首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Major bleaching events can lead to increased thermal tolerance in corals   总被引:3,自引:1,他引:2  
Climate change is a major threat to coral reef ecosystems worldwide. A key determinant of the fate of reef corals in a warming climate is their capacity to tolerate increasing thermal stress. Here, an increase in thermal tolerance is demonstrated for three major coral genera (Acropora, Pocillopora and Porites) following the extensive mass bleaching event that occurred on the Great Barrier Reef (Australia) in 1998. During the subsequent and more severe thermal stress event in 2002, bleaching severity was 30–100% lower than predicted from the relationship between severity and thermal stress in 1998, despite higher solar irradiances during the 2002 thermal event. Coral genera most susceptible to thermal stress (Pocillopora and Acropora) showed the greatest increase in tolerance. Although bleaching was severe in 1998, whole-colony mortality was low at most study sites. Therefore, observed increases in thermal tolerance cannot be explained by selective mortality alone, suggesting a capacity for acclimatization or adaptation. Although the vulnerability of coral reefs remains largely dependent on the rate and extent of climate change, such increase in thermal tolerance may delay the onset of mass coral mortalities in time for the implementation of low-emission scenarios and effective management.  相似文献   

2.
Colony size is an important life-history characteristic of corals and changes in colony size will have significant effects on coral populations. This study summarizes ∼21,000 haphazard colony size measurements of 26 common coral taxa (mostly coral genera) collected annually between 1992 and 2006 in seven Kenyan reef lagoons. There was a major coral bleaching and mortality event in early 1998 and all seven reefs were affected. The seven locations include two long-protected Marine National Parks (Malindi and Watamu), one relatively recently established park (Mombasa), and four unprotected locations (Vipingo, Kanamai, Ras Iwatine, and Diani). They span about 150 km and represent three distinct fishery management regimes: old protected (OP), newly protected (NP), and unprotected (UP). Seventeen taxa had statistically significant different sizes for comparisons of the management regimes, with only one genus, Pavona, having larger sizes in the unprotected reefs. The size of eight coral genera showed a significant time and management interaction, and size frequency differences that existed in management areas prior to 1998 were further increased after the bleaching event. Time alone was a significant factor for eleven genera, and in all cases colonies were smaller after 1998. For most taxa, colony size distributions were significantly skewed and had right-tailed distributions. After 1998, the right-tailed distributions of Acropora, Hydnophora, and Montipora were significantly reduced. Most taxa had peaky distributions and only Acropora experienced a statistically significant change from peaky to flat. The mean sizes of taxa were not related to their mortality across 1998, which indicates that the size effect was within rather than between taxa. Astreopora and Platygyra were well-sampled taxa that did not show an effect of management, but had reduced median sizes across 1998. Consequently, no taxa were tolerant of both fishing and bleaching disturbances and the combined effect was to reduce the size of all corals.  相似文献   

3.
Elevated sea surface temperatures in the late 1990s were associated with widespread coral mortality in the Arabian Gulf, particularly in Acropora dominated areas. This study investigates the composition, condition, and recruitment patterns of coral communities in Saih Al-Shaib, Dubai, United Arab Emirates, a decade after mass bleaching. Five statistically distinct communities were identified by cluster analysis, with grouping optimized from 17 significant indicator species. Overall, 25 species of scleractinian coral were observed, representing 35 ± 1.6% coral cover. Densities of recruits were low (0.8 ± 0.2 m−2), and composition generally reflected that of the surrounding adult community. Ten years after mass mortality, Acropora dominated assemblages were observed in three of the six sites examined and coral cover (41.9 ± 2.5%) was double post-bleaching cover. One shallow near-shore site appears to have had recovery of Acropora reset by a further bleaching event in 2002. However, the prevalence of young Acropora colonies here indicates that recovery may recur in several years. One area formerly dominated by Acropora is now dominated by faviids and poritids, with adult and juvenile composition suggesting this dominance shift is likely to persist. Porites lutea and Porites harrisoni dominated communities were negligibly impacted by the bleaching events, and the limited change in coral cover and composition in intervening years likely results from slow growth and low recruitment. Despite strong recovery of several dominant Acropora species, five formerly common species from this area were not observed suggesting local extinction. Dubai coral communities exhibit both resistance and resilience to elevated sea temperatures. The conservation of these patch reefs is warranted given the predicted increase in bleaching events, and the role that these communities may play in regional recovery.  相似文献   

