首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 49 毫秒
1.
Globally, deforestation continues, and although protected areas effectively protect forests, the majority of forests are not in protected areas. Thus, how effective are different management regimes to avoid deforestation in non‐protected forests? We sought to assess the effectiveness of different national forest‐management regimes to safeguard forests outside protected areas. We compared 2000–2014 deforestation rates across the temperate forests of 5 countries in the Himalaya (Bhutan, Nepal, China, India, and Myanmar) of which 13% are protected. We reviewed the literature to characterize forest management regimes in each country and conducted a quasi‐experimental analysis to measure differences in deforestation of unprotected forests among countries and states in India. Countries varied in both overarching forest‐management goals and specific tenure arrangements and policies for unprotected forests, from policies emphasizing economic development to those focused on forest conservation. Deforestation rates differed up to 1.4% between countries, even after accounting for local determinants of deforestation, such as human population density, market access, and topography. The highest deforestation rates were associated with forest policies aimed at maximizing profits and unstable tenure regimes. Deforestation in national forest‐management regimes that emphasized conservation and community management were relatively low. In India results were consistent with the national‐level results. We interpreted our results in the context of the broader literature on decentralized, community‐based natural resource management, and our findings emphasize that the type and quality of community‐based forestry programs and the degree to which they are oriented toward sustainable use rather than economic development are important for forest protection. Our cross‐national results are consistent with results from site‐ and regional‐scale studies that show forest‐management regimes that ensure stable land tenure and integrate local‐livelihood benefits with forest conservation result in the best forest outcomes.  相似文献   

2.
Abstract:  Human population and development activities affect the rate of deforestation in biodiversity hotspots. We quantified the effect of human population growth and development on rates of deforestation and analyzed the relationship between these causal factors in the 1980s and 1990s. We compared the averages of population growth, human development index (HDI, which measures income, health, and education), and deforestation rate and computed correlations among these variables for countries that contain biodiversity hotspots. When population growth was high and HDI was low there was a high rate of deforestation, but when HDI was high, rate of deforestation was low, despite high population growth. The correlation among variables was significant for the 1990s but not for the 1980s. The relationship between population growth and HDI had a regional pattern that reflected the historical process of development. Based on the changes in HDI and deforestation rate over time, we identified two drivers of deforestation: policy choice and human-development constraints. Policy choices that disregard conservation may cause the loss of forests even in countries that are relatively developed. Lack of development in other countries, on the other hand, may increase the pressure on forests to meet the basic needs of the human population. Deforestation resulting from policy choices may be easier to fix than deforestation arising from human development constraints. To prevent deforestation in the countries that have such constraints, transfer of material and intellectual resources from developed countries may be needed. Popular interest in sustainable development in developed countries can facilitate the transfer of these resources.  相似文献   

3.
Strategic planning to increase forest cover in Central American transboundary areas of the Mesoamerican Biological Corridor requires understanding land-cover and land-use change trends and drivers. We estimated forest cover change from remotely sensed land-cover and land-use classifications from 1986, 2001, and 2010, in the tri-national Trifinio Region, bordering El Salvador, Guatemala, and Honduras. Our analysis spanned subnational, national, regional, and protected border areas. We determined correlations with direct drivers of deforestation, developing a multilevel linear regression model. Higher population density significantly correlated with deforestation; coffee, agroforestry, and pasture replaced forests. The tri-national park retained forests compared to neighboring areas, but additionality requires more research. The literature on drivers suggests similar processes and factors in other tropical regions. Forest cover governance efficacy is highly variable. Results indicate relationship between governance and forest cover though more comprehensive understanding of this complex region is needed to determine their causality.  相似文献   

4.
The South American dry Chaco is a mosaic of woody vegetation and grasslands with high deforestation rates in recent decades. Considering forests and grasslands as the main natural habitats, we assessed the trade-offs between bird populations and agricultural production to compare the potential consequences of different land use strategies (‘sharing’, ‘sparing’, and intermediate) for populations of bird species sensitive to agriculture, while attaining a regional production target. We evaluated how populations responded to scenarios with different proportions of forest and grasslands, considering three reference states (100% forest, 80:20% and 50:50% forest and grasslands, respectively); and scenarios capable of meeting three after-farming scenarios, with land destined to reach a regional production target with three variations of forest:grasslands within spared land. We fitted curves to relate bird abundance to agricultural yield along a gradient of meat production intensity; and we classified bird species as ‘losers’ (if their populations were lower than the baseline population in the reference state, at any level of production) and ‘winners’ (if their current populations were higher than the baseline population). At the ‘current’ (c. 2010) level of regional agricultural production, we found a similar number of loser species maximized by land-sparing and land-sharing strategies; while intermediate strategies were the least favourable to balance production and bird populations. Under the most probable scenarios of increases in regional meat production, most loser bird species populations were maximized by a land-sparing strategy, suggesting that if meat production targets are going to increase in the region, this can be more efficiently achieved by combining well-protected forests and grasslands, and high-yielding mechanized agriculture (e.g. soybean). Our results highlight the importance of assessing all the important natural habitats (e.g. forests and grasslands) of a region to explore conservation strategies at a regional scale.  相似文献   

