首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 245 毫秒
1.
Using a spatially extensive database from the Maryland Biological Stream Survey (MBSS), we describe nutrient relationships of small-order, non-tidal streams to Maryland watershed basins, Maryland Tributary Strategy basins, and stream order. In addition, we estimate the number of stream km affected by nutrient loading, using derived nutrient criteria. Based on the MBSS spring water quality sampling, we determined several important factors relating to nutrient levels in non-tidal streams. There are strong linear relationships of nutrients to the percentage of agriculture and forested land present within MBSS sampling strata. Both mean total nitrogen (TN) and mean total phosphorus (TP) levels for watershed basins by stream order show exceedances of derived nutrient reference criteria for Maryland. Four Maryland basins have over 85% of their stream kilometers exceeding the TN criterion, with three basins over 90% of the TP criterion. To protect small stream integrity in Maryland, we recommend an upper stream TN criterion between 1.34 and 1.68 mg/L and an upper stream TP criterion between 0.025 and 0.037 mg/L, based on quantile analyses. Elevated levels of both TN and TP are present in non-tidal streams, with subsequent nutrient inputs into the upper freshwater tidal reaches of the Chesapeake Bay.  相似文献   

2.
We examined benthic condition in three small watersheds in the Chesapeake Bay. Characterization of benthic condition was based on the combined measurements of benthic fauna, sediment toxicity, and sediment contaminant loads. Significant differences between watersheds were detected for sediment contaminant concentrations and water quality. The intensity of benthic impairment was greatest in the river surrounded by the most developed watershed. Spatial patterns of benthic condition were detected within all three watersheds. In contrast to current, intense focus on nutrient pollution in the Chesapeake Bay, qualitative comparison of our findings to land-use patterns supports findings of other studies that suggest benthic condition in tributaries of the Chesapeake Bay may more closely relate to urbanization than agricultural land uses.  相似文献   

3.
The U.S. Geological Survey has developed a methodology for statistically relating nutrient sources and land-surface characteristics to nutrient loads of streams. The methodology is referred to as SPAtially Referenced Regressions On Watershed attributes (SPARROW), and relates measured stream nutrient loads to nutrient sources using nonlinear statistical regression models. A spatially detailed digital hydrologic network of stream reaches, stream-reach characteristics such as mean streamflow, water velocity, reach length, and travel time, and their associated watersheds supports the regression models. This network serves as the primary framework for spatially referencing potential nutrient source information such as atmospheric deposition, septic systems, point-sources, land use, land cover, and agricultural sources and land-surface characteristics such as land use, land cover, average-annual precipitation and temperature, slope, and soil permeability. In the Chesapeake Bay watershed that covers parts of Delaware, Maryland, Pennsylvania, New York, Virginia, West Virginia, and Washington D.C., SPARROW was used to generate models estimating loads of total nitrogen and total phosphorus representing 1987 and 1992 land-surface conditions. The 1987 models used a hydrologic network derived from an enhanced version of the U.S. Environmental Protection Agency's digital River Reach File, and course resolution Digital Elevation Models (DEMs). A new hydrologic network was created to support the 1992 models by generating stream reaches representing surface-water pathways defined by flow direction and flow accumulation algorithms from higher resolution DEMs. On a reach-by-reach basis, stream reach characteristics essential to the modeling were transferred to the newly generated pathways or reaches from the enhanced River Reach File used to support the 1987 models. To complete the new network, watersheds for each reach were generated using the direction of surface-water flow derived from the DEMs. This network improves upon existing digital stream data by increasing the level of spatial detail and providing consistency between the reach locations and topography. The hydrologic network also aids in illustrating the spatial patterns of predicted nutrient loads and sources contributed locally to each stream, and the percentages of nutrient load that reach Chesapeake Bay.  相似文献   