4.
Coral reefs are under threat due to climate-mediated coral mortality, which affects some reef coral genera more severely than others. The impact this has on coral reef fish is receiving increasing attention, with one focal area assessing impacts on fish that feed directly on live coral. It appears that the more specialised a species of corallivore, the more susceptible it is to coral declines. However data are sparse for the Indian Ocean, and little is known about why some corals are preferentially fed upon over others. Here I assess feeding specialisation in three species of coral feeding butterflyfish in the Chagos Archipelago, central Indian Ocean, assess the food quality of the coral genera they target and document patterns of decline in the Seychelles following a severe coral mortality event. Cheatodon trifascialis was the most specialised coral feeder, preferentially selecting for Acropora corals, however, when Acropora was scarce, individuals showed considerable feeding plasticity, particularly for the dominant Pocillopora corals. C. trifasciatus also preferentially fed on Acropora corals, but fed on a much more diverse suite of corals and also displayed some selectivity for Porites. C. auriga is a facultative corallivore and consumed ∼55% live coral, which lies within the wide range of coral dependence reported for this species. C:N ratio analysis indicated Lobophyllia and Acropora have the highest food quality, with Pocillopora having the lowest, which conforms with diet selection of corallivores and helps explain preferential feeding. Obligate specialist feeders displayed the greatest declines through coral mortality in the Seychelles with obligate generalists also declining substantially, but facultative feeders showing little change. Clearly a greater understanding of the species most vulnerable to disturbance, their habitat requirements and the functional roles they play will greatly assist biodiversity conservation in a changing climate.  相似文献   

5.
Coral bleaching (the loss of symbiotic dinoflagellates from reef-building corals) is most frequently caused by high-light and temperature conditions. We exposed the explants of the hermatypic coral Stylophora pistillata to four combinations of light and temperature in late spring and also in late summer. During mid-summer, two NOAA bleaching warnings were issued for Heron Island reef (Southern Great Barrier Reef, Australia) when sea temperature exceeded the NOAA bleaching threshold, and a ‘mild’ (in terms of the whole coral community) bleaching event occurred, resulting in widespread S. pistillata bleaching and mortality. Symbiotic dinoflagellate biomass decreased by more than half from late spring to late summer (from 2.5×106 to 0.8×106 dinoflagellates cm2 coral tissue), and those dinoflagellates that remained after summer became photoinhibited more readily (dark-adapted F V : F M decreased to (0.3 compared with 0.4 in spring), and died in greater numbers (up to 17% dinoflagellate mortality compared with 5% in the spring) when exposed to artificially elevated light and temperature. Adding exogenous antioxidants (d-mannitol and l-ascorbic acid) to the water surrounding the coral had no clear effect on either photoinhibition or symbiont mortality. These data show that light and temperature stress cause mortality of the dinoflagellate symbionts within the coral, and that susceptibility to light and temperature stress is strongly related to coral condition. Photoinhibitory mechanisms are clearly involved, and will increase through a positive feedback mechanism: symbiont loss promotes further symbiont loss as the light microenvironment becomes progressively harsher.  相似文献   

