首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
利用2016年MODIS 3 km分辨率的气溶胶光学厚度(AOD)日产品、PM_(10)质量浓度以及相关气象数据,开展了北疆地区AOD与PM_(10)质量浓度的相关性分析.结果表明,AOD与PM_(10)质量浓度的直接相关程度较低,相关系数仅为0.294.对比分析了利用能见度数据对AOD进行垂直订正,然后再用相对湿度数据对其进行二次订正(AOD垂直-湿度订正)和利用能见度数据对AOD进行垂直订正和相对湿度数据对PM_(10)质量浓度进行订正(AOD垂直订正-PM_(10)湿度订正)两种订正方法,结果指出"AOD垂直订正-PM_(10)湿度订正"可显著提高二者之间的相关性.订正之后,北疆地区AOD与PM_(10)质量浓度的相关系数达到0.755,呈显著正相关;阿勒泰的订正效果最好,相关系数为0.837.最后,基于垂直订正后的AOD和湿度订正后PM_(10)建立两者之间的最优拟合模型,并利用新建的模型反演了北疆地区PM_(10)质量浓度.反演得到的PM_(10)质量浓度与经过湿度订正后PM_(10)呈显著正相关,相关系数为0.688;昌吉和伊宁的反演效果最好,相关系数分别为0.910和0.829.本研究结果表明MODIS 3 km AOD产品经过垂直和湿度订正后,可作为北疆地区监测PM_(10)质量浓度的一个有效手段.  相似文献   

2.
该文利用2014-2015年MODIS L1B数据反演了沈阳市气溶胶光学厚度(AOD),并利用地面观测站的能见度和相对湿度2类常规气象资料数据,对AOD进行标高和湿度订正,在此基础上,建立了PM_(2.5)质量浓度与AOD的关系模型。结果表明:(1)订正前PM_(2.5)质量浓度与AOD相关系数仅为0.208,相关性较低,而订正后相关性显著提高,相关系数从0.208提高到0.69(p0.01),为了进一步分析两者的相关性,对全年数据划分为冬半年和夏半年,它们的相关系数分别为0.66(p0.01)和0.63(p0.01);(2)利用4种不同的函数模拟了PM_(2.5)质量浓度与AOD的关系,冬、夏半年4种模型的均方根误差(RMSE)分别为41.94、52.98、45.27、43.66μg/m~3和18.64、12.61、14.74、30.87μg/m~3。其中冬半年线性模型RMSE最小,夏半年指数模型RMSE最小,说明模型拟合效果较好,可以较为准确地反演地面PM_(2.5)的浓度值。  相似文献   

3.
利用卫星遥感MODIS数据研究区域大气PM_(2.5)浓度分布是环境管理的有效方法。获取美国国家航空航天局MODIS L1B1KM数据,采用暗目标法反演阜新市大气气溶胶厚度AOD数据;提取阜新市5个大气监测站点位2014年3月至5月、2015年3月至4月期间PM_(2.5)浓度数据进行相关性分析,建立PM_(2.5)浓度-AOD之间的线性、一元二次、对数函数、幂函数及指数函数5种相关性模型;引用湿度影响因子建立大气PM_(2.5)浓度订正模型,采用PM_(2.5)浓度订正模型、Peterson模型分别订正PM_(2.5)浓度及AOD标高,应用阜新市环保局5个监测点位2014年6~12月、2015年5~12月期间PM_(2.5)的月平均浓度进行模型检验。对比分析订正后的5种相关性模型拟合优度,检验结果表明:订正方法提高了PM_(2.5)浓度-AOD相关性;线性相关性模型R2为0.633 6,相对误差为12.41%,相对其他4种模型相对误差较小。利用阜新市大气AOD预测PM_(2.5)浓度具有良好环境指示意义。  相似文献   

4.
基于MODIS level2的气溶胶产品,分别利用地面气象观测和ECMWF再分析资料进行垂直订正和地面水汽订正,建立MODIS气溶胶光学厚度与地面颗粒物浓度间的关系模型,并分析了颗粒物浓度的时间变化特征。结果表明:(1)MODIS光学厚度与地面PM_(2.5)和PM_(10)浓度相关性较差,经过垂直订正得到的地面消光系数与PM_(2.5)和PM_(10)浓度的相关性增强,水汽订正后的干消光系数与PM_(2.5)和PM_(10)浓度的相关性进一步提高。(2)ECMWF再分析格点数据中边界层厚度和相对湿度产品适用于MODIS光学厚度的垂直订正和水汽订正。(3)利用MODIS光学厚度历史数据反演的合肥市月平均PM_(2.5)浓度自2000年以来呈震荡增长趋势,PM_(2.5)浓度冬季较高,春秋次之,夏季最低。  相似文献   

