首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study was conducted to examine perceptions of the farmers and key informants on the use of low-quality irrigation water for vegetable production in urban and peri-urban areas in Morogoro, Tanzania. The methods used to collect data were farmer surveys (n = 60), focus group discussions (n = 4) and key informants interviews (n = 15). The results showed that the respondents had a positive perception on using low-quality irrigation water for vegetable production. The reported benefits include availability of water throughout the year, highest soil and crop nutrients in irrigation water, less costs of buying commercial fertilizers, vegetable production all year round, sustainable income generation from selling vegetables and also jobs creation in the community among farmers and vegetable sellers. Findings from Mann–Whitney U test and Kruskal–Wallis test score on farmers perception scales indicate an association between the source of low-quality water used and the respondents’ sex. Accordingly, female farmers had higher positive perception on the benefits of low-quality water compared to male farmers. Higher perception score was also observed among farmers who used polluted river water in irrigation vegetable production compared to farmers who used wastewater. Since low-quality irrigation water is a good strategy of coping with scarcity of freshwater for communities which have no alternative source of irrigation water, the study recommends multi-sectorial agencies across the country to be involved in formulating policies and creating health promotion awareness for safe use of low-quality water for benefit maximization and health risk reduction.  相似文献   

2.
The Central Indian Highland landscape (CIHL) represents a complex, diverse, and highly human-modified system. Nearly half the landscape is cropland, yet it hosts 21 protected areas surrounded and connected by forests. Changing farming practices with increasing access to irrigation might alter this intensifying landscape in the near future particularly in light of weather variability. We analyzed a decade of remote sensing data for cropping patterns and climatic factors combined with census data for irrigation and demographic factors to understand winter cropping trajectories in the CIHL. We quantified ‘productive cropped area’ (PCA), defined as the area with planted crop that is green at the peak of the winter growing season. We find three primary trajectories in PCA—increasing, fluctuating, and decreasing. The most dominant trend is fluctuating PCA in two-thirds of the districts, ranging from ~2.11 million to ~3.73 million ha between 2001 and 2013, which is associated with village-level access to irrigation and local labor dynamics. In 58 % of all districts, clay soils were associated with winter cropping (p < 0.05). Increasing irrigation is associated with increased winter PCA in most (94 %) districts (p < 0.00001). We find strong negative association between PCA and land surface temperature (LST) in most (66 %) districts (p < 0.01). LST closely corresponds to daytime mean air temperature (p < 0.001) for available meteorological stations. Fine-scale meteorological and socioeconomic data, however, are needed to further disentangle impacts of these factors on PCA in this landscape.  相似文献   

3.
Best management practices, such as conservation tillage, the optimum level of irrigation, fertilization, are frequently used to reduce non-point source pollution from agricultural land and improve water quality. In this study, we used the soil and water assessment tool to model the impacts of different irrigation (adjusted to crop need), cropping and fertilization practices on total nitrogen loss. The economic impacts of these practices on crop net farm income were also evaluated. For this purpose, the model was calibrated through comparing model outputs with observations to ensure reliable hydrologic, crop yield and nitrate leaching simulations. The results showed that by reducing water or fertilizer or combination of both, we can reduce nitrate leaching. For wheat and corn, the best scenario was S1n1 (combination between reduction by 10 % of water and nitrogen fertilizer application, simultaneously) and S2n3 (combination of 20 and 30 % reduction in water and fertilizer application), respectively. These scenarios are both ecologically and economically desirable. Also, decreasing nitrogen fertilization by 50 % for corn would decrease the nitrate pollution from 101.1 to 32.3 kg N ha?1; therefore, this strategy is ecologically desirable but economically unsound. So, there are opportunities for environmental decision makers to encourage farmers to implement these strategies. Also, since the nitrogen leaching cannot decrease without a reduction in net farm income for crops such as corn; hence, the losses of farmers should be compensated.  相似文献   