4.
This paper describes the development and application of an integrated modeling framework composed of an urban air chemistry model, an urban runoff model, and a water-quality model. The models were linked to simulate the fate and transport of air emissions of nitrogen compounds in the air, urban watershed, surface water runoff, and in a coastal receiving-water body. The model linkage is demonstrated by evaluating the potential water quality implications of reducing NO x emissions by 32%, volatile organic compound emissions by 51%, and ammonia emissions by 30%, representing changes from 1987 levels to proposed 2000 target levels in Los Angeles, California, USA. Simulations of the Los Angeles dry season during the summer of 1987 (June 1 to August 31) indicated that by reducing emissions from 1987 to proposed year 2000 levels, the dry deposition nitrogen loads to Santa Monica Bay and the Ballona Creek watershed were reduced 21.4% and 15.0%, respectively. Water quality modeling results indicated that dry season atmospheric load reductions to the Ballona Creek Estuary did not reduce chlorophyll-a levels or significantly raise nighttime dissolved oxygen levels because the magnitude of the reductions was negligible compared to non-atmospheric inputs of nitrogen compounds. Simulations of the time period from November 18, 1987 to December 4, 1987 during the Los Angeles wet season indicated that air emissions reductions produced an 18.6% reduction in the dry deposition nitrogen load to Santa Monica Bay, a 15.5% reduction in the dry deposition nitrogen load to the Ballona Creek watershed, a 16.8% reduction in the wet deposition nitrogen load to the Ballona Creek watershed, and a 16.1% reduction in the stormwater discharge load from the Ballona Creek watershed. Although the wet season load reductions are significant, modeling results of the ultimate effect on the Ballona Creek Estuary water quality were inconclusive.  相似文献   

5.
Research on relationships between dissolved nutrients and land-use at the watershed scale is a high priority for protecting surface water quality. We measured dissolved nitrogen (DN) and ortho-phosphorus (P) along 130 km of the Calapooia River (Oregon, USA) and 44 of its sub-basins for 3 years to test for associations with land-use. Nutrient concentrations were analyzed for spatial and seasonal patterns and for relationships with land-use and stream discharge. Ortho-P and DN were higher in lower-elevation sub-basins dominated by poorly drained soils and agricultural production compared with higher-elevation sub-basins dominated by well-drained soils and forests. Eight lower basins had at least one sample period with nitrate-N?>?10 mg L?1. The Calapooia River had lower concentrations of dissolved nutrients compared with lower sub-basins, often by an order of magnitude. Dissolved organic N represented a greater proportion of DN in the upper forested sub-basins. Seasonal nutrient concentrations had strong positive correlations to the percent of a sub-basin that was managed for agriculture in all seasons (p?values?≤?0.019) except summer. Results suggest that agricultural lands are contributing to stream nutrient concentrations. However, poorly drained soils in agricultural areas may also contribute to the strong relationships that we found between dissolved nutrients and agriculture.  相似文献   

6.
In Taiwan, nonpoint source (NPS) pollution is one of the major causes of the impairment of surface waters. I-Liao Creek, located in southern Taiwan, flows approximately 90 km and drains toward the Kaoping River. Field investigation results indicate that NPS pollution from agricultural activities is one of the main water pollution sources in the I-Liao Creek Basin. Assessing the potential of NPS pollution to assist in the planning of best management practice (BMP) is significant for improving pollution prevention and control in the I-Liao Creek Basin. In this study, land use identification in the I-Liao Creek Basin was performed by properly integrating the skills of geographic information system (GIS) and global positioning system (GPS). In this analysis, 35 types of land use patterns in the watershed area of the basin are classified with the aid of Erdas Imagine process system and ArcView GIS system. Results indicate that betel palm farms, orchard farms, and tea gardens dominate the farmland areas in the basin, and are scattered around on both sides of the river corridor. An integrated watershed management model (IWMM) was applied for simulating the water quality and evaluating NPS pollutant loads to the I-Liao Creek. The model was calibrated and verified with collected water quality and soil data, and was used to investigate potential NPS pollution management plans. Simulated results indicate that NPS pollution has significant contributions to the nutrient loads to the I-Liao Creek during the wet season. Results also reveal that NPS pollution plays an important role in the deterioration of downstream water quality and caused significant increase in nutrient loads into the basin's water bodies. Simulated results show that source control, land use management, and grassy buffer strip are applicable and feasible BMPs for NPS nutrient loads reduction. GIS system is an important method for land use identification and waste load estimation in the basin. Linking the information of land utilization with the NPS pollution simulation model may further provide essential information of potential NPS pollution for all subregions in the river basin. Results and experience obtained from this study will be helpful in designing the watershed management and NPS pollution control strategies for other similar river basins.  相似文献   