6.
Extreme tidal events are one of the most predictable natural disturbances in marine benthic habitats and are important determinants of zonation patterns in intertidal benthic communities. On coral reefs, spring low tides are recurrent disturbances, but are rarely reported to cause mass mortality. However, in years when extremely low tides coincide with high noon irradiances, they have the potential to cause widespread damage. Here, we report on such an event on a fringing coral reef in the central Great Barrier Reef (Australia) in September 2005. Visual surveys of colony mortality and bleaching status of more than 13,000 corals at 14 reef sites indicated that most coral taxa at wave-protected sites were severely affected by the event. Between 40 and 75% of colonies in the major coral taxa (Acropora, Porites, Faviidae, Mussidae and Pocilloporidae) were either bleached or suffered partial mortality. In contrast, corals at wave-exposed sites were largely unaffected (<1% of the corals were bleached), as periodic washing by waves prevented desiccation. Surveys along a 1–9 m depth gradient indicated that high coral mortality was confined to the tidal zone. However, 20–30% of faviid colonies were bleached throughout the depth range, suggesting that the increase in benthic irradiances during extreme low tides caused light stress in deeper water. Analyses of an 8-year dataset of tidal records for the area indicated that the combination of extended periods of aerial exposure and high irradiances occurs during May–September in most years, but that the event in September 2005 was the most severe. We argue that extreme low-tide, high-irradiance events are important structuring forces of intertidal coral reef communities, and can be as damaging as thermal stress events. Importantly, they occur at a time of year when risks from thermal stress, cyclones and monsoon-associated river run-off are minimal.  相似文献   

7.
B. Riegl 《Marine Biology》2002,140(1):29-40
Two positive sea-surface temperature anomalies occurred in the Arabian Gulf in short sequence. Between May and August 1996 and 1998, sea-surface temperatures in the southern Arabian Gulf were elevated by 2°C above average. The consequences for coral fauna, coral diseases and coral regeneration were studied in Dubai (United Arab Emirates) between Jebel Ali and Ras Hasyan. In 1996, coral death was widespread, affecting primarily the genus Acropora. In Acropora-dominated areas, live coral cover was reduced from 90% to about 26% in 1996, while in 1998 only a reduction from 26% to 22% of the remaining coral cover occurred. In the study area, all six Acropora species suffered total mortality in 1996, thus the coral fauna was reduced from 34 species to 27. The nearest areas with surviving Acropora were 30 km to the east (Deira) and 20 km to the west (Al Jazira). Massive coral species suffered negligible mortality, and slowly increased in space cover. The Acropora overkill turned 7.9 km2 (19.7% of total coral-covered area) of previously lush coral gardens into a dead framework that was increasingly bioeroded. Acropora recruitment only started in 1998, average recruit size in 1999 was 7Dž cm, and recruits were rare. Prior to the mass mortality event, coral diseases were common and seasonal (14LJ% of corals, mainly Acropora, affected in summer, in winter 7Lj%, mainly massives), after the mortality event seasonality was lost and infection remained below winter levels (6LJ%, only massives infected). In fish, overall species richness decreased from 95 to 64 species in point counts, but frequency only decreased in one species (Pseudochromis persicus). Guild structure changed inasmuch as herbivores and planktivores increased, and invertivores decreased, although differences were not statistically significant. The most abundant family, both prior to and after the coral mass mortality, was Lutjanidae. It appears that even though much of the coral was dead, the maintenance of structural complexity allowed the fish assemblage to avoid a similar catastrophic change to that experienced by the coral assemblage.  相似文献   

8.
Coral spawning in Western Australia (WA) occurs predominantly in the austral autumn in contrast to the Great Barrier Reef (GBR) on Australia’s east coast where most spawning occurs in spring. Recent work, however, suggests a second spawning period in northern WA with at least 16 Acropora spp spawning in spring or early summer. This discovery has initiated a re-examination of reproductive seasonality in northern WA, particularly on inshore reefs adjacent to large development projects, such as the site of this study in Mermaid Sound, in the Dampier Archipelago. Three locally abundant taxa, Porites spp, Pavona decussata and Turbinaria mesenterina were sampled monthly from September 2006 to May 2007 to determine sexuality, the mode of reproduction and the time of gamete maturity. All three taxa were gonochoric broadcast spawners. Porites spp. colonies were mature in November and December, P. decussata in March and April. In contrast, most colonies of T. mesenterina contained mature gametes for up to 5 months beginning in November, suggesting either individuals are releasing gametes on multiple occasions, or they retain mature gametes for more than 1 month. Field surveys to determine the reproductive status of the remaining coral assemblage were conducted prior to the full moon in October 2006 and March 2007. Only four species contained mature gametes in October 2006. In contrast, 55 species contained mature gametes in March 2007. We conclude that the major spawning season of corals on shallow-inshore reefs in the Dampier Archipelago is autumn, although taxa that spawn in spring and summer include Porites spp., Acropora spp. and possibly T. mesenterina that are numerically dominant at many of these sites. Consequently, management initiatives to limit the exposure of coral spawn to stressors associated with coastal development may be required in up to five months per year.  相似文献   

