首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Analysis of collection and recycling system of end-of-life batteries was examined. Relatively limited fractions of portable batteries were collected by EPR system. More effective and diverse collection pathways should be developed. Consumers increasingly have worn-out batteries as electrical and electronic equipment with new technical developments are introduced into the market and quickly replace older models. As a result, large amounts of end-of-life (EOL) or waste batteries are generated. Such batteries may contain a variety of materials that includes valuable resources as well as toxic elements. Thus, the proper recycling and management of batteries is very important from the perspective of resource conservation and environmental effect. The collection and recycling of EOL batteries is relatively low in South Korea compared to other countries, although an extended producer responsibility (EPR) policy was adopted for battery recycling in 2003. In this study, the management and material flow of EOL batteries is presented to determine potential problems and quantitative flow, based on literature review, site visits to battery recycling facilities, and interviews with experts in the Korea Battery Recycling Association (KBRA), manufacturers, and regulators in government. The results show that approximately 558 tons of manganese-alkaline batteries, the largest fraction among recycling target items, was disposed in landfills or incinerators in 2015, while approximately 2,000 tons of batteries were recovered at a recycling facility by simple sorting and crushing processes. By raising environmental awareness, more diverse and effective collection systems could be established for consumers to easily dispose of EOL batteries in many places. Producers, retailers and distributors in South Korea should also play an important role in the collection of EOL batteries from consumers. Lithium-ion batteries from many electronic devices must be included in the EPR system for resource recovery.  相似文献   

2.

Environmental and energy crises are a major threat to the sustainable growth of the human society, calling for greener technologies such as photocatalysis. Photocatalysis is a solar-driven approach that converts photon energy into chemical energy, yet the conversion efficacy of classical photocatalysis is usually restricted and controlled by the charge carrier’s separation and migration. Enhanced conversion requires suppressed recombination rate and superior redox abilities. From this aspect, the manipulation of heterojunction allows to overcome the drawback of classical photocatalysis. The cascade mechanism follows a dual direct charge migration route, resulting in enhanced redox abilities and efficient mineralization of pollutants. Here, we review photocatalytic material aspects in improving redox ability by cascade charge transfer. We describe the mechanisms and applications of three cascade systems: two type-II cascade systems, mediator-based cascade systems, and dual direct Z-scheme. We highlight the superiority of the direct dual cascade route with a prolonged lifetime of carriers, higher quantum yield, and enhanced redox abilities. Applications to carbon dioxide reduction, hydrogen production by water splitting and pollutant degradation are discussed.

  相似文献   

3.

The global shift from a fossil fuel-based to an electrical-based society is commonly viewed as an ecological improvement. However, the electrical power industry is a major source of carbon dioxide emissions, and incorporating renewable energy can still negatively impact the environment. Despite rising research in renewable energy, the impact of renewable energy consumption on the environment is poorly known. Here, we review the integration of renewable energies into the electricity sector from social, environmental, and economic perspectives. We found that implementing solar photovoltaic, battery storage, wind, hydropower, and bioenergy can provide 504,000 jobs in 2030 and 4.18 million jobs in 2050. For desalinization, photovoltaic/wind/battery storage systems supported by a diesel generator can reduce the cost of water production by 69% and adverse environmental effects by 90%, compared to full fossil fuel systems. The potential of carbon emission reduction increases with the percentage of renewable energy sources utilized. The photovoltaic/wind/hydroelectric system is the most effective in addressing climate change, producing a 2.11–5.46% increase in power generation and a 3.74–71.61% guarantee in share ratios. Compared to single energy systems, hybrid energy systems are more reliable and better equipped to withstand the impacts of climate change on the power supply.