5.
近年来对PM_(2.5)估算的研究大多是从卫星遥感的气溶胶光学厚度出发,而从气溶胶粒子谱本身出发的研究较少.基于此,本文提出一种新方法,利用2016—2017年AERONRT北京、香河、徐州和太湖4个站点的气溶胶粒径分布数据估算了近地面PM_(2.5)质量浓度,经标高订正和湿度订正后用地面监测数据对估算结果进行评价检验.结果表明:①估算的2016—2017年PM_(2.5)日均值和地面实测数据的拟合度R~2分别为北京0.42、香河0.31、徐州0.05和太湖0.49,经标高订正和湿度订正后分别提升至0.69(RMSE=39.33μg·cm~(-3))、0.79(RMSE=35.36μg·cm~(-3))、0.49(RMSE=32.93μg·cm~(-3))和0.75(RMSE=15.24μg·cm~(-3));②将估算的PM_(2.5)季均值与地面实测季均值进行对比分析,结果也显示二者基本相当,同时基于该方法估算了2006—2017年北京和香河地区PM_(2.5)年均值,分析了其变化趋势.由此可见,基于AERONET的粒子谱数据能够较好地估算近地面PM_(2.5)质量浓度,并且可以利用该方法估算PM_(2.5)历史数据,分析变化趋势.  相似文献   

6.
区域PM_(2.5)浓度影响因子及显著程度对区域PM_(2.5)浓度模拟和污染控制具有重要意义。该研究应用广义加性模型(GAM)建立模型分析2013年京津冀区域PM_(2.5)浓度与AOD、气象因子(相对湿度、温度、降雨量、大气压、风速)和土地利用类型(水体、林地、耕地、建设用地、裸地)之间的相关关系。结果表明,温度、大气压、AOD、林地、建设用地和裸地显著的影响PM_(2.5)浓度;且温度、AOD、裸地、林地与PM_(2.5)存在复杂相关关系,大气压、建设用地与PM_(2.5)浓度存在线性相关关系。GAM模型R~2为0.952,拟合结果与实测结果的线性回归方程系数为0.959,模型交叉验证后得到R2为0.792。结果表明,利用GAM能有效的识别区域PM_(2.5)浓度的影响因子,根据影响因子进行PM_(2.5)浓度拟合并得到可靠的拟合结果。  相似文献   

7.
地面监测得到的近地面细颗粒物PM_(2.5)浓度较为精确,但数据覆盖范围相对较小,卫星遥感反演的气溶胶光学厚度(AOD)数据可以反映污染物浓度分布,具有范围大且速度快的特点,因此,大多数学者通过建立PM_(2.5)-AOD模型来实现卫星遥感监测PM_(2.5)浓度,并通过引入气象要素来优化模型.然而,气象要素的选择与引入往往对模型的精度有较大的影响,如何有效地选择对PM_(2.5)浓度影响较大的气象要素一直是PM_(2.5)-AOD模型中的关键问题.因此,本文基于华东地区2014—2015年的MODIS AOD和地面监测站的PM_(2.5)浓度数据,结合再分析气象资料,利用多元逐步线性回归方法建立PM_(2.5)-AOD模型,从由特定时刻、高度上的气象要素与随时间、高度变化的气象要素组成的气象要素集中,筛选出对因变量PM_(2.5)浓度有显著影响的关键气象要素.结果表明:在地域与季节双重尺度下的PM_(2.5)-AOD模型精度更高;相较于特定时刻高度的气象要素,随时间和高度变化的气象要素对PM_(2.5)-AOD模型的影响更为显著;在地域与季节双重尺度下,1000~850 hPa经向风速差、世界时0:00—6:00近地面温度差、850~600 hPa温度差、6:00边界层高度、12:00—18:00近地面压强差、1000~850 hPa温度差对模型影响较大,但应依据不同季节和不同地区的具体影响程度作为选择标准.  相似文献   