9.
Considerable variability in bleaching was observed within and among soft coral taxa in the order Alcyonacea (Octocorallia: Cnidaria) on the central Great Barrier Reef (GBR, latitude 18.2°–19.0°S, longitude 146.4°–147.3°E) during the 1998 mass coral bleaching event. In April 1998, during a period of high sea surface temperatures, tissue samples were taken from bleached and unbleached colonies representative of 17 soft coral genera. The genetic identities of intracellular dinoflagellates (Symbiodinium spp.) in these samples were analyzed using PCR-denaturing gradient gel electrophoresis fingerprinting analysis of the internal transcribed spacer regions 1 and 2. Alcyonaceans from the GBR exhibited a high level of symbiont specificity for Symbiodinium types mostly in clade C. A rare clade D type (D3) was associated only with Clavularia koellikeri, while Nephthea sp. hosted symbionts in clade B (B1n and B36). Homogenous Symbiodinium clade populations were detected in all but one colony. Colonies that appeared bleached possessed symbiont types that were genetically indistinguishable from those in nonbleached conspecifics. These data suggest that parameters other than the resident endosymbionts such as host identity and colony acclimatization are important in determining bleaching susceptibility among soft corals. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
Dynamics of a coral reef community at Tiao-Shi Reef, southern Taiwan were studied using permanent transects to examine coral recovery and successive cascades to collapse stage resulting from chronic anthropogenic impacts and typhoons. Three distinct zones were recognized within a relatively small study area (250 m across) formerly dominated by large stands of branching Acropora corals. The first zone still retains the dominance of branching Acropora corals, although they show a significant decreasing tendency. The second zone exhibits recovery with a significant increase in branching Montipora stellata, which is recruited and grows faster than branching Acropora corals. The third zone is occupied by anemone, Condylactis sp., and demonstrates a stable phase of coral deterioration without recovery. Such differences in coral reef community dynamics within a small spatial scale illustrate mosaic dynamics which have resulted from degradation of the water quality, patchy mortality of large branching Acropora thickets caused by typhoons, the rapid asexual fragmentation and growth of M. stellata making it a successful colonizer, and occupation by anemone, Condylactis sp., together with unstable remnants of dead Acropora rubbles have not allowed coral recruits to survive.  相似文献   

11.
It is speculated that differences in coral bleaching susceptibility may be influenced by the genotype of in hospite Symbiodinium and their differential responses to bleaching stressors. Photoinhibition of photosystem II (PSII), damage to the D1 (psbA) PSII reaction centre protein and production of reactive oxygen species by in hospite Symbiodinium are likely precursors of coral bleaching. In order to assess whether photorepair rates of in hospite Symbiodinium underlie the bleaching susceptibility of their hosts, photoinhibition (net and gross), photoprotection and photorepair rates were assessed in a bleaching-‘tolerant’ coral (P. astreoides) and a bleaching-‘sensitive’ coral (M. faveolata) using non-invasive fluorometric techniques and by blocking de novo synthesis of psbA. Previous studies using such techniques have demonstrated that in vitro Symbiodinium types ‘sensitive’ to bleaching stressors had reduced rates of photorepair relative to ‘tolerant’ Symbiodinum types. Our measurements demonstrated that Symbiodinium in the more bleaching tolerant P. astreoides had higher photorepair rates than Symbiodinium in M. faveolata. Higher repair rates in P. astreoides resulted in lower net photoinhibition relative to M. faveolata, where both corals exhibited similar susceptibility to photodamage (gross photoinhibition). Photoprotective mechanisms were observed in both corals; M. faveolata exhibited higher antennae-bed quenching than P. astreoides at low-light intensities, but at and above light-saturating intensities, which are different for each coral species, P. astreoides displayed more efficient non-photochemical quenching (Stern–Volmer quenching) of chlorophyll fluorescence than M. faveolata. Increased NPQ by P. astreoides at E/E k ≥ 1 was not driven by antennae-bed quenching. The ability of in hospite Symbiodinium in P. astreoides to mitigate the effects of photoinhibition under high light conditions compared with Symbiodinium in M. faveolata, and their high repair capacity following photoinhibition, may be a key factor to consider in future bleaching studies and may underlie the relative bleaching tolerance of P. astreoides compared to M. faveolata.  相似文献   