4.
One of the targets of the United Nations ‘Millennium Development Goals’ adopted in 2000 is to cut in half the number of people who are suffering from hunger between 1990 and 2015. However, crop yield growth has slowed down in much of the world because of declining investments in agricultural research, irrigation, and rural infrastructure and increasing water scarcity. New challenges to food security are posed by accelerated climatic change. Considerable uncertainties remain as to when, where and how climate change will affect agricultural production. Even less is known about how climate change might influence other aspects that determine food security, such as accessibility of food for various societal groups and the stability of food supply. This paper presents the likely impacts of thermal and hydrological stresses as a consequence of projected climate change in the future potential agriculture productivity in South Asia based on the crop simulation studies with a view to identify critical climate thresholds for sustained food productivity in the region. The study suggests that, on an aggregate level, there might not be a significant impact of global warming on food production of South Asia in the short term (<2°C; until 2020s), provided water for irrigation is available and agricultural pests could be kept under control. The increasing frequency of droughts and floods would, however, continue to seriously disrupt food supplies on year to year basis. In long term (2050s and beyond), productivity of Kharif crops would decline due to increased climate variability and pest incidence and virulence. Production of Rabi crops is likely to be more seriously threatened in response to 2°C warming. The net cereal production in South Asia is projected to decline at least between 4 and 10% under the most conservative climate change projections (a regional warming of 3°C) by the end of this century. In terms of the reference to UNFCCC Article 2 on dangerous anthropogenic (human-induced) interference with the climate system, the critical threshold for sustained food productivity in South Asia appears to be a rise in surface air temperature of ~2°C and a marginal decline in water availability for irrigation or decrease in rainfall during the cropping season.  相似文献   

5.
Wheat (Triticum aestivum L.) is grown as a rainfed crop in the sub-mountainous region of the Punjab state of India, with low crop and water productivity. The present study aims to assess the effect of climate change scenario (A1B) derived from PRECIS—a regional climate model—on wheat yield and water productivity. After minimizing bias in the model climate data for mid-century (2021–2050), evapotranspiration (ET) and yield of wheat crop were simulated using Decision Support System for Agrotechnology Transfer, version 4.5, model. In the changed climate, increased temperature would cause reduction in wheat yield to the extent of 4, 32 and 61 % in the mid-century periods between 2021–2030, 2031–2040 and 2041–2050, respectively, by increasing water stress and decreasing utilization efficiency of photosynthetically active radiation. The decreases in crop water productivity would be 40, 56 and 76 %, respectively, which are caused by decreased yield and increased ET. Planting of wheat up to November 25 till the years 2030–2031 seems to be helpful to mitigate the climate change effect, but not beyond that.  相似文献   

6.
Reduced river runoff and expected upstream infrastructural developments are both potential threats to irrigation water availability for the downstream countries in Central Asia. Although it has been recurrently mentioned that a reduction in water supply will hamper irrigation in the downstream countries, the magnitude of associated economic losses, economy-wide repercussions on employment rates, and degradation of irrigated lands has not been quantified as yet. A computable general equilibrium model is used to assess the economy-wide consequences of a reduced water supply in Uzbekistan—a country that encompasses more than half of the entire irrigated croplands in Central Asia. Modeling findings showed that a 10–20 % reduction in water supply, as expected in the near future, may reduce the areas to be irrigated by 241,000–374,000 hectares and may cause unemployment to a population of 712–868,000, resulting in a loss for the national income of 3.6–4.3 %. A series of technical, financial, and institutional measures, implementable at all levels starting from the farm to the basin scale, are discussed for reducing the expected water risks. The prospects of improving the basin-wide water management governance, increasing water and energy use efficiency, and establishing the necessary legal and institutional frameworks for enhancing the introduction of needed technological and socioeconomic change are argued as options for gaining more regional water security and equity.  相似文献   

7.
The objective of this paper is to analyse the impacts of climate change on a pine forest stand in Central Siberia (Zotino) to assess benefits and risks for such forests in the future. We use the regional statistical climate model STARS to develop a set of climate change scenarios assuming a temperature increase by mid-century of 1, 2, 3 and 4 K. The process-based forest growth model 4C is applied to a 200-year-old pine forest to analyse impacts on carbon and water balance as well as the risk of fire under these climate change scenarios. The climate scenarios indicate precipitation increases mainly during winter and decreases during summer with increasing temperature trend. They cause rising forest productivity up to about 20 % in spite of increasing respiration losses. At the same time, the water-use efficiency increases slightly from 2.0 g C l?1 H2O under current climate to 2.1 g C l?1 H2O under 4 K scenario indicating that higher water losses from increasing evapotranspiration do not appear to lead to water limitations for the productivity at this site. The simulated actual evaporation increases by up to 32 %, but the climatic water balance decreases by up to 20 % with increasing temperature trend. In contrast, the risk of fire indicated by the Nesterov index clearly increases. Our analysis confirms increasing productivity of the boreal pine stand but also highlights increasing drought stress and risks from abiotic disturbances which could cancel out productivity gains.  相似文献   

