首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Abstract

Artificially contaminated (spiked) natural soils were solidified/stabilized using various combinations of commonly used additives, such as lime, cement, fly ash, activated carbon, and silica fume. The effectiveness of the solidification/stabilization (S/S) processes was evaluated based on experimental findings from compaction testing, unconfined compressive shear strength, and X-ray diffraction (XRD). Correlations of limited reliability between unconfined compressive strength and penetrometer and torvane measurements were derived. Results from XRD experiments indicated that certain organic contaminants (i.e., naphthalene and pyrene) might impact the S/S processes for a given combination of additives. The type and amount of organic contaminants also affected the pozzolanic reactions. Specifically, the absence or small peak intensity of pozzolanic product XRD patterns for a given combination of additives was a good indication that the type and the amount of organic contaminant present inhibited pozzolanic reactions. This phenomenon was tested and confirmed for actual field-contaminated samples.  相似文献   

2.
针对现有污泥固化技术存在的固化养护时间长、低温条件下固化效能低等问题。研究提出污泥快速(3 d)固化技术,采用响应曲面分析方法,重点考察了石灰、组分A、硅酸盐水泥、粉煤灰和温度等5因素对固化效能的综合影响,研究结果表明,石灰、组分A、硅酸盐水泥、粉煤灰和养护温度等因素对3 d固化体的无侧限抗压强度和含水率的线性效应显著,石灰和组分A、石灰和养护温度对无侧限抗压强度的交互影响显著,石灰和粉煤灰、组分A和养护温度、硅酸盐水泥和粉煤灰对含水率的交互影响显著;得出了5因素对固化体3 d无侧限抗压强度和含水率影响的定量模型,可对污泥快速固化进行优化和预测;并利用XRD和SED对污泥固化块的化学成分和微观结构进行了分析。  相似文献   

3.
This paper reports on recycling of industrial wastes (three pharmaceutical industrial sludges) into environmental friendly value-added materials. Stabilization/Solidification (S/S or bricks) process was applied to make a safer way for the utilization of pharmaceutical waste. The additives in this study include binders (cement, lime and bentonite) and strengthening material (pulverized fuel ash (PFA), silica fume and quarry dust) was used at different compositions. Bricks were cured for 28 days, and the following analysis-like compressive strength, leachability of heavy metals, mineralogical phase identity by X-ray diffraction (XRD) spectroscopy, Fourier transform infrared spectroscopy (FTIR) and thermal behaviour by thermogravimetric-differential thermal analysis (TG-DTA) had done. All the bricks were observed to achieve the standard compressive strength as required for construction according to BIS standards. Metal concentration in the leachate has reached the dischargeable limits according to Brazilian standards. Results of this study demonstrate that production of bricks is a promising and achievable productive use of pharmaceutical sludge.  相似文献   

4.
针对现有污泥固化技术存在的固化养护时间长、低温条件下固化效能低等问题。研究提出污泥快速(3d)固化技术,采用响应曲面分析方法,重点考察了石灰、组分A、硅酸盐水泥、粉煤灰和温度等5因素对固化效能的综合影响,研究结果表明,石灰、组分A、硅酸盐水泥、粉煤灰和养护温度等因素对3d固化体的无侧限抗压强度和含水率的线性效应显著,石灰和组分A、石灰和养护温度对无侧限抗压强度的交互影响显著,石灰和粉煤灰、组分A和养护温度、硅酸盐水泥和粉煤灰对含水率的交互影响显著;得出了5因素对固化体3d无侧限抗压强度和含水率影响的定量模型,可对污泥快速固化进行优化和预测;并利用XRD和SED对污泥固化块的化学成分和微观结构进行了分析。  相似文献   

5.
Abstract

One technology Geld tested under the SITE demonstration program was stabilization-solidification. The HAZCON process was one of those tested. It treats hazardous wastes, consisting of both inorganic and organic contaminants, by mixing it with portland cement, water and a proprietary additive called Chloranan in a modified cement mixer to produce a concrete mass. In evaluating the technology during the demonstration, two major criteria were investigated by using existing laboratory tests. These criteria were mobility of the contaminants before and after treatment and the long-term effect on mobility, and durability of the solidified masses. The former criteria was evaluated using various leaching tests, primarily the Toxicity Characteristic Leaching Procedure (TCLP) and permeability. The durability criteria was determined from weathering tests, wet-dry and freezethaw, unconfined compressive strength, microstructural analyses and sampling the prepared blocks from the demonstration twice at 9-month intervals. This paper describes the results of the field sampling performed 9 and 18 months after the initial field demonstration and relates it to the results obtained during the demonstration.