7.
流域模型技术应用是当前开展面源污染防治的重要工具,而水文过程的准确模拟是进行污染负荷估算的首要环节和关键步骤。为了弄清近年来于桥水库入库河流氮、磷输入负荷,选取GWLF模型对水平口子流域的水文过程进行模拟,首先利用2006—2018年气象、水文资料率定模型水文参数,然后将参数推广到整个流域,对2019—2020年3条主要入库河流流量进行模拟,最后乘以相应河流断面的总氮、总磷浓度估算氮磷输入负荷。结果显示:GWLF模型适用于研究区的水文过程模拟,校准期和验证期的纳氏系数分别为0.89和0.91,平均相对误差分别为12.2%和13.1%;2020年总氮入库负荷为3 977.0 t,其中引滦调水贡献占57.0%,3条入库河流共贡献43.0%;总磷入库负荷为48.8 t,其中引滦调水贡献占68.6%,3条入库河流共贡献31.4%。GWLF模型输入数据需求量较少,模型参数较少,模拟效果较好,适用于中小型流域的水资源和水环境管理,具有一定的推广应用前景。  相似文献   

8.
Revisiting the Chesapeake Bay Phytoplankton Index of Biotic Integrity   总被引:1,自引:0,他引:1  
In 2006, a phytoplankton index of biotic integrity (PIBI) was published for Chesapeake Bay Lacouture et al. (Estuaries 29(4):598–616, 2006). The PIBI was developed from data collected during the first 18 years (1985–2002) of the Chesapeake Bay Program long-term phytoplankton and water quality monitoring programs. Combinations of up to nine phytoplankton metrics were selected to characterize bay habitat health according to plankton community condition in spring and summer seasons across four salinity zones. The independent data available at the time for index validation was not sufficient to test the PIBI because they lacked critical index parameters (pheophytin and dissolved organic carbon) and reference samples for some seasons and salinity zones. An additional 8 years of monitoring data (2003–2010) are now available to validate the original index, reassess index performance and re-examine long-term trends in PIBI conditions in the Bay. The PIBI remains sensitive to changes in nutrient and light conditions. Evaluation of the PIBI results over the entire 1985–2010 time period shows no discernible trends in the overall health of Bay habitat based on phytoplankton community conditions. This lack of overall PIBI trend appears to be a combined response to declines in water clarity and improvements in dissolved inorganic nitrogen and dissolved phosphorus conditions in the bay.  相似文献   

9.
The overloaded nonpoint source (NPS) nutrients in upper streams always result in the nutrient enrichment at lakes and estuaries downstream. As NPS pollution has become a serious environmental concern in watershed management, the information about nutrient output distribution across a watershed has been critical in the designing of regional development policies. But existing watershed evaluation models often encounter difficulties in application because of their complicated structures and strict requirements for the input data. In this paper, a spatially explicit and process-based model, Integrated Grid’s Exporting and Delivery model, was introduced to estimate annual in-stream nutrient levels. Each grid cell in this model was regarded as having potentials of both exporting new nutrients and trapping nutrients passing by. The combined nutrient dynamics of a grid is mainly determined by the grid’s features in land use/land cover, soil drainage, and geomorphology. This simple-concept model was tested at some basins in north Georgia in the USA. Stations in one basin were used to calibrate the model. Then an external validation was employed by applying the calibrated model to stations in the other neighbor basins. Model evaluation statistics implied the model’s validity and good performance in estimating the annual NPS nutrients’ fluxes at the watershed scale. This study also provides a promising prospect that in-stream annual nutrient loads can be accurately estimated from a few public available datasets.  相似文献   