12.
Mass coral bleaching events have occurred on a global scale throughout the worlds tropical oceans and can result in large-scale coral mortality and degradation of coral reef communities. Coral bleaching has often been attributed to periods of above normal seawater temperatures and/or calm conditions with high levels of ultraviolet radiation. Unusually high shallow-water temperature (>29°C) in Kaneohe Bay, Hawaii, USA, in late summer (20 August–9 September) and fall (1–7 October) of 1996 produced visible bleaching of two dominant corals, Porites compressa Dana, 1864 and Montipora verrucosa Dana, 1864. The present study examined chlorophyll a (chl a), total lipid concentrations, and lipid class composition in corals of both species in which the entire colony was non-bleached, moderately bleached, or bleached. Skeletal, host tissue, and algal symbiont 13C values were also measured in non-bleached and bleached colonies. In additional unevenly bleached colonies, paired samples were collected from bleached upper surfaces and non-bleached sides. Samples were collected on 20 November 1996 during the coral recovery phase, a time when seawater temperatures had been back to normal for over a month. Chl a levels were significantly lower in bleached colonies of both species compared with non-bleached specimens, and in bleached areas of unevenly bleached single colonies. Total lipid concentrations were significantly lower in bleached P. compressa compared with non-bleached colonies, whereas total lipid concentrations were the same in bleached and non-bleached M. verrucosa colonies. The proportion of triacylglycerols and wax esters was lower in bleached colonies of both species. Both bleached and non-bleached M. verrucosa had from ~17% to 35% of their lipids in the form of diacylglycerol, while this class was absent in P. compressa. 13C was not significantly different in the host tissue and algal symbiont fractions in non-bleached and bleached samples of either species. This suggests that the ratio of carbon acquired heterotrophically versus photosynthetically was the same regardless of condition. Skeletal 13C was significantly lower in bleached than in non-bleached corals. This is consistent with previous findings that lower rates of photosynthesis during bleaching results in lower skeletal 13C values. The two species in this study displayed different lipid class compositions and total lipid depletions following bleaching, suggesting that there is a difference in their metabolism of lipid reserves and/or in their temporal responses to bleaching and recovery.Communicated by J.P. Grassle, New Brunswick  相似文献   

13.
Microhabitat associations are considered to be important for juvenile survivorship and growth of coral reef fishes. The aim of the study was to quantify microhabitat associations between juvenile and adult white-streaked grouper Epinephelus ongus, which supports important fisheries in coral reef areas. Underwater observations revealed that most juveniles were found in bottlebrush Acropora spp., staghorn Acropora spp. and coral rubble and there was a significant positive use of bottlebrush Acropora spp. and a significant negative use of coral rubble. For adults, most individuals were found in bottlebrush Acropora spp. and staghorn Acropora spp., and there was a significant positive use of staghorn Acropora spp. and significant negative use of coral rubble. A habitat choice experiment by using pre-settlement individuals revealed that both bottlebrush Acropora spp. and staghorn Acropora spp. were used as settlement sites, whereas coral rubble was rarely used as a settlement site. Results of the study suggest that juvenile and adult E. ongus showed significantly positive microhabitat associations with bottlebrush Acropora spp. and staghorn Acropora spp., respectively, in the field. Bottlebrush Acropora spp. has smaller inter-branch spaces than staghorn Acropora spp., which could drive patterns of microhabitat associations. In addition, post-settlement processes such as predation may influence the spatial distribution of juveniles. Because Acropora corals are very susceptible to coral bleaching, we predict that rising temperatures from climate change will negatively impact populations of E. ongus.  相似文献   