5.
Abstract: The cedar oak forest of the Middle Atlas in Morocco is not only the last of the large forests in the southern Mediterranean, but it also contains all the surviving forest biodiversity. This forest has been severely affected by drought, overgrazing by mixed herds of goat and sheep, and excessive logging for timber, firewood, and livestock fodder. Recently, cedar bark stripping by Barbary Macaques (    Macaca sylvanus ) has begun to have an effect on the forest. We investigated this behavior by monitoring a 500-km2 mosaic forest of cedar and oak in the Middle Atlas of Morocco between 1994 and 1996. We surveyed the forest 18 times in four different seasons along a 90-km transect. We recorded observations of bark stripping and a variety of quantitative ecological factors that could predict this behavior, such as livestock density, forest quality, undergrowth condition, water availability, and monkey density. The statistical analysis (including rank correlation, regression, and nonparametric variance analysis) strongly suggests that water scarcity and monkey exclusion from previously available permanent water sources are correlated with intense cedar bark-stripping behavior by macaques. The density of cedars and of monkeys appeared to be only secondary factors. As a conservation policy, making water more accessible to wild monkeys might reduce bark-stripping behavior.  相似文献   

6.
Inhibition of Amazon Deforestation and Fire by Parks and Indigenous Lands   总被引:10,自引:0,他引:10  
Abstract:  Conservation scientists generally agree that many types of protected areas will be needed to protect tropical forests. But little is known of the comparative performance of inhabited and uninhabited reserves in slowing the most extreme form of forest disturbance: conversion to agriculture. We used satellite-based maps of land cover and fire occurrence in the Brazilian Amazon to compare the performance of large (>10,000 ha) uninhabited (parks) and inhabited (indigenous lands, extractive reserves, and national forests) reserves. Reserves significantly reduced both deforestation and fire. Deforestation was 1.7 (extractive reserves) to 20 (parks) times higher along the outside versus the inside of the reserve perimeters and fire occurrence was 4 (indigenous lands) to 9 (national forests) times higher. No strong difference in the inhibition of deforestation ( p = 0.11) or fire ( p = 0.34) was found between parks and indigenous lands. However, uninhabited reserves tended to be located away from areas of high deforestation and burning rates. In contrast, indigenous lands were often created in response to frontier expansion, and many prevented deforestation completely despite high rates of deforestation along their boundaries. The inhibitory effect of indigenous lands on deforestation was strong after centuries of contact with the national society and was not correlated with indigenous population density. Indigenous lands occupy one-fifth of the Brazilian Amazon—five times the area under protection in parks—and are currently the most important barrier to Amazon deforestation. As the protected-area network expands from 36% to 41% of the Brazilian Amazon over the coming years, the greatest challenge will be successful reserve implementation in high-risk areas of frontier expansion as indigenous lands are strengthened. This success will depend on a broad base of political support.  相似文献   

7.
An historical generalization about forest cover change in which rapid deforestation gives way over time to forest restoration is called "the forest transition." Prior research on the forest transition leaves three important questions unanswered: (1) How does forest loss influence an individual landowner's incentives to reforest? (2) How does the forest recovery rate affect the likelihood of forest transition? (3) What happens after the forest transition occurs? The purpose of this paper is to develop a minimum model of the forest transition to answer these questions. We assume that deforestation caused by landowners' decisions and forest regeneration initiated by agricultural abandonment have aggregated effects that characterize entire landscapes. These effects include feedback mechanisms called the "forest scarcity" and "ecosystem service" hypotheses. In the forest scarcity hypothesis, forest losses make forest products scarcer, which increases the economic value of forests. In the ecosystem service hypothesis, the environmental degradation that accompanies the loss of forests causes the value of ecosystem services provided by forests to decline. We examined the impact of each mechanism on the likelihood of forest transition through an investigation of the equilibrium and stability of landscape dynamics. We found that the forest transition occurs only when landowners employ a low rate of future discounting. After the forest transition, regenerated forests are protected in a sustainable way if forests regenerate slowly. When forests regenerate rapidly, the forest scarcity hypothesis expects instability in which cycles of large-scale deforestation followed by forest regeneration repeatedly characterize the landscape. In contrast, the ecosystem service hypothesis predicts a catastrophic shift from a forested to an abandoned landscape when the amount of deforestation exceeds the critical level, which can lead to a resource degrading poverty trap. These findings imply that incentives for forest conservation seem stronger in settings where forests regenerate slowly as well as when decision makers value the future.  相似文献   