8.
We used simple and explicit methods, as well as improved datasets for climate, crop phenology and yields, to address the association between variability in crop yields and climate anomalies in China from 1980 to 2008. We identified the most favourable and unfavourable climate conditions and the optimum temperatures for crop productivity in different regions of China. We found that the simultaneous occurrence of high temperatures, low precipitation and high solar radiation was unfavourable for wheat, maize and soybean productivity in large portions of northern, northwestern and northeastern China; this was because of droughts induced by warming or an increase in solar radiation. These climate anomalies could cause yield losses of up to 50 % for wheat, maize and soybeans in the arid and semi-arid regions of China. High precipitation and low solar radiation were unfavourable for crop productivity throughout southeastern China and could cause yield losses of approximately 20 % for rice and 50 % for wheat and maize. High temperatures were unfavourable for rice productivity in southwestern China because they induced heat stress, which could cause rice yield losses of approximately 20 %. In contrast, high temperatures and low precipitation were favourable for rice productivity in northeastern and eastern China. We found that the optimum temperatures for high yields were crop specific and had an explicit spatial pattern. These findings improve our understanding of the impacts of extreme climate events on agricultural production in different regions of China.  相似文献   

9.
Agriculture, especially the irrigated sector, is the mainstay of Sudan’s economy as it accounts for 40 % of gross domestic product (GDP) and employs 70 % of the workforce. The economic viability of irrigated schemes is dependent on three factors: crop yield, water management and cropped area. The research question of this study was whether or not the current status of these factors can be sustained in order to maintain the economic viability of irrigation systems? To answer this question, a new (to the best of the author’s knowledge) approach was developed based on time series analysis, and on the Theil–Sen estimator of slope. The study defined sustainability conceptually as “the ability of an irrigation system to sustain crop yields using the optimum cropped area and water consumption to realize the economic viability of the irrigation system without a decline in soil quality and environment”. Time series datasets of crop yields, cropped area and irrigation water consumption are collected routinely by statistical departments. Any abrupt years in the development of trends were detected and related to their driving forces/causes, of which climatic conditions and marketing policies were found to be the most important. The simple approach developed proved its suitability for quantifying the progress of irrigated schemes’ towards sustainability development as tested under the conditions of Gezira irrigated scheme in Sudan—the largest singly managed irrigation scheme in the world. The scheme was found to be sustainable under the condition that the crop yield is considered as the top priority; otherwise, the sustainability of the scheme is jeopardized.  相似文献   

10.
Coffee is an important commodity crop in Zimbabwe and many other African countries in terms of its contribution to local and national economies. Coffee production in terms of productivity and quality face severe constraints due to climate change. A study was therefore carried out to understand and quantify the potential impact of climate change on the coffee sector in Zimbabwe using a bioclimatic modelling approach. Current climatically suitable areas were identified and compared with those areas identified to be climatically suitable under projected 2050 climatic conditions. The projected climatic conditions were obtained from climate predictions of two models: CCSM4 model and HadGEM2 model. Coffee production was found to be mostly sensitive to precipitation factors as these were the most important in determining climatic suitability of coffee production in Zimbabwe. The modelling showed that current coffee suitability varies spatially between the four coffee producing districts in Zimbabwe. Chipinge district has the largest area climatically suitable for coffee production followed by Chimanimani district with Mutare district having the smallest. The modelling predicted that there will be a spatial and quantitative change in climatic suitability for coffee production in Zimbabwe by 2050. The greatest changes are projected for Mutare district where over three quarters according to the CCSM4 model and the entire district according to the HadGEM2 model will turn marginal for coffee production. A westward shift in climatic suitability of coffee was observed for Chipinge and Chimanimani district. The models predicted a loss of between 30,000 ha (CCSM4) and 50,000 ha (HadGEM2) in areas climatically suitable for coffee production by 2050 in Zimbabwe. These changes are likely to be driven by changes in the distribution of precipitation received in the coffee areas. The study presents possible adaptation measures that can be adopted by the coffee sector in Zimbabwe and the region to maintain coffee productivity under a changing climate.  相似文献   

