首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We describe a flexible, computationally efficient stream network model, which forms the core of a simulation framework that spatially integrates the contributions from point and nonpoint sources in a watershed. The model uses the map and stream topology information in the US Environmental Protection Agency’s Reach File 3 to generate a spatially explicit network of stream reaches. Water and materials are routed through the stream network to the watershed outlet, and the routing process accounts for transit times and for possible nutrient losses in streams. This model can be applied wherever Reach File maps or maps from the newer National Hydrography Dataset are available, and it can be combined with models of other watershed processes to create a complete watershed simulation system. We present an application of the stream network model to two watersheds of different sizes in the Patuxent River watershed of Maryland, USA. Simulated predictions of streamflow and nitrate concentrations are either very good or good according to standards developed for evaluating the widely used Hydrologic Simulation Program – Fortran (HSPF) watershed model.  相似文献   

2.
We examined benthic condition in three small watersheds in the Chesapeake Bay. Characterization of benthic condition was based on the combined measurements of benthic fauna, sediment toxicity, and sediment contaminant loads. Significant differences between watersheds were detected for sediment contaminant concentrations and water quality. The intensity of benthic impairment was greatest in the river surrounded by the most developed watershed. Spatial patterns of benthic condition were detected within all three watersheds. In contrast to current, intense focus on nutrient pollution in the Chesapeake Bay, qualitative comparison of our findings to land-use patterns supports findings of other studies that suggest benthic condition in tributaries of the Chesapeake Bay may more closely relate to urbanization than agricultural land uses.  相似文献   

3.
Watershed-Based Survey Designs   总被引:2,自引:0,他引:2  
Watershed-based sampling design and assessment tools help serve the multiple goals for water quality monitoring required under the Clean Water Act, including assessment of regional conditions to meet Section 305(b), identification of impaired water bodies or watersheds to meet Section 303(d), and development of empirical relationships between causes or sources of impairment and biological responses. Creation of GIS databases for hydrography, hydrologically corrected digital elevation models, and hydrologic derivatives such as watershed boundaries and upstream–downstream topology of subcatchments would provide a consistent seamless nationwide framework for these designs. The elements of a watershed-based sample framework can be represented either as a continuous infinite set defined by points along a linear stream network, or as a discrete set of watershed polygons. Watershed-based designs can be developed with existing probabilistic survey methods, including the use of unequal probability weighting, stratification, and two-stage frames for sampling. Case studies for monitoring of Atlantic Coastal Plain streams, West Virginia wadeable streams, and coastal Oregon streams illustrate three different approaches for selecting sites for watershed-based survey designs.  相似文献   

4.
The principal instrument to temporally and spatially manage water resources is a water quality monitoring network. However, to date in most cases, there is a clear absence of a concise strategy or methodology for designing monitoring networks, especially when deciding upon the placement of sampling stations. Since water quality monitoring networks can be quite costly, it is very important to properly design the monitoring network so that maximum information extraction can be accomplished, which in turn is vital when informing decision-makers. This paper presents the development of a methodology for identifying the critical sampling locations within a watershed. Hence, it embodies the spatial component in the design of a water quality monitoring network by designating the critical stream locations that should ideally be sampled. For illustration purposes, the methodology focuses on a single contaminant, namely total phosphorus, and is applicable to small, upland, predominantly agricultural-forested watersheds. It takes a number of hydrologic, topographic, soils, vegetative, and land use factors into account. In addition, it includes an economic as well as logistical component in order to approximate the number of sampling points required for a given budget and to only consider the logistically accessible stream reaches in the analysis, respectively. The methodology utilizes a geographic information system (GIS), hydrologic simulation model, and fuzzy logic.  相似文献   