According to the data, little or no change in the chemical and physical properties of the blocks occurred. The technology is capable of immobilizing heavy metals. The organics were not immobilized and the treated material appears quite durable.  相似文献   

6.
This study investigates the pozzolanic reactions and compressive strength of the blended cement manufactured using synthetic slag obtained from municipal solid waste incinerator (MSWI) cyclone ash and scrubber ash as partial replacement of portland cement. The synthetic slag was made by co-melting the MSWI scrubber ash and cyclone ash mixtures at 1400 degrees C for 30 min. Following pulverization, the different types of slag were blended with cement as cement replacement at ratios ranging from 10 to 40 wt %. The synthetic slag thus obtained was quantified, and the characteristics of the slag-blended cement pastes were examined. These characteristics included the pozzolanic activity, compressive strength, hydration activity, crystal phases, species, and microstructure at various ages. The 90-day compressive strength developed by slag-blended cement pastes with 10 and 20 wt % of the cement replaced by the synthetic slag outperformed ordinary portland cement by 1-7 MPa. X-ray diffraction species analyses indicated that the hydrates in the slag-blended cement pastes were mainly portlandite, the calcium silicate hydrate gels, and calcium aluminate hydrate salts, similar to those found in ordinary portland cement paste. Differential thermal and thermogravimetric analysis also indicated that the slag reacted with portlandite to form calcium silicate hydrate gels.  相似文献   

7.
Fluidized-bed-combustion (FBC) ash is a by-product from a developing technology for coal-fired power plants that will economically reduce air emissions to meet requirements of the Clean Air Act. FBC ash has physical and chemical properties similar to Portland cement, but only has moderate success as a pozzolan in concrete applications due to low compressive strengths. However, FBC ash has proven effective for use as a binder for the solidification and stabilization (S/S) of metal-bearing sludges. Physical and chemical characterization procedures were used to analyze FBC ash and a metal-bearing sludge obtained from a hazardous waste treatment facility to develop 12 different S/S mix designs. The mix designs consist of four binder designs to evaluate sludge-to-binder ratios of approximately 0, 0.5, and 1. Portland cement is used as a control binder to compare unconfined compressive strengths and Toxicity Characteristic Leaching Procedure (TCLP) analyses from different ratios of the FBC ash streams: fly ash, char, and spent bed material (SBM). Compressive strengths ranging from 84 lbs per square inch (psi) to 298 psi were obtained from various mix designs containing different sludge-to-ash ratios cured for 28 days. All the mix designs passed the TCLP. Recoveries from leaching for each metal were less than 5% for most mix designs. Results of unconfined compressive strengths, TCLP, and percent recovery calculations indicate that the mix design containing approximately a 1:1 ratio of fly ash to char-and-sludge is the best mix design for the S/S of the metal-bearing sludge.  相似文献   

8.
污泥焚烧灰固化处理技术研究   总被引:1,自引:0,他引:1  
研究了硅酸盐水泥、高铝水泥、高岭土和β-萘系减水剂在污泥焚烧灰固化技术中的应用效果。考察了污泥焚烧灰固化块(以下简称固化块)的抗压强度,测定了固化块的重金属浸出毒性,并采用X射线衍射(XRD)和扫描电镜(SEM)分析固化块组成和微观结构。结果表明,4种物质对提高固化块的抗压强度均具有较好的效果,硅酸盐水泥、高铝水泥、高岭土和β-萘系减水剂的适宜掺量分别为10、30、20、1.0g(以100g污泥焚烧灰中掺加的质量计)。XRD和SEM分析结果显示,经固化处理后制得的固化块结构密实,存在石英(SiO2)、水化硅铝酸钙(CaAl2Si2O8)和水化硅酸铝钙(Ca2Al2SiO7)等物质,其中水化硅铝酸钙等凝胶物质有利于提高固化块的抗压强度。  相似文献   