11.
In the drylands of the Upper Blue Nile basin, high climate variability and land degradation are rampant. To enhance adaptive capacity in the region, various soil and water conservation interventions have been implemented. Moreover, water resources development schemes such as the Grand Ethiopian Renaissance Dam should be implemented by 2025. We modeled the effects of these interventions on surface runoff in the basin for both current and future (2025) basin conditions, using the runoff coefficient method in a spatially explicit approach. Under current conditions, we observed high spatial variability of mean annual runoff. The northeastern Blue Nile-1 sub-basin produces the highest mean annual runoff (391 mm or 10 × 109 m3), whereas the northwestern Blue Nile-2 sub-basin produces the lowest mean annual runoff (178 mm or 0.2 × 109 m3). The basin generates a total annual runoff volume of 47.7 × 109 m3, of which about 54 % comes from cultivated land. The strong association between land use and topography masked the direct effect of rainfall on runoff. By 2025, total annual runoff yield could decrease by up to 38 % if appropriate basin-wide soil and water conservation interventions and the Grand Ethiopian Renaissance Dam are implemented. However, the full effects of most physical structures will only last for 1 or 2 years without regular maintenance. The improved understanding of the dynamics of the Upper Blue Nile basin’s hydrology provided by the present study will help planners to design appropriate management scenarios. Developing the basin’s database remains important for a holistic understanding of the impacts of future development interventions.  相似文献   

12.
The production of energy crops in Germany is a growing agronomic sector and is expected to occupy a substantial share of farmland in the near future. At the same time, there are concerns that energy crops might cause increased nitrogen pollution of soil water, surface water and groundwater. Therefore, the Federal State of Saxony, Germany, funded a study on potential effects of an intensified cultivation of energy crops. In frame of this study, we used the Web GIS-based model STOFFBILANZ to simulate N leaching from the rooting zone and N loads of surface water for a reference scenario and an energy crop scenario. For the reference scenario, we used data representing the crop cultivation for the year 2005 at municipality level. We found that the total loads for N leaching from the rooting zone of cropland are highest for the loess region (8,067 t year?1), followed by mountainous region (6,797 t year?1) and lowland (5,443 t year?1). However, highest N fluxes in the leachate from rooting zones have been simulated for lowland (40.6 kg ha?1 year?1) and mountainous region (37.1 kg ha?1 year?1), while nitrate concentrations of leachate were highest for the lowland (101.8 mg l?1). In terms of diffuse N input into surface water, the mountainous region is the most important source area (total N load 6,380 t year?1, flux 34.6 kg ha?1 year?1). Retention by in-stream processes accounts for 15 % (3,784 t year?1) of the total N load leaving the study area (25,136 t year?1). In the 2020 energy crop scenario, shares of rape and silage maize (id., ensiled corn) were limited for each municipality to a maximum of 25 and 33 %, respectively. The conversion of grasslands to crop farming was not allowed. Under these conditions, we found slight to substantial reductions of nitrogen loads for leachate from the rooting zone and for surface waters. The simulated reduction depends strongly on local conditions. Only small reductions (ca. 4–8 %) were found for the lowlands and mountainous regions of Saxony, while reductions for the loess region were substantial (ca. 22 %). A major outcome of our study is that the cultivation of energy crops might reduce N loss if certain preconditions are assumed, for example, without conversion of grasslands to crop farming. However, effects might vary widely depending on local conditions.  相似文献   

13.
Irrigation is indispensable to overcome insufficient rainfall and to achieve a stabilized yield for tea production. As the severe scarcity of water resources because of climate change, water conservation through efficient irrigation has turned into a vital strategy for tea sector in solving this rising challenge. This paper analyzes irrigation water use efficiency of small-scale tea farms in Vietnam and identifies its determinants applying stochastic frontier analysis. Results showed that under decreasing returns to scale, the mean irrigation water use efficiency was 42.19 %, indicating the existence of substantial water waste. If farmers become more efficient in using water, saving 57.81 % of irrigation water is possible unaccompanied by reducing the observed output. The factors affecting tea farms’ irrigation water use efficiency were investigated by Tobit model. Gender, water shortage awareness, soil and water conservation practice, off-farm income share, extension services access and well water utilization showed significant influence on the efficiency of irrigation water. The study’ results provide insights to policymakers in implementing better water resource management amid climate change.  相似文献   

14.
Major modifications regulating the Tigris River, originated in the 1940s and continuing to the present, have resulted in changes in salinity in the system over time and in different portions of the river course. The increase in salinity is due to decreases in stream discharge due to dams, water management structures such as the Lake Tharthar system, irrigation return flow, and soluble minerals in the basin. This research documents the increase and evaluates the causes of the salinity increase of the river from predevelopment to present using published and previously unavailable data. The predevelopment salinity was under 600 ppm, since 1984 has exceeded the 1000 ppm threshold recommended for drinking water downstream of Amara. A minimum instream flow for the river is calculated at Baghdad and Kut at 185 cubic meters per second (cms), approximately 15% of the mean historical flow of the river, but above the lowest minimum flow recorded at 140 cms. Recommended salinity management options discussed include (1) eliminating Lake Tharthar as a water storage facility, (2) managing saline inflows from tributaries, and (3) employing a minimum instream flow for the river.  相似文献   