8.
Abstract: The Amazon basin is experiencing rapid forest loss and fragmentation. Fragmented forests are more prone than intact forests to periodic damage from El Niño–Southern Oscillation ( ENSO) droughts, which cause elevated tree mortality, increased litterfall, shifts in plant phenology, and other ecological changes, especially near forest edges. Moreover, positive feedbacks among forest loss, fragmentation, fire, and regional climate change appear increasingly likely. Deforestation reduces plant evapotranspiration, which in turn constrains regional rainfall, increasing the vulnerability of forests to fire. Forest fragments are especially vulnerable because they have dry, fire-prone edges, are logged frequently, and often are adjoined by cattle pastures, which are burned regularly. The net result is that there may be a critical "deforestation threshold" above which Amazonian rainforests can no longer be sustained, particularly in relatively seasonal areas of the basin. Global warming could exacerbate this problem if it promotes drier climates or stronger ENSO droughts. Synergisms among many simultaneous environmental changes are posing unprecedented threats to Amazonian forests.  相似文献   

9.
SUMMARY

Forests are fundamental and vital components of the world ecosystems. The essential links between forest and man are now receiving renewed and urgent attention, and there is increasing awareness that the value of forests to life on Earth is beyond economic value, and should be above political considerations. Tropical forests, generally marked out by richness in species, are found in more than 80 countries and account for roughly one-third of the world's forest cover. They encompass a wide variety of forest types found under diverse environmental conditions — from lush, constantly wet rain forests to arid thorn woodlands. These forests have been estimated to cover about 1715 million hectares in Africa alone. They have provided habitats for wildlife and wood, fibre, food and many other products to generations of mankind and are invaluable genetic resources of plants. Rapid population growth has, however, resulted in increasing the pressure on these forests, with a consequent decline in their qualitative and quantitative values. Throughout the world, forest lands have been cleared extensively for agriculture, and deforestation continues today. In the tropics, 10–25 million ha are being lost each year, with Africa alone losing 4–5 million ha annually. It has been estimated that, at this rate, the remaining tropical forest would disappear in 60–80 years; thereby leading to catastrophic environmental changes. The serious impact of these changes on the environment and on human needs is awakening world attention, and alarming consequences have sometimes been suggested. This paper highlights the major causes of tropical deforestation and its environmental consequences. Possible efforts to arrest the unpleasant trend are discussed.  相似文献   

10.
Abstract:  Plantation forests and second-growth forests are becoming dominant components of many tropical forest landscapes. Yet there is little information available concerning the consequences of different forestry options for biodiversity conservation in the tropics. We sampled the leaf-litter herpetofauna of primary, secondary, and Eucalyptus plantation forests in the Jari River area of northeastern Brazilian Amazonia. We used four complementary sampling techniques, combined samples from 2 consecutive years, and collected 1739 leaf-litter amphibians (23 species) and 1937 lizards (30 species). We analyzed the data for differences among forest types regarding patterns of alpha and beta diversity, species-abundance distributions, and community structure. Primary rainforest harbored significantly more species, but supported a similar abundance of amphibians and lizards compared with adjacent areas of second-growth forest or plantations. Plantation forests were dominated by wide-ranging habitat generalists. Secondary forest faunas contained a number of species characteristic of primary forest habitat. Amphibian communities in secondary forests and Eucalyptus plantations formed a nested subset of primary forest species, whereas the species composition of the lizard community in plantations was distinct, and was dominated by open-area species. Although plantation forests are relatively impoverished, naturally regenerating forests can help mitigate some negative effects of deforestation for herpetofauna. Nevertheless, secondary forest does not provide a substitute for primary forest, and in the absence of further evidence from older successional stands, we caution against the optimistic claim that natural forest regeneration in abandoned lands will provide refuge for the many species that are currently threatened by deforestation .  相似文献   