8.
中国2013年1月PM2.5重污染过程卫星反演研究   总被引:2,自引:1,他引:1  
利用第三代空气质量模型CMAQ(community multiscale air quality modelling system)模拟的PM2.5垂直分层数据和中尺度气象模型WRF(weather research and forcasting model)模拟的高分辨率湿度数据,分别对MODIS AOD(aerosol optical depth)资料进行垂直与湿度订正,建立了订正后的AOD数据与PM2.5地面监测数据之间的线性拟合模型,其线性相关系数r=0.77(n=57,P0.01).基于此线性拟合模型,首次反演了2013年1月全国10 km分辨率PM2.5月均浓度的空间分布特征,并分析了人口暴露水平.结果表明,2013年1月我国PM2.5月均浓度大于100μg·m-3、200μg·m-3的面积占国土面积的比例分别高达10.99%、1.34%,暴露人口占全国总人口的比例分别高达45.01%、6.31%.  相似文献   

9.
为了反演高分辨率的PM2.5近地面浓度,利用WRF(中尺度气象模型)模拟的大气相对湿度、风速、边界层高度等气象因子对AOD(气溶胶光学厚度)分别进行订正,以逐步提高AOD与近地面ρ(PM2.5)间的相关性;分析不同反演模型的统计学特征,优选反演模型,并利用最优模型反演中国中东部地区2014年年均ρ(PM2.5)的空间分布特征.结果表明:AOD经相对湿度订正后,其与近地面ρ(PM2.5)的相关性显著提高,相关系数达到0.77;同时引入相对湿度、风速2个气象因子,AOD与近地面ρ(PM2.5)的相关系数升至0.79(n=145,P<0.01);同时引入相对湿度、风速和边界层高度3个气象因子,AOD与近地面ρ(PM2.5)的相关系数进一步升至0.80(n=145,P<0.01).模型反演表明,研究区域内ρ(PM2.5)年均值大于35 μg/m3的面积高达334.49×104 km2,占研究区域面积的83.2%,并且高污染地区与人口密度高度重合.分析表明,北京、天津、河北、山东及河南等典型重污染省、直辖市分别有96.30%、100%、78.16%、98.86%、100%面积的ρ(PM2.5)超标,分别约有99.97%、100%、96.41%、98.88%、100%人口生活在空气质量超标地区.   相似文献   

10.
利用2014年北京市12个空气质量监测站的逐小时PM_(2.5)地面观测资料,以及Terra和Aqua卫星的MODIS气溶胶光学厚度(AOD)产品,在时间和空间数据匹配的基础上,研究了PM_(2.5)的5 h(10:00—14:00)和24 h(0:00—23:00)两种时段平均浓度及两颗卫星平均AOD的时空分布特征,并建立了AOD与不同时段平均PM_(2.5)浓度之间的回归模型.结果表明:PM_(2.5)的5 h平均浓度和24 h平均浓度值均在城区高、郊区低,最低值位于定陵站;匹配后逐时PM_(2.5)浓度的日变化呈"双峰型",最低值出现在下午,但北京西北部郊区的定陵和昌平镇站因局地山谷风环流和外部排放源的影响,其"双峰型"波动趋势较城区站偏弱,最低值出现在上午;AOD的空间分布特征与PM_(2.5)浓度分布一致,但在郊区由于污染水平分布不均,卫星采集的样本可能来自于周围的清洁大气,导致AOD的最小值在郊区站点明显低于城区站点;两颗卫星平均的AOD与5h PM_(2.5)平均浓度的决定系数高于AOD与24 h PM_(2.5)平均浓度的决定系数;AOD与PM_(2.5)的相关系数在城区高于郊区,郊区排放源分布不均和强的局地系统性环流是造成其相关系数低的重要原因.  相似文献   