15.
In the mixed crop–livestock systems, while general relation among feed quality, productivity and soil nutrient management have been reported, information on the effects of extractable soil nutrients on crop residue (CR) feed quality traits is scarce (e.g. in semiarid regions of Karnataka, India). In view of the increasingly important role of CR as feed components, in these farming systems, generating such information is a relevant research issue for sustainable development. Here, we report the occurrence and strength of relationships among extractable nutrients in soils and CR feed quality traits, and the effects of improved nutrients input on feed availability and feed quality of CR. Soil samples were collected from farmers’ fields in the semiarid zone of Karnataka and analyzed for available phosphorus (P), potassium (K), sulphur (S), zinc (Zn) and boron (B) using standard laboratory methods. Soil test results were clustered as low, medium or high based on the level of nutrient concentration. Four major farming systems involving nine crops and 419 farms were selected for on-farm trials. Under every sample farm, a plot with farmer’s practice (control) and improved fertilizer inputs (combined application of nutrients found deficient by soil testing) were laid. Performance of crops was recorded. Samples were collected for CR feed quality trait analysis using Near Infrared Reflectance Spectroscopy. The result showed that for cereal and oil crops, extractable soil S was significantly negatively associated with anti-feed quality traits such as neutral detergent fibre (NDF), acid detergent fibre (ADF), acid detergent lignin (ADL) (P < 0.01), but significantly positively related to metabolizable energy (ME) and in vitro digestibility (P < 0.01). Extractable B and K levels were associated positively and significantly with NDF, ADF and ADL for oil crops and cereals. Crop level associations, for most crops, showed similar trend. Improved fertilizer inputs affected CR yield much more than it did the quality. It increased ME productivity (ME ha?1) and thereof the potential milk yield ha?1 by as high as 40 % over the control. Therefore, balanced nutrient inputs on crop land positively impact productivity of the livestock compartment of mixed crop–livestock farming system, and this knowledge can build on the currently perceived need and benefits of balanced nutrient replenishment in crop–livestock system.  相似文献   

16.
水温是影响灌区农作物灌溉效果的重要因素。为明确特定水库取水口低温水对灌区灌溉的影响程度及多种低温水减缓措施的改善增温效果,以向家坝灌区北总干渠一期工程为研究对象,采用纵向一维水温数学模型,定量分析并研究低温水减缓措施对灌区水温的改善效果。结果表明:与向家坝坝址处的天然水温相比,单库运行时(建坝近期)向家坝灌区部分渠道最大降幅可达2.1℃,梯级电站联合运行后(建坝远期)最大降幅可达3.1℃,建坝远期的低温水效应大于近期运行时的低温水效应。距取水口最近的柏溪斗渠4月灌溉水温降幅可达3.1℃,而较远处的两木斗渠4月份灌溉水温降幅为1.3℃,灌溉水温的降幅随灌渠离取水口距离的增加而减小,向家坝北总干渠前38 km低温水效应较显著, 38 km以外渠道受低温水影响较小。取水口设置叠梁门分层取水措施与灌区设置晒水池增温措施具有相近的增温效果,4月增温效果约为0.4℃~0.9℃。采用已建塘坝、窖池等小水利设施辅助晒水池进行晒水增温对低温水具有显著的改善效果,4月增温幅度约为1.3℃~1.7℃。研究成果可为湖库管理部门制定近期及远期运行方案提供决策依据。  相似文献   

17.
We observed skewed distribution across household of benefits of pesticide use in vegetable farming in Nepal. However, economic burden or harm of pesticide use and exposure by household economy is poorly studied. It is hypothesized that exaggerated and incompetent pesticide use is likely to affect human health that may lead to decline in human productivity, and economic loss––that may further marginalize farmers. Thus, a study was conducted in the Ansi khola watershed of Kavrepalanchowk District of central Nepal. The primary aim of the study was to value risks of pesticide use and to estimate health costs of exposure by household category. We grouped household into “large-scale” who owns more than 1 ha of agricultural land, “small-scale” having <0.5 ha and “medium-scale” in between >0.5 and <1 ha. Data were collected through (1) an initial household survey conducted from May to June 2008, (2) monthly visit surveys accomplished from June to November 2008 and (3) a final household survey conducted during November to December 2009. The cost of pesticide use and exposure was highest for medium-scale household; however, the economic burden in relation to incomes was the highest for small-scale household. On the basis of area under vegetables, small-scale household incurred 23 % higher economic burdens compared to the large-scale household. Overall, the cost of pesticide use and exposure amounted 15 % of agricultural income and/or 5 % of gross household income. For small-scale households, the cost was equivalent to 18 % of agricultural income and 6 % of gross income. Small-scale households are not only deprived from benefits of agriculture intensification, but also incurred highest burden of pesticide use.  相似文献   