10.
This study presents an integrated k-means clustering and gravity model (IKCGM) for investigating the spatiotemporal patterns of nutrient and associated dissolved oxygen levels in Tampa Bay, Florida. By using a k-means clustering analysis to first partition the nutrient data into a user-specified number of subsets, it is possible to discover the spatiotemporal patterns of nutrient distribution in the bay and capture the inherent linkages of hydrodynamic and biogeochemical features. Such patterns may then be combined with a gravity model to link the nutrient source contribution from each coastal watershed to the generated clusters in the bay to aid in the source proportion analysis for environmental management. The clustering analysis was carried out based on 1 year (2008) water quality data composed of 55 sample stations throughout Tampa Bay collected by the Environmental Protection Commission of Hillsborough County. In addition, hydrological and river water quality data of the same year were acquired from the United States Geological Survey's National Water Information System to support the gravity modeling analysis. The results show that the k-means model with 8 clusters is the optimal choice, in which cluster 2 at Lower Tampa Bay had the minimum values of total nitrogen (TN) concentrations, chlorophyll a (Chl-a) concentrations, and ocean color values in every season as well as the minimum concentration of total phosphorus (TP) in three consecutive seasons in 2008. The datasets indicate that Lower Tampa Bay is an area with limited nutrient input throughout the year. Cluster 5, located in Middle Tampa Bay, displayed elevated TN concentrations, ocean color values, and Chl-a concentrations, suggesting that high values of colored dissolved organic matter are linked with some nutrient sources. The data presented by the gravity modeling analysis indicate that the Alafia River Basin is the major contributor of nutrients in terms of both TP and TN values in all seasons. With this new integration, improvements for environmental monitoring and assessment were achieved to advance our understanding of sea-land interactions and nutrient cycling in a critical coastal bay, the Gulf of Mexico.  相似文献   

11.
Phytoplankton and water quality long term trends are presented from a 20-year monitoring program of Chesapeake Bay and several of its major tributaries. Increasing phytoplankton biomass and abundance are ongoing within this estuarine complex, with diatoms the dominant component, along with chlorophytes and cyanobacteria as sub-dominant contributors in the tidal freshwater and oligohaline regions. Diatoms, dinoflagellates, and cryptomonads are among the major flora downstream in the tributaries and within the Chesapeake Bay. Water quality conditions within the three tributaries have remained rather stable over this time period; while there are long term trends of reduced nutrients, increasing bottom oxygen, and decreasing water clarity for the lower Chesapeake Bay. Of note is an increasing trend of cyanobacteria biomass at 12 of the 13 stations monitored at tributary and Chesapeake Bay stations, plus the presence of 37 potentially harmful taxa reported for these waters. However, the overall status of the phytoplankton populations is presently favorable, in that it is mainly represented and dominated by taxa suitable as a major food and oxygen source within this ecosystem. Although potentially harmful taxa are present, they have not at this time exerted profound impact to the region, or replaced the diatom populations in overall dominance.  相似文献   

12.
Despite dramatic reductions in the 1990s of N and P emissions in the drainage basin, Lake Peipsi/Chudskoe (Estonia/Russia) is still suffering from algal blooms, probably caused by low N:P ratios of the lake water. To quantify the sources and changes of N and P inputs to the lake as a result of economic changes, we modelled emissions, transfer and in-stream retention using a GIS model. The model was calibrated using river monitoring data from the 1985–1989 period, and used to simulate emissions and loads for five future scenarios for 2015–2019. During the 1985–1999 period, diffuse P emissions decreased relatively more than N diffuse emissions, but this was not reflected in the loads to the lake. P loads decreased relatively less than N loads, which caused a decrease in the N:P ratio of the rivers. About 30–45% of diffuse N emissions and only 3–10% of diffuse P emissions reaches the river network. In-stream retention reduces N and P loads to the lake by about 62% and 72%, respectively. Point sources contribute negligibly to the N load to the lake, but form about one-third of the P load. A target/fast development scenario is the most likely scenario for the 2015–2019 period, resulting in higher nutrient loads than in recent years. We conclude that effective load reductions can be achieved by focussing on diffuse N and P emissions close ( < 50 km2) to the lake and by upgrading P removal capacity in wastewater treatment plants of towns.  相似文献   