9.
Cubukcuoglu B  Ouki SK 《Chemosphere》2012,86(8):789-796
This study aims to evaluate the potential of low grade MgO (LGMgO) for the stabilisation/solidification (S/S) of heavy metals in steel electric arc furnace wastes. Relevant characteristics such as setting time, unconfined compressive strength (UCS) and leaching behaviour assessed by acid neutralisation capacity (ANC), monolithic and granular leaching tests were examined in light of the UK landfill Waste Acceptance Criteria (WAC) for disposal. The results demonstrated that all studied mix designs with Portland cement type 1 (CEM1) and LGMgO, CEM1-LGMgO 1:2 and 1:4 at 40% and 70% waste addition met the WAC requirements by means of UCS, initial and final setting times and consistence. Most of the ANC results met the WAC limits where the threshold pH values without acid additions were stable and between 11.9 and 12.2 at 28 d.Granular leaching results indicate fixation of most of the metals at all mix ratios. An optimum ratio was obtained at CEM1-LGMgO 1:4 at 40% waste additions where none of the metals leaching exceeded the WAC limits and hence may be considered for landfill disposal.The monolithic leaching test results showed that LGMgO performed satisfactorily with respect to S/S of Zn, as the metal component present at the highest concentration level in the waste exhibited very little leaching and passed the leaching test requirement at all mix ratios studied. However, its performance with respect to Pb, Cd and Cr was less effective in reducing their leaching suggesting a higher cumulative rate under those leaching regimes.  相似文献   

10.
The use of kaolinite/zeolite mixtures as alternative landfill materials has been studied. The ratios of kaolinite/zeolite used were K/Z = 0.1, K/Z = 0.2 and K/Z = 0.3. To determine the geotechnical and physicochemical properties of the mixtures, their optimum moisture content, which provides the best compression out in the field, was determined by a compaction test. Also, tests for unconfined compression strength, hydraulic conductivity and consolidation were carried out. As a result, the optimum mixture was found to be K/Z = 0.2. To test the effect of contaminants, this optimum mixture was contaminated with Na, Ca, Pb, and Cu, and tests of the specific gravity, liquid and plastic limits, unconfined compression strength, consolidation, pH, and electrical conductivity were performed. It is concluded that the K/Z = 0.20 mixture has high absorption capacity and can be used in the landfill liner materials.  相似文献   

11.
In this paper the authors report on the results of case studies carried out under the sponsorship of the U.S. EPA to determine the effectiveness of four processes designed to reduce the amount of hazardous waste from plating operations. Data reported are based on the results of actual on-site sampling of the processes and encompass effectiveness, environmental, and economic considerations. Two of the case studies evaluating the use of sodium borohydride reduction as a substitute for lime/ferrous sulfate precipitation, found that the technology was a viable substitute in one case and was marginally acceptable in another. Another case study, involving carbon adsorption removal of organic contaminants from plating bath wastes, found that this technology significantly reduced both disposal costs and waste volume. A final case study of electrolytic recovery indicated that while acid copper electroplating rinses are amenable to electrolytic recovery, other metal-bearing rinses, such as those from solder (tin/lead) plating or etching are less appropriate.  相似文献   

12.
The reactivity of cement pastes made by blending Portland cement with slag from municipal solid waste incinerator (MSWI) fly ash was investigated to assess the potential of recycling MSWI fly ash slag. The slag, prepared by melting MSWI fly ash at 1400 degrees C for 30 min, was pulverized and ground, then blended with ordinary Portland cement (OPC), using various substitution levels to make slag-blended cement (SBC). The pozzolanic reactivity of the ecocement was then characterized by determining variations in the compressive strength, degree of hydration, microstructure, speciation, and mineralogical crystalline phases. The results suggest that the strength of the pastes at an early age decreased with increasing substitution levels, whereas the strength at a later age of the tested pastes (with substitution levels less than 10%) outperformed OPC paste because of typical SBC properties. The development of strength at a later age was also confirmed by X-ray diffraction and scanning electron microscopy techniques. This implies that active silica (Si) and alumina (Al) react with the hydration product, calcium hydroxide (Ca(OH)2), to form calcium silicate hydrate (C-S-H), which contributed to strength development at a later age by the filling up of pores in the SBC pastes. The pozzolanic activity of the SBC pastes indicates that it is suitable for use as a substitute for OPC in blended cement.  相似文献   

