%、13.2%、12.2%和12.4%,具有明显的二次污染和有机污染特征,冬季二次组分和有机组分占比略高于其他季节,环保局点位一次有机气溶胶(POA)和二次有机气溶胶(SOA)占比略高于矿院和邯钢;冶金和扬尘是PM2.5最主要的贡献来源,贡献率分别为27.0%和18.7%,冶金源在春夏季的贡献比例高于秋冬季,在邯钢点位的贡献率明显高于环保局和矿院.  相似文献   

13.
为识别和量化深圳市大气PM2.5的污染来源,2014年3,6,9,12月分别在5个站点采集PM2.5的膜样品并进行质量浓度及组分分析,利用正向矩阵因子解析(PMF)模型对其主要来源和时空变化规律进行了解析.结果表明,2014年深圳市PM2.5年均浓度为35.7 μg/m3,其中机动车源、二次硫酸盐生成、二次有机物生成和二次硝酸盐生成是最主要的来源,质量浓度贡献比例分别为27%、21%、12%和10%;地面扬尘、生物质燃烧源、远洋船舶源、工业源、海洋源、建筑尘和燃煤源贡献比例达2%~6%.各个源贡献的时空变化特征表明,二次硫酸盐生成、生物质燃烧源、二次有机物生成、工业源、远洋船舶源和海洋源显示出明显的区域源特征,机动车源、二次硝酸盐生成、燃煤源、地面扬尘和建筑尘具有显著的本地源特征.  相似文献   

14.
南昌市大气颗粒物污染特征及PM2.5来源解析   总被引:1,自引:0,他引:1       下载免费PDF全文
为探讨2013年南昌市大气颗粒物的污染特征及分布状况,收集南昌市9个大气监测站点实时发布的PM10和PM2.5数据,分析了ρ(PM10)、ρ(PM2.5)和ρ(PM2.5)/ρ(PM10)的变化规律及其与气态污染物的相关性,并结合污染严重的秋季时段,采用PCA-MLR(主成分分析-多元线性回归)模型对大气PM2.5中化学组分来源进行解析.结果表明:①ρ(PM10)和ρ(PM2.5)的年均值分别为(115.4±39.1)(69.1±26.8)μg/m3,均超过GB 3095-2012《环境空气质量标准》二级标准限值,ρ(PM10)和ρ(PM2.5)的最高值分别出现在石化、省外办监测站点,最低值出现在林科所监测站点.ρ(PM10)和ρ(PM2.5)季节性变化特征明显,呈冬季>春、秋两季>夏季的趋势,全年ρ(PM10)超标天数占比为25.48%,ρ(PM2.5)超标天数占比为36.71%,各季度ρ(PM2.5)超标天数占比均高于ρ(PM10).②受人为活动和边界层高度的影响,ρ(PM2.5)和ρ(PM10)日变化呈双峰双谷形态,一个波峰出现在08:00-10:00,另一个波峰出现在20:00-22:00,并且晚间小时峰值高于早间,最低值出现在15:00.③ρ(PM2.5)/ρ(PM10)年均值为60.3%,在冬季最高达65.1%,相关性分析发现ρ(PM10)与ρ(PM2.5)存在较显著的线性关系,表明二者具有同源性.④ρ(PM10)、ρ(PM2.5)均与ρ(SO2)、ρ(NO2)、ρ(CO)呈显著正相关,并且冬季相关性高于夏、秋两季;而ρ(PM10)、ρ(PM2.5)均与ρ(O3)全年呈显著负相关,并且夏、秋两季相关性高于冬季,说明气态污染物的二次转化对ρ(PM2.5)和ρ(PM10)有较大影响.⑤南昌市秋季PM2.5的最大污染源为道路扬尘/机动车尾气混合污染源,其次分别为施工扬尘源、燃煤源、冶炼尘/生物质燃烧混合污染源,各污染源对PM2.5的贡献率分别为40.9%、35.8%、12.4%、10.9%.研究显示,南昌市PM2.5的污染程度较PM10严重,PM2.5已成为南昌市大气颗粒物污染的主要组分,PM2.5主要来源为城市扬尘和机动车尾气.   相似文献   