5.
Only with a properly designed water quality monitoring network can data be collected that can lead to accurate information extraction. One of the main components of water quality monitoring network design is the allocation of sampling locations. For this purpose, a design methodology, called critical sampling points (CSP), has been developed for the determination of the critical sampling locations in small, rural watersheds with regard to total phosphorus (TP) load pollution. It considers hydrologic, topographic, soil, vegetative, and land use factors. The objective of the monitoring network design in this methodology is to identify the stream locations which receive the greatest TP loads from the upstream portions of a watershed. The CSP methodology has been translated into a model, called water quality monitoring station analysis (WQMSA), which integrates a geographic information system (GIS) for the handling of the spatial aspect of the data, a hydrologic/water quality simulation model for TP load estimation, and fuzzy logic for improved input data representation. In addition, the methodology was purposely designed to be useful in diverse rural watersheds, independent of geographic location. Three watershed case studies in Pennsylvania, Amazonian Ecuador, and central Chile were examined. Each case study offered a different degree of data availability. It was demonstrated that the developed methodology could be successfully used in all three case studies. The case studies suggest that the CSP methodology, in form of the WQMSA model, has potential in applications world-wide.  相似文献   

6.
Using a spatially extensive database from the Maryland Biological Stream Survey (MBSS), we describe nutrient relationships of small-order, non-tidal streams to Maryland watershed basins, Maryland Tributary Strategy basins, and stream order. In addition, we estimate the number of stream km affected by nutrient loading, using derived nutrient criteria. Based on the MBSS spring water quality sampling, we determined several important factors relating to nutrient levels in non-tidal streams. There are strong linear relationships of nutrients to the percentage of agriculture and forested land present within MBSS sampling strata. Both mean total nitrogen (TN) and mean total phosphorus (TP) levels for watershed basins by stream order show exceedances of derived nutrient reference criteria for Maryland. Four Maryland basins have over 85% of their stream kilometers exceeding the TN criterion, with three basins over 90% of the TP criterion. To protect small stream integrity in Maryland, we recommend an upper stream TN criterion between 1.34 and 1.68 mg/L and an upper stream TP criterion between 0.025 and 0.037 mg/L, based on quantile analyses. Elevated levels of both TN and TP are present in non-tidal streams, with subsequent nutrient inputs into the upper freshwater tidal reaches of the Chesapeake Bay.  相似文献   

7.
Identification of reference streams and human disturbance gradients are crucial steps in assessing the effects of human disturbances on stream health. We describe a process for identifying reference stream reaches and assessing disturbance gradients using readily available, geo-referenced stream and human disturbance databases. We demonstrate the utility of this process by applying it to wadeable streams in Michigan, USA, and use it to identify which human disturbances have the greatest impact on streams. Approximately 38% of cold-water and 16% of warm-water streams in Michigan were identified as being in least-disturbed condition. Conversely, approximately 3% of cold-water and 4% of warm-water streams were moderately to severely disturbed by landscape human disturbances. Anthropogenic disturbances that had the greatest impact on moderately to severely disturbed streams were nutrient loading and percent urban land use within network watersheds. Our process for assessing stream health represents a significant advantage over other routinely used methods. It uses inter-confluence stream reaches as an assessment unit, permits the evaluation of stream health across large regions, and yields an overall disturbance index that is a weighted sum of multiple disturbance factors. The robustness of our approach is linked to the scale of disturbances that affect a stream; it will be less robust for identifying less degraded or reference streams with localized human disturbances. With improved availability of high-resolution disturbance datasets, this approach will provide a more complete picture of reference stream reaches and factors contributing to degradation of stream health.  相似文献   

8.
Accurate estimation of total nitrogen loads is essential for evaluating conditions in the aquatic environment. Extrapolation of estimates beyond measured streams will greatly expand our understanding of total nitrogen loading to streams. Recursive partitioning and random forest regression were used to assess 85 geospatial, environmental, and watershed variables across 636 small (<585 km2) watersheds to determine which variables are fundamentally important to the estimation of annual loads of total nitrogen. Initial analysis led to the splitting of watersheds into three groups based on predominant land use (agricultural, developed, and undeveloped). Nitrogen application, agricultural and developed land area, and impervious or developed land in the 100-m stream buffer were commonly extracted variables by both recursive partitioning and random forest regression. A series of multiple linear regression equations utilizing the extracted variables were created and applied to the watersheds. As few as three variables explained as much as 76 % of the variability in total nitrogen loads for watersheds with predominantly agricultural land use. Catchment-scale national maps were generated to visualize the total nitrogen loads and yields across the USA. The estimates provided by these models can inform water managers and help identify areas where more in-depth monitoring may be beneficial.  相似文献   