14.
The high-latitude coral communities of southern Africa suffered minimal impacts during past mass bleaching events. Recent reports indicate an increase in bleaching frequency during the last decade, yet the actual levels of thermal stress and contributing factors in these bleaching events, and the degree of acclimatisation or adaptation on these reefs are poorly understood. During the 2005 warm-water anomaly in the southern Indian Ocean we conducted bleaching surveys and collected samples for genotyping of the algal symbiont communities at 21 sites in southern Mozambique and South Africa. Coral bleaching reached unprecedented levels and was negatively correlated with both latitude and water depths. Stylophora pistillata and Montipora were the most susceptible taxa, whereas three common branching corals had significantly different bleaching responses (Stylophora > Acropora > Pocillopora). Temperature records indicated that localised strong upwelling events coupled with persistent above-average seawater temperatures may result in accumulated thermal stress leading to bleaching. Symbiodinium in 139 scleractinian corals belonged almost exclusively to clade C, with clade D symbionts present in only 3% of the colonies. Two atypical C subclades were present in Stylophora and Pocillopora colonies and these were more abundant in shallow than deeper sites. Taxon-specific differences in bleaching responses were unrelated to different clades of algal symbionts and suggest that Symbiodinium C subtypes with diverse thermal tolerance, coupled with acclimatisation and morphology of the host colony influence the bleaching response. Additionally, the predominance of putatively thermal-sensitive Symbiodinium in southern African corals may reflect a limited experience of bleaching and emphasises the vulnerability of these reefs to moderate levels of thermal stress.  相似文献   

15.
The 184-m cargo ship "Bunga Teratai Satu" ran aground on Sudbury Reef, within the Great Barrier Reef Marine Park, on 2 November 2000. Although no cargo or fuel was lost, the ship remained aground for 12 days and a large quantity of antifoulant paint containing tributyltin (TBT), zinc, and copper was scraped from the hull during the grounding and subsequent refloating operation. This resulted in extensive contamination of the reef sediments for up to 250 m surrounding the grounding site. Two laboratory-based experiments assessed the impact of contaminated sediments on the survival of both newly settled corals of Acropora microphthalma and branchlets of A. formosa. Newly settled corals exposed to sediments containing 8.0 mg kg–1 TBT, 72 mg kg–1 Cu, and 92 mg kg–1 Zn or greater suffered significantly higher mortality after 72 h, compared to control or low-concentration treatments. Coral recruits exposed to 40 mg kg–1 TBT (Sn), 306 mg kg–1 Cu, and 403 mg kg–1 Zn were all killed within 38 h. Branchlets from adult corals exposed to sediments with a high concentration of contaminants (TBT 160 mg kg–1, Cu 1,180 mg kg–1, and Zn 1,570 mg kg–1) suffered significant mortality (38%), whereas branchlets placed in treatments with lower levels of contaminants suffered no mortality. Visual bleaching of the branchlets was observed at high contaminant levels, but an overall reduction in the symbiotic zooxanthellae populations was not observed in surviving corals. The photosynthetic yields of light-adapted zooxanthellae remained constant in live branchlets, indicating that the TBT-contaminated sediment may be more toxic to the host than the symbiont. Our results show that antifoulant contamination at ship-grounding sites has the potential to cause major mortality of resident coral communities and can have a negative impact on the recovery of adult populations.Communicated by P.W. Sammarco, Chauvin  相似文献   