13.
The objective of this research project is to develop, test, validate, and demonstrate an analytical framework for assessing regional-scale forest disturbance in the mid-Atlantic region by linking forest disturbance and forest nitrogen export to surface waters at multiple spatial scales. It is hypothesized that excessive nitrogen (N) leakage (export) from forested watersheds is a potentially useful, integrative "indicator" of a negative change in forest function which occurs in synchrony with changes in forest structure and species composition. Our research focuses mainly on forest disturbance associated with recent defoliations by the gypsy moth larva (Lymantria dispar) at spatial scales ranging from small watersheds to the entire Chesapeake Bay watershed. An approach for assessing the magnitude of forest disturbance and its impact on surface water quality will be based on an empirical model relating forest N leakage and gypsy moth defoliation that will be calibrated using data from 25 intensively-monitored forested watersheds in the region and tested using data from more than 60 other forested watersheds in Virginia. Ultimately, the model will be extended to the region using spatially-extensive data describing: 1) the spatial distribution of dominant forest types in the mid-Atlantic region based on both remote sensing imagery and plot-scale vegetation data; 2) the spatial pattern of gypsy moth defoliation of forested areas from aerial mapping; and 3) measurements of dissolved N concentrations in streams from synoptic water quality surveys.  相似文献   

14.
The aim of the work was to study the influence of the water taken from one of the most polluted parts of the Peter the Great Bay (the Japan Sea), the Nakhodka Bay, on the growth and chlorophyll a concentration in the cells of microalga P. tricornutum Bohlin (Bacillariophyta). The estimation of the dynamics of cell number growth and chlorophyll a concentration in the cells of microalga grown in the water from the Nakhodka Bay was made. At the same time, in 2007–2008, the main hydrochemical parameters, such as water salinity, dissolved oxygen concentration, BOD5, organic and mineral phosphates concentration, anionic surfactants, and total petroleum hydrocarbons, were determined. It is shown that in July 2007, when most hydrochemical parameters were lower than the maximum permissible level, the culture growth and chlorophyll a contents in the cells did not differ from the control for certain. In other seasons these indices differed greatly from the control. The positive correlation between the concentration of dissolved oxygen, phosphates, petroleum hydrocarbons, and the number of microalga cells, grown in the water from the Nakhodka Bay, was shown.  相似文献   

15.
This study sought to determine the lowest number of storm events required for adequate estimation of annual nutrient loads from a forested watershed using the regression equation between cumulative load (∑L) and cumulative stream discharge (∑Q). Hydrological surveys were conducted for 4 years, and stream water was sampled sequentially at 15-60-min intervals during 24 h in 20 events, as well as weekly in a small forested watershed. The bootstrap sampling technique was used to determine the regression (∑L-∑Q) equations of dissolved nitrogen (DN) and phosphorus (DP), particulate nitrogen (PN) and phosphorus (PP), dissolved inorganic nitrogen (DIN), and suspended solid (SS) for each dataset of ∑L and ∑Q. For dissolved nutrients (DN, DP, DIN), the coefficient of variance (CV) in 100 replicates of 4-year average annual load estimates was below 20% with datasets composed of five storm events. For particulate nutrients (PN, PP, SS), the CV exceeded 20%, even with datasets composed of more than ten storm events. The differences in the number of storm events required for precise load estimates between dissolved and particulate nutrients were attributed to the goodness of fit of the ∑L-∑Q equations. Bootstrap simulation based on flow-stratified sampling resulted in fewer storm events than the simulation based on random sampling and showed that only three storm events were required to give a CV below 20% for dissolved nutrients. These results indicate that a sampling design considering discharge levels reduces the frequency of laborious chemical analyses of water samples required throughout the year.  相似文献   