  相似文献   

4.
Energy and environment are major global issues inducing environmental pollution problems. Energy generation from conventional fossil fuels has been identified as the main culprit of environmental quality degradation and environmental pollution. In order to address these issues, nanotechnology plays an essential role in revolutionizing the device applications for energy conversion and storage, environmental monitoring, as well as green engineering of environmental friendly materials. Carbon nanotubes and their hybrid nanocomposites have received immense research attention for their potential applications in various fields due to their unique structural, electronic and mechanical properties. Here, we review the applications of carbon nanotubes (1) in energy conversion and storage such as in solar cells, fuel cells, hydrogen storage, lithium ion batteries and electrochemical supercapacitors, (2) in environmental monitoring and wastewater treatment for the detection and removal of gas pollutants, pathogens, dyes, heavy metals and pesticides and (3) in green nanocomposite design. Integration of carbon nanotubes in solar and fuel cells has increased the energy conversion efficiency of these energy conversion applications, which serve as the future sustainable energy sources. Carbon nanotubes doped with metal hydrides show high hydrogen storage capacity of around 6?wt% as a potential hydrogen storage medium. Carbon nanotubes nanocomposites have exhibited high energy capacity in lithium ion batteries and high specific capacitance in electrochemical supercapacitors, in addition to excellent cycle stability. High sensitivity and selectivity towards the detection of environmental pollutants are demonstrated by carbon nanotubes based sensors, as well as the anticipated potentials of carbon nanotubes as adsorbent to remove environmental pollutants, which show high adsorption capacity and good regeneration capability. Carbon nanotubes are employed as reinforcement material in green nanocomposites, which is advantageous in supplying the desired properties, in addition to the biodegradability. This article presents an overview of the advantages imparted by carbon nanotubes in electrochemical devices of energy applications and green nanocomposites, as well as nanosensor and adsorbent for environmental protection.  相似文献   

5.
中国废电池管理对策分析   总被引:15,自引:0,他引:15  
针对废电池管理体系中存在的管理法规不完善,回收体系不健全,适宜的管理运行机制等问题,探讨了如何加强废电池环境无割化管理的方法,提出加强管理法规建设、完善废电池自愿、强制回收体系、  相似文献   

6.
Zn-air batteries (ZABs), especially the secondary batteries, have engrossed a great interest because of its high specific energy, economical and high safety. However, due to the insufficient activity and stability of bifunctional electrocatalysts for air-cathode oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) processes, the practical application of rechargeable ZABs is seriously hindered. In the effort of developing high active, stable and cost-effective electrocatalysts, transition metal nitrides (TMNs) have been regarded as the candidates due to their high conductivity, strong corrosion-resistance, and bifunctional catalytic performance. In this paper, the research progress in TMNs-based material as ORR and OER electrocatalysts for ZABs is discussed with respect to their synthesis, chemical/physical characterization, and performance validation/optimization. The surface/interface nanoengineering strategies such as defect engineering, support binding, heteroatom introduction, crystal plane orientation, interface construction and small size effect, the physical and chemical properties of TMNs-based electrocatalysts are emphasized with respect to their structures/morphologies, composition, electrical conductivity, specific surface area, chemical stability and corrosion resistance. The challenges of TMNs-based materials as bifunctional air-cathode electrocatalysts in practical application are evaluated, and numerous research guidelines to solve these problems are put forward for facilitating further research and development.  相似文献   

7.
Modeling joint production of wildlife and timber   总被引:2,自引:0,他引:2  
Production of marketed commodities and protection of natural systems often conflict. A focus on only one goal can result in large losses in other goals and may result in inefficient and unsustainable outcomes. In this paper, we develop a method that combines economic and ecological models in a dynamic and spatial analysis to evaluate land use decisions and find cost-effective alternatives for which it is not possible to do better on one objective without harming another objective. The method is demonstrated using timber production and species conservation on a forested landscape over a 100-year planning horizon. Current land use strategies are simulated and compared with cost-effective alternatives. The approach is compared to a static reserve approach, similar to previous studies, and found to produce substantially more efficient management strategies for the case study landscape.  相似文献   

8.

Global industrialization and excessive dependence on nonrenewable energy sources have led to an increase in solid waste and climate change, calling for strategies to implement a circular economy in all sectors to reduce carbon emissions by 45% by 2030, and to achieve carbon neutrality by 2050. Here we review circular economy strategies with focus on waste management, climate change, energy, air and water quality, land use, industry, food production, life cycle assessment, and cost-effective routes. We observed that increasing the use of bio-based materials is a challenge in terms of land use and land cover. Carbon removal technologies are actually prohibitively expensive, ranging from 100 to 1200 dollars per ton of carbon dioxide. Politically, only few companies worldwide have set climate change goals. While circular economy strategies can be implemented in various sectors such as industry, waste, energy, buildings, and transportation, life cycle assessment is required to optimize new systems. Overall, we provide a theoretical foundation for a sustainable industrial, agricultural, and commercial future by constructing cost-effective routes to a circular economy.