11.
Deforestation and Plant Diversity of Madagascar's Littoral Forests   总被引:2,自引:0,他引:2  
Abstract:  Few studies have attempted to quantify the reduction or document the floristic composition of forests in Madagascar. Thus, we focused specifically on deforestation and plant diversity in Madagascar's eastern littoral community. We used a data set of approximately 13,500 specimen records compiled from both historical and contemporary collections resulting from recent intensive inventory efforts to enumerate total plant species richness and to analyze the degree of endemism within littoral forests. Change in littoral forest cover from original to current extent was estimated using geographical information systems tools, remote sensing data (satellite imagery and low-elevation digital photography), and environmental data layers. Of the original littoral forest only 10.3% remains in the form of small forest parcels, and only 1.5% of these remaining fragments are included within the existing protected-areas network. Additionally, approximately 13% of Madagascar's total native flora has been recorded from these forests that originally occupied <1% of its total land surface, and over 25% of the 1535 plant species known from littoral forests are endemic to this community. Given the ongoing pressure from human settlement along Madagascar's eastern coast, protection of the remaining forest fragments is critical for their survival. Fifteen of the largest intact littoral forest fragments we identified, collectively representing 41.5% of remaining littoral forest, are among priority sites recommended to the government of Madagascar for plant conservation and incorporation into the protected-areas network.  相似文献   

12.
There is a growing need to assess and monitor forest cover and its conservation status over global scales to determine human impact on ecosystems and to develop sustainability plans. Recent approaches to measure regional and global forest status and dynamics are based on remotely sensed estimates of tree cover. We argue that tree cover should not be used to assess the area of forest ecosystems because tree cover is an undefined subset of forest cover. For example, tree cover can indicate a positive trend even in the presence of deforestation, as in the case of plantations. We believe a global map of forest naturalness that accounts for the bio-ecological integrity of forest ecosystems, for example, intact forests, old-growth forest patches, rewilding forests (exploited forest landscapes undergoing long-term natural succession), and managed forests is needed for global forest assessment.  相似文献   

13.
Effects of Coffee Management on Deforestation Rates and Forest Integrity   总被引:1,自引:0,他引:1  
Knowledge about how forest margins are utilized can be crucial for a general understanding of changes in forest cover, forest structure, and biodiversity across landscapes. We studied forest‐agriculture transitions in southwestern Ethiopia and hypothesized that the presence of coffee (Coffea arabica)decreases deforestation rates because of coffee's importance to local economies and its widespread occurrence in forests and forest margins. Using satellite images and elevation data, we compared changes in forest cover over 37 years (1973–2010) across elevations in 2 forest‐agriculture mosaic landscapes (1100 km2 around Bonga and 3000 km2 in Goma‐Gera). In the field in the Bonga area, we determined coffee cover and forest structure in 40 forest margins that differed in time since deforestation. Both the absolute and relative deforestation rates were lower at coffee‐growing elevations compared with at higher elevations (?10/20% vs. ?40/50% comparing relative rates at 1800 m asl and 2300–2500 m asl, respectively). Within the coffee‐growing elevation, the proportion of sites with high coffee cover (>20%) was significantly higher in stable margins (42% of sites that had been in the same location for the entire period) than in recently changed margins (0% of sites where expansion of annual crops had changed the margin). Disturbance level and forest structure did not differ between sites with 30% or 3% coffee. However, a growing body of literature on gradients of coffee management in Ethiopia reports coffee's negative effects on abundances of forest‐specialist species. Even if the presence of coffee slows down the conversion of forest to annual‐crop agriculture, there is a risk that an intensification of coffee management will still threaten forest biodiversity, including the genetic diversity of wild coffee. Conservation policy for Ethiopian forests thus needs to develop strategies that acknowledge that forests without coffee production may have higher deforestation risks than forests with coffee production and that forests with coffee production often have lower biodiversity value. Efectos de la Administración Cafetalera sobre las Tasas de Deforestación y la Integridad de los Bosques  相似文献   