16.
Mucus released by scleractinian corals can act as an important energy and nutrient carrier in coral reef ecosystems, and a distinct isotopic signature would allow following the fate of this material. This study investigates the natural C and N stable isotopic signatures of mucus released by four scleractinian coral genera (Acropora, Fungia, Pocillopora and Stylophora) in comparison with those of suspended particulate organic matter (POM) in seawater of a Northern Red Sea fringing coral reef near Aqaba, Jordan. The natural δ13C and δ15N signatures of coral mucus differed significantly from seawater POM for the majority of seasonal comparisons, but were inappropriate for explicit tracing of mucus in the coral reef food web. Thus, a labeling technique using stable isotope tracers (13C and 15N) was developed that produced δ13C values of up to 122 ± 5‰ (mean ± SE) and δ15N of up to 2,100 ± 151‰ in mucus exuded by Fungia corals. 13C and 15N-enriched compounds were rapidly (within 3 h) and light-dependently transferred from the endosymbiotic zooxanthellae to the mucus-producing coral host. The traceability of 15N-labeled mucus was examined by evaluating its uptake and potential utilization by epizoic acoelomorph Waminoa worms naturally occurring on a range of scleractinian coral taxa. This tracer experiment resulted in uptake of coral mucus by the coral-associated acoelomorphs and further demonstrated the possibility to trace stable isotope-labeled coral mucus by revealing a new trophic pathway in coral reef ecosystems.  相似文献   

17.
We model coral community response to bleaching and mass mortality events which are predicted to increase in frequency with climate change. The model was parameterized for the Arabian/Persian Gulf, but is generally applicable. We assume three species groups (Acropora, faviids, and Porites) in two life-stages each where the juveniles are in competition but the adults can enter a size-refuge in which they cannot be competitively displaced. An aggressive group (Acropora species) dominates at equilibrium, which is not reached due to mass mortality events that primarily disadvantage this group (compensatory mortality, >90% versus 25% in faviids and Porites) roughly every 15 years. Population parameters (N individuals, carrying capacity) were calculated from satellite imagery and in situ transects, vital rates (fecundity, mortality, and survival) were derived from the model, field observations, and literature. It is shown that populations and unaltered community structure can persist despite repeated 90% mortality, given sufficiently high fecundity of the remaining population or import from connected populations. The frequency of disturbance determines the dominant group—in low frequency Acropora, in high frequency Porites. This is congruent with field observations. The model of an isolated population was more sensitive to parameter changes than that of connected populations. Highest sensitivity was to mortality rate and recruitment rate. Community composition was sensitive to spacing of disturbances and level of catastrophic mortality. Decreased mortality led to Acropora dominance, increased mortality led to Acropora extinction. In nature, closely spaced disturbances have severely disadvantaged Acropora populations over the last decade. Unless a longer (>10 years) disturbance-free interval can be maintained, a permanent shift away from Acropora dominance will be observed. A mortality rate of 99% in Acropora, as observed in 1996, is not sustainable if repetitive and neither is a disturbance frequency <15 years—each leading to population collapse. This shows that the severity and/or the spacing of the 1996–1998–2002 disturbances were unusual in frequency and duration.  相似文献   