11.
乌鲁木齐市MODIS气溶胶光学厚度与PM10浓度关系模型研究   总被引:1,自引:0,他引:1  
为了建立乌鲁木齐市近地面PM10浓度监测的关系模型,利用乌鲁木齐市2013年3—11月、2014年3—11月MODIS AOD产品与同期地面观测的PM10质量浓度进行相关分析,结果表明二者直接相关程度较低(r=0.433,p0.01);然后以WRF模式模拟的大气边界层高度及地面观测的相对湿度数据对AOD进行垂直、湿度订正后,二者相关性得到较大程度提高(r=0.630,p0.01);按照季节分类统计和订正春、夏、秋季的相关系数r分别为0.779、0.393、0.523,均大于统计学上99%的置信度要求,其中春季的订正最为有效,可用性更高;最后,建立全年和各季AOD-PM10最优拟合模型并反演乌鲁木齐市地面PM10质量浓度,全年和三季的反演结果与实测数据的相关系数分别为0.757、0.748、0.652、0.715(p0.01);同时基于卫星遥感AOD反演得到的PM10质量浓度的空间分布与AOD呈现出整体的一致性,并且3个季节AOD平均值表现为:春季秋季夏季.证实了卫星遥感AOD经过垂直和湿度订正后,可以作为辅助监测乌鲁木齐市PM10地面浓度分布的一个有效手段.  相似文献   

12.
基于地理加权模型的我国冬季PM2.5遥感估算方法研究   总被引:3,自引:0,他引:3  
为了分析冬季我国区域范围内近地面PM_(2.5)质量浓度时空分布特征,根据卫星遥感反演PM_(2.5)质量浓度的基本原理,综合考虑我国不同地区的PM_(2.5)污染特征的空间差异性,基于卫星遥感、气象模式资料及同期地面观测的PM_(2.5)质量浓度数据采用地理加权模型进行回归分析,研究构建了我国区域范围内近地面PM_(2.5)遥感反演模型.结果表明:在冬季暗像元反演AOD算法受限制的情况下,深蓝算法产品可以一定程度上弥补暗像元算法的不足,将二者有效融合能同时提高AOD产品的精度和空间覆盖度;利用地理加权回归模型进行全国区域PM_(2.5)遥感估算,既能体现全国PM_(2.5)时空分布的全局变化特性,又能从局部体现全国PM_(2.5)组分、污染程度及垂直分布结构特征的空间差异特性,基于地理加权回归模型的PM_(2.5)遥感反演结果(R2=0.7)明显优于多元线性回归模型(R2=0.56);2013年12月—2014年2月份全国PM_(2.5)空间分布呈现明显的区域特征,PM_(2.5)浓度较高的地方主要分布在华北南部、长三角中部和北部、华中东部及四川东部等地,西部和北部地区PM_(2.5)污染相对较轻;从时间变化来看,全国冬季12月份PM_(2.5)污染最重,1月份次之,2月份相对最低.这可为全国PM_(2.5)区域联防联控提供有力的信息支撑.  相似文献   

13.
利用最新的MODlS(中分辨率成像光谱仪)气溶胶光学厚度(AOD)反演算法,反演珠江三角洲及香港地区2008年高分辨率(1 km x1 km)AOD分布,并与AERONET观测数据进行了验证(r=0.917).分析了2008年珠江三角洲及香港地区5个站点地面监测PM10质量浓度与反演的AOD数据相关性.结果表明:两者直...  相似文献   

14.
马可婧  孙丽娟 《环境科学》2023,44(11):5997-6006
为了明确兰州市PM2.5中16种多环芳烃(PAHs)的污染特征和来源,采集了兰州市4个季节的PM2.5样品,运用气相色谱-质谱联用仪(GC-MS)对PAHs的浓度进行了分析,利用正定矩因子分解法(PMF)、聚类分析和潜在源因子分析法(PSCF)对PAHs的来源进行解析.结果表明,兰州市PM2.5ρ(PAHs)均值为:冬季[(118±16.2) ng·m-3]>秋季[(50.8±21.6) ng·m-3]>春季[(22.2±8.87) ng·m-3]>夏季[(4.65±1.32) ng·m-3].相关性分析表明,兰州市PM2.5和TPAHs均与温度呈现极显著的负相关性,与气压呈现极显著的正相关性,与风向、风速和相对湿度的相关性较差.各环PAHs在4个季节的占比相似,其中4环和5环的PAHs占比为最大,其次为6环和2~3环.兰州市PM2.5中PAHs的主要来源在春夏季为工业排放和生物质及天然气燃烧,秋季工业排放占主导地位,冬季主要为燃煤排放,交通排放在4个季节的贡献比较稳定.聚类分析和PSCF计算结果表明,来自蒙古国、新疆东北部和青海等地的气流对兰州市环境空气质量有重要的影响.  相似文献   