16.
Regional policies to achieve water quality goals assign a unique pollution control technology to every pollution source in a watershed, thereby defining a watershed strategy. For watersheds with even a modest number of pollution sources and control alternatives, the decision problem has combinatorial complexity. The perception of complexity—manifested in innumerable feasible watershed strategies—commonly induces the use of simplifying decision heuristics and ad hoc decision rules that reduce decision complexity by limiting the choice set to a “manageable” number of alternatives. In problems with large complex choice sets, these decision heuristics simplify decision making by excluding the vast majority of feasible alternatives a priori. In contrast, watershed-scale optimization enables decision makers to consider all feasible alternatives implicitly, exploiting rather than restricting the complexity of the feasible choice set. This contrast is illustrated using mixed-integer linear programming to identify interstate watershed strategies that achieve Chesapeake Bay nutrient reduction goals for the Potomac River Basin. The use of optimization in collaborative decision making helped refine and capture decision makers’ underlying values and preferences in policy-relevant constraints reflecting equity and political feasibility. Optimization formulations incorporating these constraints identified more effective and desirable management alternatives that would not otherwise have been considered using familiar decision heuristics and traditional comparisons among a limited number of ad hoc scenarios. Incorporating optimization in collaborative decision making generated superior watershed strategies and eased the cognitive limitations on decision making by substituting the computational burden of solving mixed-integer linear programs for decision makers’ cognitive burden of enumerating alternatives and scenarios for environmental systems with combinatorial complexity.  相似文献   

17.
Nutrients in the Changjiang River   总被引:2,自引:0,他引:2  
N, P and SiO3-Si in the Changjiang mainstream and its major tributaries and lakes were investigated in the dry season from November to December, 1997, and in the flood season in August and October, 1998. An even distribution of SiO3-Si was found along the Changjiang River. However, the concentrations of total nitrogen, total dissolved nitrogen, dissolved inorganic nitrogen, nitrate and total phosphorus, total particulate phosphorus increased notably in the upper reaches, which reflected an increasing impact from human activities. Those concentrations in the middle and lower reaches of the Changjiang River were relatively constant. Dissolved N was the major form of N and the particulate P was the major form of P in the Changjiang River. The molar ratio of dissolved N to dissolved P was extremely high (192.5-317.5), while that of the particulate form was low (5.6-37.7). High N/P ratio reflected a significant input of anthropogenic N such as N from precipitation and N lost from water and soil etc. Dissolved N and P was in a quasi-equilibrium state in the process from precipitate to the river. In the turbid river water, light limitation, rather than P limitation, seemed more likely to be a controlling factor for the growth of phytoplankton. A positive linear correlationship between the concentration of dissolved N and the river's runoff was found, mainly in the upper reaches, which was related to the non-point sources of N. Over the past decades, N concentration has greatly increased, but the change of P concentration was not as significant as N. The nutrient fluxes of the Changjiang mainstream and tributaries were estimated, and the result showed that the nutrient fluxes were mainly controlled by the runoff, of which more than a half came from the tributaries. These investigations carried out before water storage of the Three Gorges Dam will supply a scientific base for studying the influences of the Three Gorges Dam on the ecology and environment of the Changjiang River and its estuary.  相似文献   