15.
为分析深圳市大气细颗粒物(PM2.5)浓度长期持续下降的原因,进而明确PM2.5下一步减排潜力和精细化管理方向,本研究基于2019年在深圳市西乡点位采集的PM2.5样品,分析了西乡PM2.5的化学组成及季节分布特征.结果表明,2019年西乡点位PM2.5年均浓度为29.4μg/m3,总体上呈现夏低冬高的季节特征,有机物(OM)和硫酸根(SO42-)仍是主要的组分,分别占总质量的42.3%和17.6%.对2009、2014、2019年典型月份PM2.5的组分进行对比,PM2.5全年质量浓度从42.3μg/m3(2009年)下降至24.6μg/m3.(2019年),OM、SO42-、硝酸根(NO3-)、铵根(NH4+)和元素碳(EC)等都有明显的下降趋势.矿物质元素(Al、Ca)是地面扬尘和建筑尘的标识组分,近年来Al、Ca浓度的增加趋势表明宝安区西乡扬尘的影响在逐渐扩大.2009、2014、2019年OC/EC的值逐渐扩大,说明了一次燃烧源排放的影响逐渐减小,但二次有机物(SOC)的贡献逐渐凸显.通过分析2004、2009、2014、2019年夏、冬季PM2.5中6种主要组分变化趋势,表明6种主要组分夏冬两季皆有下降趋势,但由于气象因素导致冬季污染物受到区域传输的影响较大,夏季各组分浓度的下降幅度普遍高于冬季.总体来说深圳市PM2.5浓度持续下降的原因是深圳市对机动车、工业VOC (挥发性有机物)、远洋船舶以及一次燃烧源的管控和减排.  相似文献   

16.
2017年9月4日~2018年1月19日期间分别在关中地区的5个主要城市西安(XA),渭南(WN),铜川(TCH),宝鸡(BJ),咸阳(XY)设置采样点进行PM2.5,PM10颗粒物手工采样观测,采用热光透射法(TOT)分析碳组分,最小值法估算二次有机碳(SOC)浓度,结果显示PM2.5与PM10中SOC平均浓度分别为(7.44±5.54),(9.62±7.49)μg/m3,一次有机碳(POC)平均浓度分别为(7.04±2.59),(9.33±4.33)μg/m3,不同粒径颗粒物中SOC各点位的浓度值分布表现基本相同为XY > XA > WN > BJ > TCH.PM2.5中SOC含量为8.76%,OC占比为48.03%,PM10含量为6.28%,OC占比为48.09%,季节分布均呈现为秋季低冬季高,关中地区SOC污染严重.后向轨迹聚类分析结果显示污染气团传输主要是关中地区局部污染和西北,东北方向传输,其中局部污染轨迹的数量占比较多,浓度较高.低空传输与近地面风向风速及污染物分布存在差异,结合关中地区盆地地形,静风频率高,边界层低等多种因素造成颗粒物中SOC浓度较高,其中BJ点位易受到东北气团的污染物传输累积.  相似文献   

17.
利用气溶胶-气候耦合模式BCC_AGCM2.0.1_CUACE/Aero,模拟了1850~1980和1980~2010年PM_(2.5)及其人为和自然气溶胶柱含量的时空变化,并分析了人为和自然气溶胶对这种变化的贡献.结果表明:1850~1980年,大部分陆地范围人为PM_(2.5)的柱含量有所增加,尤其是北美东部、欧洲和中国东部等地区,人为PM_(2.5)增加地更明显,且以夏季最为明显;自然PM_(2.5)的变化主要分布在几大沙漠地区,以春、夏季最为显著;人为气溶胶对总PM_(2.5)变化的贡献在秋季最大,达94%,夏、冬季次之,分别为46%和41%,春季最小,仅占28%.1980~2010年,人为PM_(2.5)在东亚、东南亚等地区均有所增加,春夏季较为显著,在欧洲中部和北美东部有所减少,且以夏季减少最为明显;自然PM_(2.5)在沙漠地带有显著的变化,以春季最为明显;人为PM_(2.5)的变化对总变化的贡献相比之前有所减少,四季均小于50%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号