18.
The relationship between bleaching and mortality of common corals   总被引:1,自引:0,他引:1  
Reef corals are likely to have many subtle but four gross responses to anomalous warm water. These are (1) not bleach and live (mortality <10%), (2) not bleach and die (mortality >20%), (3) bleach and live, and (4) bleach and die. The frequency of these four possible gross responses was determined for 18 common coral taxa over an exceptionally warm 1998 El Niño where intense bleaching was observed, and mortality determined from line transects averaged 41.2±34.7 (±SD). Field studies included (1) recording the loss of color (bleaching) and observing recently dead individuals among 6,803 colonies during five sampling periods and (2) estimating mortality based on 180 m of line-intercept transects completed 4 months before and near the end of the bleaching episode. There was no clear relationship between the loss of color and either direct observation or transect-based estimates of mortality for the 18 taxa. The morphology of the taxa did not influence color loss but branching and encrusting taxa had higher mortality than massive and submassive taxa. Loss of color and mortality are the most common responses to warm water as only Pavona did not lose color or die and only two taxa, Cyphastrea and Millepora, did not significantly lose color but died. Of the 15 taxa that lost color, five taxa, Astreopora, Favia, Favites, Goniopora, and Leptoria, did not die. These taxa are those most likely to have reduced potential mortality by the loss of pigments and associated algal symbionts. Death of the branching taxa was detected reasonably by direct field observation but some taxa were underestimated when compared with mortality estimates based on line transects. Death of encrusting and massive taxa including Echinopora, Galaxea, Hydnophora, Montipora, Platygyra, and massive Porites was poorly detected from direct observations but they proved to have modest to high mortality (20–80%) based on line transects. There was no single response of these common corals to warm water but these data, collected during an extreme warm-water anomaly, indicate that the loss of color is most frequently a sign of morbidity, particularly for branching and encrusting taxa.Communicated by P.W. Sammarco, Chauvin  相似文献   

19.
Multispecies assemblages of the coral genus Acropora occur commonly throughout the Indo-Pacific Ocean. Nine species from such an assemblage comprising 41 species of Acropora, at Big Broadhurst Reef on the Great Barrier Reef, were studied during 1981–1983. Similarities and differences in reproductive modes and timing, oocyte dimensions and fecundity, recruitment by larvae and by fragments, and mortality were recorded. All species had an annual gametogenic cycle, were simultaneous hermaphrodites, and had the same arrangement of gonads in polyps. In six species, most colonies released gametes on the same night of the year, in early summer, during a mass spawning event involving many coral genera. A seventh species had colonies spawning at this as well as other times of the year. Another species spawned in late summer, and gametes were not observed to mature in the last species. Eggs were very large (601 to 728 m geometric mean diameter) and fecundity of polyps low, compared with other corals; no reduction in oocyte numbers occurred during oogenesis. Reef-flat species had slightly bigger and fewer eggs than reef-slope species. All species recruited by larvae, but four also multiplied by fragmentation, either year-round or during occasional rough weather. Yearround fragmenters had few larval recruits; non-fragmenters had many, and a rough-weather fragmenter had an intermediate number of larval recruits. It was concluded that larval recruitment largely determined species composition, and that reduced larval recruitment was responsible for sparse distribution of fragmenting species. Subsequent mortality in some species and increase by fragmentation in others probably determined relative abundances.  相似文献   

20.
Abstract:  Recent episodes of coral bleaching have led to wide-scale loss of reef corals and raised concerns over the effectiveness of existing conservation and management efforts. The 1998 bleaching event was most severe in the western Indian Ocean, where coral declined by up to 90% in some locations. Using fisheries-independent data, we assessed the long-term impacts of this event on fishery target species in the Seychelles, the overall size structure of the fish assemblage, and the effectiveness of two marine protected areas (MPAs) in protecting fish communities. The biomass of fished species above the size retained in fish traps changed little between 1994 and 2005, indicating no current effect on fishery yields. Biomass remained higher in MPAs, indicating they were effective in protecting fish stocks. Nevertheless, the size structure of the fish communities, as described with size-spectra analysis, changed in both fished areas and MPAs, with a decline in smaller fish (<30 cm) and an increase in larger fish (>45 cm). We believe this represents a time-lag response to a reduction in reef structural complexity brought about because fishes are being lost through natural mortality and fishing, and are not being replaced by juveniles. This effect is expected to be greater in terms of fisheries productivity and, because congruent patterns are observed for herbivores, suggests that MPAs do not offer coral reefs long-term resilience to bleaching events. Corallivores and planktivores declined strikingly in abundance, particularly in MPAs, and this decline was associated with a similar pattern of decline in their preferred corals. We suggest that climate-mediated disturbances, such as coral bleaching, be at the fore of conservation planning for coral reefs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号