18.
Anthropogenic inputs of nitrogen (N), phosphorus (P) and oxygen-consuming material to aquatic ecosystems can change nutrient dynamics, deplete oxygen, and change abundance and diversity of aquatic plants and animals. The Northern Rivers Ecosystem Initiative required a research and assessment program to establish the contribution of pulp mill and sewage discharges to eutrophication and depressions in dissolved oxygen (DO) in the Athabasca and Wapiti rivers of northern Alberta, Canada and examine the adequacy of existing guidelines for protecting these systems. Analysis of long-term data showed that total N (TN) and total P (TP) concentrations in exposed river reaches exceeded concentrations in reference reaches by ≤ 2 times for the Athabasca River, and by 9.6 (TP) and 2.6 (TN) times for the Wapiti River. Results from nutrient limitation experiments conducted in situ and in mesocosms showed that benthic algal production was nutrient sufficient downstream of pulp mill discharges but constrained in upper river reaches by insufficient P (Athabasca River) or N + P (Wapiti River). Dissolved oxygen (DO) concentrations in both rivers declined during winter such that median concentrations in the Athabasca River 945 km downstream of the headwaters were approximately 8 mg L−1 in mid-February. Although water column DO rarely approached the guideline of 6.5 mg L−1, DO studies undertaken in the Wapiti River showed that pore water DO often failed to meet this guideline and could not be predicted from water column DO. Results from this integrated program of monitoring and experimentation have improved understanding of the interactions between nutrients, DO and aquatic ecosystem productivity and resulted in recommendations for revisions to nutrient and DO guidelines for these northern rivers.The Canadian Crown reserves the right to retain a non-exclusive, royalty free licence in and to any copyright.  相似文献   

19.
Monitoring data collected from the Mingder Reservoir in Taiwan indicate that the water quality is between mesotrophic and eutrophic. Chlorophyll a concentration is higher in the summer and anoxic conditions occur in the bottom. The data also reveal that a pronounced vertical thermal gradient in summer and vertical mixing the end of fall. A vertical two-dimensional, laterally averaged hydrodynamic and water quality model (CE-QUAL-W2) was adopted to simulate the water surface elevation, water temperature, and water quality conditions in the water column. The modeling effort was supported with monitoring data collected in the field for a 2-year period in the reservoir. The hydrodynamic model reproduced the time series water surface elevation. Spatial and temporal distributions of temperature in the water column of the reservoir were also well reproduced by the hydrodynamic model. Model-calculated concentrations of key water quality constituents such as nutrients, dissolved oxygen, and algal biomass matched the measured values closely in the reservoir. The calibrated model was then applied to simulate water quality response to various nutrient reduction scenarios. Results of the model scenario runs reveal that a 20% and 80% reduction of the phosphorus loads will improve the water quality from eutrophic to mesotrophic and oligotrophic conditions, respectively. The modeling effort has yielded valuable information that can be used by decision makers for the evaluation of different management strategies of reducing watershed nutrient loads.  相似文献   

20.
Watershed exports of carbon, nitrogen, phosphorus, major solutes, and suspended sediments were examined during five water years in the Penobscot River basin, which forms part of the Gulf of Maine watershed. Mean annual exports of dissolved organic carbon (DOC) in the Penobscot River were 58 kg C ha(-1) year(-1), whereas cumulative yearly watershed flux of DOC during the study period ranged from 8.6 to 16.1 × 10(10) g C year(-1) and averaged 11.7 × 10(10) g C year(-1). Watershed exports of total soluble N (TN) and total soluble P in the Penobscot River averaged 1.9 and 0.02 kg ha(-1) year(-1), respectively. Companion studies in two other major Maine rivers indicated that mean annual exports of DOC and TN in the Androscoggin River were 40 kg C ha(-1) year(-1) and 2.0 kg N ha(-1) year(-1), whereas exports in the Kennebec River were 43 kg C ha(-1) year(-1) and 2.2 kg N ha(-1) year(-1). Extrapolation of results from this investigation and a previous complementary study indicates that estuaries and coastal waters in the Gulf of Maine receive at least 1.0 × 10(10) g N year(-1) and 2.5 × 10(11) g C year(-1) in combined runoff from the four largest Maine river basins. Soluble exports of Ca + Mg + Na minus wet deposition inputs of cations in the Penobscot system were approximately 1,840 mol(c) ha(-1) year(-1), which represents a minimum estimate of cation denudation from the watershed. Based on its low N and P export rates, the Penobscot River watershed represents an example of reference conditions for use as a benchmark in ecological assessments of river water quality restoration or impairment. In addition, the biogeochemical metrics from this study provide an historical baseline for analysis of future trends in nutrient exports from the Penobscot watershed as a function of changing climatic and land use patterns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号