13.
皂土对CuCl2的吸附性能   总被引:1,自引:0,他引:1  
研究了CuCl2在荷结构负电荷皂土上的吸附性能,考察了pH、无机以及有机添加剂等因素的影响,并结合IR和XRD实验结果探讨了吸附机理。研究表明,皂土对CuCl2有很强的吸附能力,其吸附动力学和吸附等温线分别符合准二级速率方程和Langmuir方程。初始pH增大,吸附量增加。无机以及有机添加剂均能能明显抑制吸附。Cu2+在皂土上的吸附层在微观上可分为因化学键合作用而形成的内络合层和因静电作用而形成的外络合层。  相似文献   

14.
研究了CuCl2在荷结构负电荷皂土上的吸附性能,考察了pH、无机以及有机添加剂等因素的影响,并结合IR和XRD实验结果探讨了吸附机理。研究表明,皂土对CuCl2有很强的吸附能力,其吸附动力学和吸附等温线分别符合准二级速率方程和Langmuir方程。初始pH增大,吸附量增加。无机以及有机添加剂均能能明显抑制吸附。Cu2+在皂土上的吸附层在微观上可分为因化学键合作用而形成的内络合层和因静电作用而形成的外络合层。  相似文献   

15.
Abstract

The reactivity of cement pastes made by blending Portland cement with slag from municipal solid waste incinerator (MSWI) fly ash was investigated to assess the potential of recycling MSWI fly ash slag. The slag, prepared by melting MSWI fly ash at 1400 °C for 30 min, was pulverized and ground, then blended with ordinary Portland cement (OPC), using various substitution levels to make slag-blended cement (SBC). The pozzolanic reactivity of the ecocement was then characterized by determining variations in the compressive strength, degree of hydration, microstructure, speciation, and mineralogical crystalline phases. The results suggest that the strength of the pastes at an early age decreased with increasing substitution levels, whereas the strength at a later age of the tested pastes (with substitution levels less than 10%) outperformed OPC paste because of typical SBC properties. The development of strength at a later age was also confirmed by X-ray diffraction and scanning electron microscopy techniques. This implies that active silica (Si) and alumina (Al) react with the hydration product, calcium hydroxide (Ca(OH)2), to form calcium silicate hydrate (C-S-H), which contributed to strength development at a later age by the filling up of pores in the SBC pastes. The pozzolanic activity of the SBC pastes indicates that it is suitable for use as a substitute for OPC in blended cement.  相似文献   

16.
Cyclodextrins, especially random methylated betaCD (RAMEB) and hydroxypropyl betaCD (HPbetaCD), are becoming common enhancing additives in the bioremediation of soils formerly contaminated by hydrocarbons and/or other poorly bioavailable organic pollutants. Therefore, their degradation in the soil, particularly the most persistent RAMEB, has been of great concern. Like oil contaminants, these additives should be biodegradable via an environmentally safe technology. Hence, in this paper, the biodegradability of eight different cyclodextrins (CDs) in four different soils was examined under various treatment conditions in laboratory and pilot scale field experiments. This paper is the first report on the potential biological fate of CDs studied under a large variety of environmental conditions and in different soil ecosystems. Data on the potential relationship between CD biodegradation and the biological removal of hydrocarbons in the CD-amended contaminated soils are also given. All CDs were found to be more or less biodegradable; even the most persistent RAMEB was depleted from soils under favourable conditions. In the field experiments, the depletion of RAMEB to about 40% of its initial level was observed for a period of 2 years in hydrocarbon-contaminated soils of high organic matter and cell concentration.  相似文献   

17.
In November 1990, the Silicate Technology Corporation's (STC) proprietary process for treating soil contaminated with toxic semivolatile organic and inorganic contaminants was evaluated in a Superfund Innovative Technology Evaluation (SITE) field demonstration at the Selma Pressure Treating (SPT) wood preserving site in Selma, California. The SPT site was contaminated principally with pentachlorophenol (PCP) and arsenic, as well as lesser amounts of chromium and copper. Because of their importance when selecting a remedy for the site, PCP and arsenic were identified as critical analytes to evaluate the effectiveness of treatment.

Evaluation of STC's treatment process was based on contaminant mobility, measured by numerous leaching tests, and structural integrity of the solidified material, measured by physical, engineering, and morphological tests. An economic analysis was also performed, using cost information supplied by STC and supplemented by information generated during the demonstration.