15.
PM2.5作为大气污染的主要来源,对人类身体健康有着极大的影响.本文提出基于深度学习模型的多要素联合PM2.5反演方法,以PM2.5浓度作为真值数据,引入Himawari气溶胶光学厚度(AOD)日数据产品与温度、相对湿度和气压等10个要素作为反演要素.为验证方法的有效性,采用华东地区2016~2018年的数据分季节开展实验,并与传统反演方法进行对比.结果表明,PM2.5浓度与AOD、降水、风速、高植被覆盖指数呈正相关关系,与矮植被覆盖指数呈负相关关系,与温度、湿度、气压以及DEM的相关性随季节的变化而改变;基于深层神经网络(DNN)反演的PM2.5精度高于传统的线性和非线性模型,各个季节R2均在0.5以上并且误差较小,其中秋季的反演效果最好R2为0.86,夏季为0.75,冬季为0.613,春季为0.566;模型的可视化结果显示,DNN模型的反演结果更接近地面监测站点插值的PM2.5浓度分布,分辨率更高且更精确.  相似文献   

16.
于文金  于步云  谢涛  苏荣 《环境科学学报》2016,36(10):3535-3542
基于GIS技术和岭回归分析方法,采用苏锡常地区的MODIS高分辨率气溶胶光学厚度资料、PM_(2.5)浓度观测资料和苏锡常及周边地区的气象观测资料,构建了基于气溶胶光学厚度和气象要素的PM_(2.5)地面浓度分布估算模型,模拟了2013年春季苏锡常地区PM_(2.5)的空间分布状况,并将此模型与气象要素多元回归模型、气溶胶光学厚度直接回归模型进行比较.结果表明:该模型将遥感观测资料与地面气象观测资料相结合,能够有效地模拟PM_(2.5)的空间分布状况;2013年春季苏锡常地区PM_(2.5)的空间分布具有整体上西北高、东南低,中心城区高、城郊区低的趋势,局部高浓度区域可能与工业生产、交通等人为因素有关;该模型能够在保持较高精度的前提下,有效地突出局部地区的变化特征,体现出更强的空间分异性,对于研究PM_(2.5)的空间分布规律具有一定的实际应用价值.  相似文献   

17.
The objective of this study was to determine the black carbon concentration in Beijing in 2003. The aerosol properties were measured using an Aethalometer and a tapered element oscillating microbalance (TEOM) on the roof of the Physics Building of Peking University (39.99° N, 116.31° E) from July to August 2003 and from November 2003 to January 2004. The average black carbon (BC) concentrations in the summer and winter were 8.80 and 11.4 μg/m3, respectively. During winter, two different cyclone cut offs were installed at the inlet of an aethalometer. The BC mass concentration in TSP, PM10, and PM2.5 were obtained. The results indicated that in winter aerosol, 90% of BC exited in PM10 and 82.6% of BC exited in PM2.5. The BC in PM10 accounted for 5.11% of the PM10 mass. Translated from Acta Scientiae Circumstantiae, 2005, 25(1): 17–22 [译自: 环境科学学报]  相似文献   

18.
我国钢铁工业一次颗粒物排放量估算   总被引:2,自引:0,他引:2  
针对我国钢铁工业生产工艺以及颗粒物控制技术的分类,建立了一个细化到排放节点的自下而上的颗粒物排放模型.结合我国钢铁工业各地区活动水平以及颗粒物控制技术分布的历史变化趋势分析,利用此模型计算了2006—2012年我国钢铁工业一次颗粒物的排放系数和排放量.模型计算结果显示,2006年以来,我国钢铁工业颗粒物控制水平不断提高,PM_(2.5)、PM_(2.5)~10和PM10的排放系数分别降低了21.2%、19.3%和19.0%.钢铁工业一次颗粒物排放量在2006—2011年间持续增长,2011年TSP排放量为602×104t,PM10排放量为200×104t,PM_(2.5)排放量为124×104t;2012年排放量出现下降,TSP排放量为561×104t,PM10排放量为187×104t,PM_(2.5)排放量为116×104t.2012年我国钢铁工业一次PM_(2.5)排放量中的有组织排放占39.5%,无组织排放占60.5%;除加严有组织源管控之外,减少颗粒物无组织排放,对于钢铁工业颗粒物排放控制也非常重要.我国钢铁工业颗粒物排放量分布不均衡,河北、山东、江苏、辽宁、山西5个省的排放超过全国总排放的50%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号