  相似文献   

9.
Ascendency is an index of activity and organization in living systems calculated in terms of flows. The concern here is with how that quantity behaves when the flows in question are measured in terms of eco-exergy. The storage of eco-exergy has served as a goal function in assessing parameter values for structurally dynamic models, but network magnitudes and topologies can change in response to significant changes in the forcing functions. As storages are relatively insensitive to such changes, it is advisable in such cases to explore how changes in a flow variable, like ascendency, might capture network adaptations. It happens that changes in ascendency calculated in terms of flows of simple energy are small in comparison to corresponding variations in the storages of eco-exergy. But when ascendency is reckoned in terms of flows of eco-exergy, its changes in response to network changes are more comparable to those in the storages. Ascendency seems to be more sensitive to changes in flow topology, however, so that a combination of eco-exergy storage and eco-exergy ascendency would probably be most appropriate for situations where changes in flow topology are significant.  相似文献   

10.
The Reynolds transport theorem (RTT) from mathematics and engineering has a rich history of success in mass transport dynamics and traditional thermodynamics. This paper introduces RTT as a complementary approach to traditional compartmental methods used in ecological modeling and network analysis. A universal system equation for a generic flow quantity is developed into a generic open-system differential expression for conservation of energy. Nonadiabatic systems are defined and incorporated into control volume (CV) and control surface (CS) perspectives of RTT where reductive assumptions in empirical data are then formally introduced, reviewed, and appropriately implemented. Compartment models are abstract, time-dependent systems of simultaneous differential equations describing storage and flow of conservative quantities between interconnected entities (the compartments). As such, they represent a set of flexible and somewhat informal, assumptions, definitions, algebraic manipulations, and graphical depictions subject to influence and selectively parsed expression by the modeler. In comparison, RTT compartment models are more rigorous and formal integro-differential equations and graphics initiated by the RTT universal system equation, forcing an ordered identification of simplifying assumptions, ending with clearly identified depictions of the transfer and transport of conservative substances in physical space and time. They are less abstract in the rigor of their equation development leaving less ambiguity to modeler discretion. They achieve greater consistency with other RTT compartment style models while possibly generating greater conformity with physical reality. Characteristics of the RTT approach are compared with those of a traditional compartment model of energy flow in an intertidal oyster-reef community.  相似文献   

11.
Environmental Chemistry Letters - Efficient materials for energy storage, in particular for supercapacitors and batteries, are urgently needed in the context of the rapid development of...  相似文献   

12.
Redox conditions in paddy soils may vary as they are submerged and drained during rice growth. This change may bring about reductive dissolution of iron (Fe) oxides and subsequent formation of secondary Fe-bearing minerals in rice paddies. The mobility and bioavailability of metal contaminants such as cadmium (Cd) in paddy soils are closely related to the chemical behaviors of Fe. Therefore, in this paper, advances in the study of paddy Fe redox transformations and their effects on Cd availability to rice are briefly reviewed. Current concepts presented in this review include the forms of Fe in paddy soils, the reactions involved in Fe oxidation-reduction, chemical factors affecting Fe redox processes, Cd availability to rice and the impacts of Fe transformation on Cd uptake and translocation in rice. Prospects for future research in this area are also discussed.  相似文献   

13.
Perspectives on the challenge posed by potential future climate change are presented including a discussion of prospects for carbon capture followed either by sequestration or reuse including opportunities for alternatives to the use of oil in the transportation sector. The potential for wind energy as an alternative to fossil fuel energy as a source of electricity is outlined including the related opportunities for cost effective curtailment of future growth in emissions of CO2.  相似文献   

14.
Nanomaterials may help to solve issues such as water availability, clean energy generation, control of drug-resistant microorganisms and food safety. Here we review innovative approaches to solve these issues using nanotechnology. The major topics discussed are wastewater treatment using carbon-based, metal-based and polymeric nanoadsorbents for removing organic and metal contaminants; nanophotocatalysis for microbial control; desalination of seawater using nanomembranes; energy conversion and storage using solar cells and hydrogen-sorbents nanostructures; antimicrobial properties of nanomaterials; smart delivery systems; biocompatible nanomaterials such as nanolignocellulosis and starches-based materials, and methods to decrease the toxicity of nanomaterials. Significantly, here it is reviewed two ways to palliate nanomaterials toxicity: (a) controlling physicochemical factors affecting this toxicity in order to dispose of more safe nanomaterials, and (b) harnessing greener synthesis of them to bring down the environmental impact of toxic reagents, wastes and byproducts. All these current challenges are reviewed at the present article in an effort to evaluate environmental implications of nanomaterials technology by means of a complete, reliable and critical vision.  相似文献   

15.