9.
Management of stream nutrients is becoming increasingly important in order to protect both water quality and aquatic resources throughout the USA. Using an extensive water quality database from the long-term Maryland Biological Stream Survey (MBSS), we describe nutrient relationships to landscape characteristics as total nitrogen (TN) and total phosphorus (TP) of small-order, non-tidal streams in USEPA L2 and L3 ecoregions in Maryland and by MBSS stream order at the L2 and L3 ecoregion levels. To protect stream ecosystem integrity, preliminary reference nutrient estimates (TN and TP) as percentiles (25th of all stream reaches and 75th of stream reference reaches) for the six Maryland L3 ecoregions are: Blue Ridge TN 0.29 and 0.64 mg/L, TP 0.0065 and 0.0090 mg/L; Central Appalachians TN 0.40 and 1.0 mg/L, TP 0.0060 and 0.015 mg/L; Middle Atlantic Coastal Plains TN 0.93 and 2.5 mg/L, TP 0.094 and 0.065 mg/L; Northern Piedmont TN 1.6 and 1.8 mg/L, TP 0.010 and 0.015 mg/L; Ridge and Valley TN 0.40 and 0.98 mg/L, TP 0.0063 and 0.012 mg/L; and Southeastern Plains TN 0.33 and 0.82 mg/L, TP 0.016 and 0.042 mg/L. High levels of both TN and TP are present in many streams found in non-tidal watersheds associated with all Maryland ecoregions, but are especially elevated in the Northern Piedmont and Middle Atlantic Coastal Plain ecoregions, with the latter second-order streams (average TN?>?2.9 mg/L) significantly higher than all other ecoregion–order combinations. Across all six ecoregions, mean nutrient loading for both TN and TP was generally equivalent in first-order streams to nutrient concentrations seen in both second- and third-order streams, indicating a definite need to increase efforts in preventing nutrients from entering first-order streams. Small-order stream nutrient levels are the drivers for subsequent TN and TP inputs into the upper freshwater tidal reaches of the Chesapeake Bay, resulting in a potential risk for altered estuarine ecosystems.  相似文献   

10.
Hydrologic response is an integrated indicator of watershed condition, and significant changes in land cover may affect the overall health and function of a watershed. This paper describes a procedure for evaluating the effects of land cover change and rainfall spatial variability on watershed response. Two hydrologic models were applied on a small semi-arid watershed; one model is event-based with a one-minute time step (KINEROS), and the second is a continuous model with a daily time step (SWAT). The inputs to the models were derived from Geographic Information System (GIS) theme layers of USGS digital elevation models, the State Soil Geographic Database (STATSGO) and the Landsat-based North American Landscape Characterization classification (NALC) in conjunction with available literature and look up tables. Rainfall data from a network of 10 raingauges and historical stream flow data were used to calibrate runoff depth using the continuous hydrologic model from 1966 to 1974. No calibration was carried out for the event-based model, in which six storms from the same period were used in the calculation of runoff depth and peak runoff. The assumption on which much of this study is based is that land cover change and rainfall spatial variability affect the rainfall-runoff relationships on the watershed. To validate this assumption, simulations were carried out wherein the entire watershed was transformed from the 1972 NALC land cover, which consisted of a mixture of desertscrub and grassland, to a single uniform land cover type such as riparian, forest, oak woodland, mesquite woodland, desertscrub, grassland, urban, agriculture, and barren. This study demonstrates the feasibility of using widely available data sets for parameterizing hydrologic simulation models. The simulation results show that both models were able to characterize the runoff response of the watershed due to changes of land cover.  相似文献   