14.
Using forests to mitigate climate change has gained much interest in science and policy discussions. We examine the evidence for carbon benefits, environmental and monetary costs, risks and trade-offs for a variety of activities in three general strategies: (1) land use change to increase forest area (afforestation) and avoid deforestation; (2) carbon management in existing forests; and (3) the use of wood as biomass energy, in place of other building materials, or in wood products for carbon storage. We found that many strategies can increase forest sector carbon mitigation above the current 162-256 Tg C/yr, and that many strategies have co-benefits such as biodiversity, water, and economic opportunities. Each strategy also has trade-offs, risks, and uncertainties including possible leakage, permanence, disturbances, and climate change effects. Because approximately 60% of the carbon lost through deforestation and harvesting from 1700 to 1935 has not yet been recovered and because some strategies store carbon in forest products or use biomass energy, the biological potential for forest sector carbon mitigation is large. Several studies suggest that using these strategies could offset as much as 10-20% of current U.S. fossil fuel emissions. To obtain such large offsets in the United States would require a combination of afforesting up to one-third of cropland or pastureland, using the equivalent of about one-half of the gross annual forest growth for biomass energy, or implementing more intensive management to increase forest growth on one-third of forestland. Such large offsets would require substantial trade-offs, such as lower agricultural production and non-carbon ecosystem services from forests. The effectiveness of activities could be diluted by negative leakage effects and increasing disturbance regimes. Because forest carbon loss contributes to increasing climate risk and because climate change may impede regeneration following disturbance, avoiding deforestation and promoting regeneration after disturbance should receive high priority as policy considerations. Policies to encourage programs or projects that influence forest carbon sequestration and offset fossil fuel emissions should also consider major items such as leakage, the cyclical nature of forest growth and regrowth, and the extensive demand for and movement of forest products globally, and other greenhouse gas effects, such as methane and nitrous oxide emissions, and recognize other environmental benefits of forests, such as biodiversity, nutrient management, and watershed protection. Activities that contribute to helping forests adapt to the effects of climate change, and which also complement forest carbon storage strategies, would be prudent.  相似文献   

15.
The effect of roads on forests is ambiguous. Many studies conclude that building and upgrading roads increases pressure on forests but some find that new and better roads may reduce the rate of deforestation. In this paper we use satellite remote sensing images of forest cover in Jiangxi Province, China, to test whether the existence and the size of roads (ranging from expressways to tertiary roads) in 1995 affected the level of forest cover in 2000 or the rate of change between 1995 and 2000. To account for road access for each of our 1 km2 (“pixel”) units of forest cover we measure whether or not and what type of roads penetrate the “watershed” in which the pixel lies. These watersheds allow more plausible measures of accessibility than do traditional “crowfly” distance measures that ignore topography. To account for possible confounding we also use 12 additional covariates: geographic and climatic variables (e.g., elevation, slope, rainfall, temperature, soil properties); demographic and economic variables (e.g., local population and GDP per square kilometer); and distance variables (e.g., distance to the nearest provincial capital). Although simple univariate OLS regressions show that forest levels are lower and deforestation rates higher either when there is a road, or when there is a higher quality road, these results are not robust. Controlling for all of the covariates and also using recently developed covariate matching techniques to estimate treatment effects, we find that roads in China’s Jiangxi Province can most safely be described as having no impact on the level of forests and no impact on the rate of deforestation.  相似文献   

16.
Londré RA  Schnitzer SA 《Ecology》2006,87(12):2973-2978
Lianas (woody vines) are an important and dynamic component of many forests throughout the world, and increases in CO2, mean winter temperature, and forest fragmentation may promote their growth and proliferation in temperate forests. In this study, we used a 45-year data set to test the hypothesis that lianas have increased in abundance and basal area in the interiors of 14 deciduous temperate forests in Wisconsin (USA) since 1959. We also censused woody plants along a gradient from the forest edge to the interior in seven of these forests to test the hypothesis that the abundance of lianas declines significantly with increasing distance from the forest edge. We found that lianas did not increase in abundance within the interiors of temperate forests in Wisconsin over the last 45 years. However, relative and absolute liana abundance decreased sharply with increasing distance from forest edges. Our findings suggest that forest fragmentation, not climate change, may be increasing the abundance of lianas in northern deciduous temperate forests, and that lianas may further increase in abundance if the severity of forest fragmentation intensifies.  相似文献   