18.
Insurance programmes have been indicated as a tool to reduce the economic risk associated with climate change, and crop growth simulation models can be used effectively to assess future trends in crop insurance payouts. This paper assesses the economic role of increasing weather extremes under future climate change on the expected insurance payouts for durum wheat (Triticum turgidum L. spp. durum) over the Mediterranean basin, focusing attention on the effects of heat stresses (HSs). A crop growth simulation, Sirius Quality version 2 (SQ2), calibrated for three varieties (long, medium and short growth cycle) was applied on seven sites under present (1975–1990) and future climate conditions (2030–2050) obtained from five regional circulation models under SRES scenario A1b. The intensity of HSs at anthesis was included as reducing factor of yield originally simulated by SQ2 calculated according to a specific empirical model. Simulated yields were then fitted to the most appropriate distribution, which was used to calculate the expected payouts according to the probability of yields being below a guaranteed level. We found that the simulated crop yields were, in general, negatively skewed and that Weibull probability density function (PDF), admitting negative skewing, provided the best performances in their fitting. The simulation of HSs modified the original shape of the Weibull PDF by increasing the skewness of the distribution. The results of the insurance model indicated that the modification of crop PDFs induced by HSs led to a general increase in payouts with respect to unstressed conditions, with a marked difference between present (+11 %, on average for the selected sites) and future periods (+25 %). When compared to the present, a general decrease in payouts (?1.1 %) was observed when HSs were not included in the simulations. Conversely, HSs impact resulted in a general increase in payouts (+10.3 %) where the highest increase was detected for the long growth cycle variety (+16.6 %) and the lowest for that with short growth cycle (?1.6 %). These results emphasize the importance of the appropriate characterization of crop yield distribution, the economic implications of HSs in a risk management context and a possible strategy to cope with climate change and variability.  相似文献   

19.
The Alemaya district (Eastern Ethiopian highlands) is characterized by undulating physiographic features with arid, semi-arid, and humid climatic conditions. This study evaluated socio-environmental changes in land use and land cover during 1985–2011. Screen digitization on remotely sensed data (i.e., Landsat images from 1985 to 2011) was performed to produce 10 classes of land use and land cover. Then, final land-use maps were prepared using a geographic information system following field verification and accuracy assessment. The drying of water bodies, including the prominent lakes Alemaya, Adele, and Tinike, had been the most important environmental change observed. Degraded land, marsh, perennial cropland, and residential areas increased by 37, 438, 42, and 190 %, respectively, whereas grassland, plantation, shrubland, and temporal cropland decreased by 64, 11, 63, and 29 %, respectively. The increase in land degradation (+37 %), the other major observed problem, has made large areas unsuitable for agriculture and has reduced crop productivity. These land-use and land-cover changes have affected both the environment and the livelihoods of local residents; especially the issue related to land degradation requires urgent attention.  相似文献   

20.
India’s continued development depends on the availability of adequate water. This paper applies a data-driven approach to estimate the intra-annual dynamics of water stress across the central Indian Highlands over the period 2002–2012. We investigate the spatial distribution of water demanding sectors including industry, domestic, irrigation, livestock and thermal power generation. We also examine the vulnerability of urban centers within the study area to water stress. We find that 74 % of the area of the central Indian Highlands experienced water stress (defined as demand exceeding supply) for 4 or more months out of the year. The rabi (winter) season irrigation drives the intra-annual water stress across the landscape. The Godavari basin experiences the most surface water stress while the Ganga and Narmada basins experience water stress due to groundwater deficits as a result of rabi irrigation. All urban centers experience water stress at some time during a year. Urban centers in the Godavari basin are considerably water stressed, for example, Achalpur, Nagpur and Chandrapur experience water stress 8 months out of the year. Irrigation dominates water use accounting for 95 % of the total water demand, with substantial increases in irrigated land over the last decade. Managing land use to promote hydrologic functions will become increasingly important as water stress increases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号