Access to drinkable water is becoming more and more challenging due to worldwide pollution and the cost of water treatments. Water and wastewater treatment by adsorption on solid materials is usually cheap and effective in removing contaminants, yet classical adsorbents are not sustainable because they are derived from fossil fuels, and they can induce secondary pollution. Therefore, biological sorbents made of modern biomass are increasingly studied as promising alternatives. Indeed, such biosorbents utilize biological waste that would otherwise pollute water systems, and they promote the circular economy. Here we review biosorbents, magnetic sorbents, and other cost-effective sorbents with emphasis on preparation methods, adsorbents types, adsorption mechanisms, and regeneration of spent adsorbents. Biosorbents are prepared from a wide range of materials, including wood, bacteria, algae, herbaceous materials, agricultural waste, and animal waste. Commonly removed contaminants comprise dyes, heavy metals, radionuclides, pharmaceuticals, and personal care products. Preparation methods include coprecipitation, thermal decomposition, microwave irradiation, chemical reduction, micro-emulsion, and arc discharge. Adsorbents can be classified into activated carbon, biochar, lignocellulosic waste, clays, zeolites, peat, and humic soils. We detail adsorption isotherms and kinetics. Regeneration methods comprise thermal and chemical regeneration and supercritical fluid desorption. We also discuss exhausted adsorbent management and disposal. We found that agro-waste biosorbents can remove up to 68–100% of dyes, while wooden, herbaceous, bacterial, and marine-based biosorbents can remove up to 55–99% of heavy metals. Animal waste-based biosorbents can remove 1–99% of heavy metals. The average removal efficiency of modified biosorbents is around 90–95%, but some treatments, such as cross-linked beads, may negatively affect their efficiency.

  相似文献   

16.
Heavy metals and soil microbes   总被引:1,自引:0,他引:1  
Heavy metal pollution is a global issue due to health risks associated with metal contamination. Although many metals are essential for life, they can be harmful to man, animal, plant and microorganisms at toxic levels. Occurrence of heavy metals in soil is mainly attributed to natural weathering of metal-rich parent material and anthropogenic activities such as industrial, mining, agricultural activities. Here we review the effect of soil microbes on the biosorption and bioavailability of heavy metals; the mechanisms of heavy metals sequestration by plant and microbes; and the effects of pollution on soil microbial diversity and activities. The major points are: anthropogenic activities constitute the major source of heavy metals in the environment. Soil chemistry is the major determinant of metal solubility, movement and availability in the soil. High levels of heavy metals in living tissues cause severe organ impairment, neurological disorders and eventual death. Elevated levels of heavy metals in soils decrease microbial population, diversity and activities. Nonetheless, certain soil microbes tolerate and use heavy metals in their systems; as such they are used for bioremediation of polluted soils. Soil microbes can be used for remediation of contaminated soils either directly or by making heavy metals bioavailable in the rhizosphere of plants. Such plants can accumulate 100 mg g?1 Cd and As; 1000 mg g?1 Co, Cu, Cr, Ni and 10,000 mg g?1 Pb, Mn and Ni; and translocate metals to harvestable parts. Microbial activity changes soil physical properties such as soil structure and biochemical properties such as pH, soil redox state, soil enzymes that influence the solubility and bioavailability of heavy metals. The concept of ecological dose (ED50) and lethal concentration (LC50) was developed in response to the need to easily quantify the influence of pollutants on microbial-mediated ecological processes in various ecosystems.  相似文献   

17.
• Mechanisms for selective recovery of materials in electrochemical processes are discussed. • Wastewaters that contain recoverable materials are reviewed. • Application prospects are discussed from both technical and non-technical aspects. Recovering valuable materials from waste streams is critical to the transition to a circular economy with reduced environmental damages caused by resource extraction activities. Municipal and industrial wastewaters contain a variety of materials, such as nutrients (nitrogen and phosphorus), lithium, and rare earth elements, which can be recovered as value-added products. Owing to their modularity, convenient operation and control, and the non-requirement of chemical dosage, electrochemical technologies offer a great promise for resource recovery in small-scale, decentralized systems. Here, we review three emerging electrochemical technologies for materials recovery applications: electrosorption based on carbonaceous and intercalation electrodes, electrochemical redox processes, and electrochemically induced precipitation. We highlight the mechanisms for achieving selective materials recovery in these processes. We also present an overview of the advantages and limitations of these technologies, as well as the key challenges that need to be overcome for their deployment in real-world systems to achieve cost-effective and sustainable materials recovery.  相似文献   