Conclusions drawn from this SITE demonstration evaluation are: (1) the STC process can chemically stabilize contaminated soils similar to those at the Selma site that contain both semivolatile organic and inorganic contaminants; (2) PCP was successfully treated as demonstrated by total waste analysis; (3) heavy metals such as arsenic can be immobilized successfully based on various leach-test criteria; (4) the short-term physical stability of the treated waste was good, with unconfined compressive strengths (UCS) well above landfill solidification standards; (5) treatment resulted in a volume increase of 59 to 75 percent (68 percent average) and a slight increase in bulk density; and (6) the process is expected to cost approximately $190 to $360 per cubic yard when it is used to treat 15,000 cubic yards of waste similar to that found at the STC demonstration site, assuming that on-site, in-place disposal is performed.  相似文献   

18.
为了给河涌疏浚底泥的资源化提供技术支持,以广州市车陂涌表层受污染底泥为研究对象,用水泥、石灰、粉煤灰、膨润土等材料对底泥进行固化/稳定化处理实验。通过无侧限抗压强度、污染物在模拟自然条件下(中性)的释放特征、毒性浸出实验(酸性条件)对固化/稳定化处理效果进行综合分析。结果表明:经合适的处理后,固化体抗压强度能高于300 kPa;固化体自然条件下重金属的释放量明显减少,固化/稳定化处理能够有效减缓和减少固化体的二次污染;毒性浸出实验结果表明,河涌底泥经固化/稳定化处理后其重金属浸出能力显著降低。  相似文献   

19.
During the processing of antimony ore by pyrometallurgical methods, a considerable amount of slag is formed. This antimony waste slag is listed by the European Union as absolutely hazardous waste with a European Waste Catalogue code of 10 08 08. Since the levels of antimony and arsenic in the leachate of the antimony waste slag are generally higher than the landfilling limits, it is necessary to treat the slag before landfilling. In this study, stabilization/solidification and geopolymerization technologies were both applied in order to limit the leaching potential of antimony and arsenic. Different combinations of pastes by using Portland cement, fly ash, clay, gypsum, and blast furnace slag were prepared as stabilization/solidification or geopolymer matrixes. Sodium silicate–sodium hydroxide solution and sodium hydroxide solution at 8 M were used as activators for geopolymer samples. Efficiencies of the combinations were evaluated in terms of leaching and unconfined compressive strength. None of the geopolymer samples prepared with the activators yielded arsenic and antimony leaching below the regulatory limit at the same time, although they yielded high unconfined compressive strength levels. On the other hand, the stabilization/solidification samples prepared by using water showed low leaching results meeting the landfilling criteria. Use of gypsum as an additive was found to be successful in immobilizing the arsenic and antimony.
ImplicationsDespite the wide use of antimony for industrial purposes, disposal options for an antimony waste such as slag from thermal processing of antimony ore were not reported in the existing literature. This study aimed to develop a disposal strategy for the hazardous antimony waste slag. The findings of this study would contribute to understand the immobilization mechanisms of antimony and arsenic and will also be of interest to the owners of the antimony ore processing plants and to researchers investigating the efficiency of stabilization/solidification and geopolymerization technologies.  相似文献   

20.
A comparison between sludge ash and fly ash on the improvement in soft soil   总被引:2,自引:0,他引:2  
In this study, the strength of soft cohesive subgrade soil was improved by applying sewage sludge ash as a soil stabilizer. Test results obtained were compared with earlier tests conducted on soil samples treated with fly ash. Five different proportions of sludge ash and fly ash were mixed with soft cohesive soil, and tests such as pH value, compaction, California bearing ratio, unconfined compressive strength (UCS), and triaxial compression were performed to understand soil strength improvement because of the addition of both ashes. Results indicate that pH values increase with extending curing age for soil with sludge ash added. The UCS of sludge ash/soil were 1.4-2 times better than untreated soil. However, compressive strength of sludge ash/soil was 20-30 kPa less than fly ash/soil. The bearing capacities for both fly ash/soil and sludge ash/soil were five to six times and four times, respectively, higher than the original capacity. Moreover, the cohesive parameter of shear strength rose with increased amounts of either ash added. Friction angle, however, decreased with increased amounts of either ash. Consequently, results show that sewage sludge ash can potentially replace fly ash in the improvement of the soft cohesive soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号