17.
Abstract: Over the past 50 years, human agents of deforestation have changed in ways that have potentially important implications for conservation efforts. We characterized these changes through a meta‐analysis of case studies of land‐cover change in the tropics. From the 1960s to the 1980s, small‐scale farmers, with state assistance, deforested large areas of tropical forest in Southeast Asia and Latin America. As globalization and urbanization increased during the 1980s, the agents of deforestation changed in two important parts of the tropical biome, the lowland rainforests in Brazil and Indonesia. Well‐capitalized ranchers, farmers, and loggers producing for consumers in distant markets became more prominent in these places and this globalization weakened the historically strong relationship between local population growth and forest cover. At the same time, forests have begun to regrow in some tropical uplands. These changing circumstances, we believe, suggest two new and differing strategies for biodiversity conservation in the tropics, one focused on conserving uplands and the other on promoting environmental stewardship in lowlands and other areas conducive to industrial agriculture.  相似文献   

18.
Rethinking Tropical Forest Conservation: Perils in Parks   总被引:12,自引:0,他引:12  
Abstract: According to some conservationists, large, pristine, uninhabited parks are the defining criterion of success in conserving tropical forests. They argue that human residents in tropical forests inevitably deplete populations of large animals through hunting, which triggers a chain reaction of ecological events that greatly diminish the conservation value of these forests. Hence, they believe that removal of people from tropical forests is an essential step in the creation of successful parks and in the conservation of nature in the tropics. This approach can lead to undesirable consequences, however. Forest residents—and rural people generally—are potent political actors in tropical forest regions and an essential component of the environmental political constituencies that are necessary for the long-term conservation of tropical forests. In Amazonia and elsewhere, rural people are defending far bigger areas of tropical forest from unfettered deforestation and logging than are parks, thereby conserving the ecological services provided by these forests and the majority of their component plant and animal species. Moreover, the data are too sparse to judge the effects of forest peoples on populations of large forest animals. The establishment of pristine, tropical forest parks is an important conservation goal, but the exclusive pursuit of this goal undermines the broader objectives of conservation when it identifies forest residents and other rural people as the enemies of nature.  相似文献   

19.
Abstract: In recent decades the rate and geographic extent of land‐use and land‐cover change has increased throughout the world's humid tropical forests. The pan‐tropical geography of forest change is a challenge to assess, and improved estimates of the human footprint in the tropics are critical to understanding potential changes in biodiversity. We combined recently published and new satellite observations, along with images from Google Earth and a literature review, to estimate the contemporary global extent of deforestation, selective logging, and secondary regrowth in humid tropical forests. Roughly 1.4% of the biome was deforested between 2000 and 2005. As of 2005, about half of the humid tropical forest biome contained 50% or less tree cover. Although not directly comparable to deforestation, geographic estimates of selective logging indicate that at least 20% of the humid tropical forest biome was undergoing some level of timber harvesting between 2000 and 2005. Forest recovery estimates are even less certain, but a compilation of available reports suggests that at least 1.2% of the humid tropical forest biome was in some stage of long‐term secondary regrowth in 2000. Nearly 70% of the regrowth reports indicate forest regeneration in hilly, upland, and mountainous environments considered marginal for large‐scale agriculture and ranching. Our estimates of the human footprint are conservative because they do not resolve very small‐scale deforestation, low‐intensity logging, and unreported secondary regrowth, nor do they incorporate other impacts on tropical forest ecosystems, such as fire and hunting. Our results highlight the enormous geographic extent of forest change throughout the humid tropics and the considerable limitations of the science and technology available for such a synthesis.  相似文献   

20.
研究基于标准的树轮年代学研究方法(样芯经固定、晾干、打磨、交叉定年、测量和标准化等处理),首次建立了大别山西部的黄柏山百战坪的黄山松树轮宽度标准年表。研究发现,黄山松宽度年表有较高的信噪比SNR和样本解释总量EPS,表明树轮宽度年表中含有较多的气候信息,适合做树轮气候学研究。树轮宽度年表与气象因子关系的研究结果显示,黄山松树轮宽度与上一年10月、12月及当年的5月至9月的气温(包括月均最高气温、月均温和月均最低气温)呈较高的负相关,且在上一年的12月和当年7月月均最高气温和月均温的限制作用较强,而上一年10月月均温限制作用最大,这表明上一年生长季末和当年生长季中的高温通过对水分的影响限制黄山松的生长。树轮指数与当年2月、4月至7月的月降水及月相对湿度(6月份除外)均呈较高正相关,说明在进入生长期前后充足水分对黄山松生长有促进作用,但当降水或相对湿度过大时(如上年8月与当年6月)对黄山松生长就起到一定的限制作用。本研究结果填补了大别山西段树木年轮研究的空白,为该区域树木年轮气候重建研究提供参考和基础数据,也为黄柏山自然保护区今后的森林培育和森林管理提供了一定的理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号