18.
The utility of systems diagrams and of energy as a unit of measure for environmental impact assessment is illustrated using results from the White Sands Missile Range, New Mexico Environmental Impact Statement. A set of procedures for developing and evaluating the diagrams is given and applied to White Sands. The utility of results obtained using this method is compared to those obtained from other methods, and the inadequacies of each are discussed.These procedures guide data collection; organize and summarize data; make explicit interactions between the environment and the “proposed project”; place various kinds of impacts and alternatives in perspective with each other and with the entire system; identify components of a macroscale system which need microscale analysis; and permit quantification of total impact and quantitative comparisons of impact types, of alternatives, and of environmental control strategies. The procedures do not guarantee that important impacts have not been overlooked, do not deal with so called aesthetic impacts, and do not guarantee that the appropriate system boundary has been chosen.Impacts at White Sands were evaluated at two system levels of detail. At a macroscale, five types of impacts resulting from missile range activities were analyzed. Results indicated that stresses on the environment caused by those activities represent 1.0% of the natural energy flow through the system. At a more detailed level of analysis, the effect of water consumption by the Missile Range on the aquifer from which the water is obtained was analyzed by means of a hydrologic model. Model simulations indicated that salt water intrusion into the aquifer was eminent and identified two aquifer management strategies that could prevent that intrusion.  相似文献   

19.
Separate collection and exploitation of used batteries facilates the recycling and eventual waste management of such heavy metals as mercury and cadmium. It is thereby possible to regain raw materials like zinc, manganese and iron for the raw material cycle. Although the collection and recycling of used batteries in Switzerland is financed by a prepaid disposal fee, their returning rate of almost 60% is too low for several reasons. A questionnaire survey carried out on 2000 households revealed the following frequenthy: People collecting paper, glass, aluminium, compost and tinplate, are more separate used batteries from ordinary garbage. The number of collecting points is supposed to be sufficient, but not all of them are sufficiently marked. The prepaid disposal fee (VEG) should become obligatory so that it would be possible to compensate the collecting points. It is not obvious from the results of the survey if the introduction of a deposit of batteries would raise the retourning rate. As far as advertising is concerned, only the “battery bag” sent to every household by the BESO seemed to influence the collecting behaviour in a positive way, poster advertising had only little effect. Appeals in newspapers, radio and television did not show any changement of the collecting behaviour. However, information and knowledge about batteries and their recycling do have a positive influence in the collecting behaviour of the consumers in this specific case.  相似文献   

20.
● IEM ion/ion selectivities of charge, valence, & specific ion are critically assessed. ● Ion/molecule selectivities of ion/solvent and ion/uncharged solute are reviewed. ● Approaches to advance the selectivities through sorption and migration are analyzed. ● The permeability-selectivity tradeoff appears to be pervasive. ● Ion/molecule selectivities are comparatively underdeveloped and poorly understood. Ion-exchange membranes (IEMs) are utilized in numerous established, emergent, and emerging applications for water, energy, and the environment. This article reviews the five different types of IEM selectivity, namely charge, valence, specific ion, ion/solvent, and ion/uncharged solute selectivities. Technological pathways to advance the selectivities through the sorption and migration mechanisms of transport in IEM are critically analyzed. Because of the underlying principles governing transport, efforts to enhance selectivity by tuning the membrane structural and chemical properties are almost always accompanied by a concomitant decline in permeability of the desired ion. Suppressing the undesired crossover of solvent and neutral species is crucial to realize the practical implementation of several technologies, including bioelectrochemical systems, hypersaline electrodialysis desalination, fuel cells, and redox flow batteries, but the ion/solvent and ion/uncharged solute selectivities are relatively understudied, compared to the ion/ion selectivities. Deepening fundamental understanding of the transport phenomena, specifically the factors underpinning structure-property-performance relationships, will be vital to guide the informed development of more selective IEMs. Innovations in material and membrane design offer opportunities to utilize ion discrimination mechanisms that are radically different from conventional IEMs and potentially depart from the putative permeability-selectivity tradeoff. Advancements in IEM selectivity can contribute to meeting the aqueous separation needs of water, energy, and environmental challenges.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号