11.
Total maximum daily load (TMDL) programs utilize pollutant load reductions as the primary strategy to restore adversely affected waters of the USA. Accurate and defensible “crediting” for TMDL reductions of sediment and nutrients requires stream monitoring programs capable of quantitative assessment of soil erosivity and the “connectivity” between erosive areas and stream channels across the watershed. Using continuous (15-min) stream monitoring information from typical alpine, snowmelt-driven watersheds [Ward (2,521 ha), Blackwood (2,886 ha), and Homewood (260 ha, Homewood Mountain Resort—HMR) Creeks] on the west shore of the Lake Tahoe Basin, daily sediment (and nutrient for HMR) loads are determined and compared with those developed from estimated load–flow relationships developed from grab sampling data. Compared to the previously estimated sediment load–discharge relationships, measured curves were slightly below those estimated, though not significantly so at Blackwood and Ward Creeks in the period 1997–2002. Based on average daily flowrates determined from calibrated hydrologic modeling during the period 1994–2004, average daily flowrate frequency distributions per year are determined from which load reduction “crediting” towards TMDL targets can be evaluated. Despite seemingly similar estimated and measured sediment load–flow relationships, annual “estimated” loads exceeded those “measured” by about 40 % for Ward and Blackwood Creeks and over 300 times for HMR Creek. Similarly, though less dramatic, estimated annual nutrient loads at HMR Creek exceeded those measured by 1.7 and 6 times for total nitrogen and total phosphorus, respectively. Such results indicate that actual measured load–flow relationships are likely necessary for realistic quantitative and defensible TMDL crediting.  相似文献   

12.
In order to resolve the spatial component of the design of a water quality monitoring network, a methodology has been developed to identify the critical sampling locations within a watershed. This methodology, called Critical Sampling Points (CSP), focuses on the contaminant total phosphorus (TP), and is applicable to small, predominantly agricultural-forested watersheds. The CSP methodology was translated into a model, called Water Quality Monitoring Station Analysis (WQMSA). It incorporates a geographic information system (GIS) for spatial analysis and data manipulation purposes, a hydrologic/water quality simulation model for estimating TP loads, and an artificial intelligence technology for improved input data representation. The model input data include a number of hydrologic, topographic, soils, vegetative, and land use factors. The model also includes an economic and logistics component. The validity of the CSP methodology was tested on a small experimental Pennsylvanian watershed, for which TP data from a number of single storm events were available for various sampling points within the watershed. A comparison of the ratios of observed to predicted TP loads between sampling points revealed that the model's results were promising.  相似文献   

13.
The Central Valley, California, R-EMAP project assessed the effects of highly modified, agriculturally dominated landuse on the aquatic resources of the lower portion of the Central Valley watersheds. The focus of this paper is to assess the utility of the EMAP design and the River Reach File version 3 (RF3) 1:100,000 scale Digital Line Graph (DLG) as a sampling frame. The study area is 34,099 mi2(88,316 km2) and comprises the lower reaches of the Sacramento River and San Joaquin River watersheds to the 1000 ft. (305 m) elevation. Sampling sites are selected using a tessellation stratified design to represent the two main populations of interest: natural streams and man-made waterways. Sites are selected to represent 13,226 miles of streams and sloughs, and 14,648 miles of irrigation canals, ditches and drains. To achieve an approximately equal sample size across stream orders and basins, the sample design was weighted by Strahler order categories to ensure sampling occurred in the higher order streams. Based on office and field reconnaissance, the study provided information on the quality of RF3 as a sampling frame. Site selection using RF3 had a success rate of approximately 44%. The RF3 database has an error rate of approximately 7%. When human influence factors were included, the error rate increased to 16%. There was an 11% error rate when selecting sites for natural streams, and approximately a 14% error rate for man-made waterways. The reconnaissance information indicated that presence or absence of irrigation ditches and return drains depends on changing agricultural uses. Some of the error in the RF3 for natural streams and man-made waterways can be attributed to rapid urban expansion, especially in the San Joaquin basin.  相似文献   

14.
Watershed land use in suburban areas can affect stream biota through degradation of instream habitat, water quality, and riparian vegetation. By monitoring stream biotic communities in various geographic regions, we can better understand and conserve our watershed ecosystems. The objective of this study was to examine the relationship between watershed land use and the integrity of benthic invertebrate communities in eight streams that were assessed over a 3-year period (2001-2003). Sites were selected from coastal Rhode Island watersheds along a residential land-use gradient (4-59%). Using the rapid bioassessment protocol, we collected biological, physicochemical, habitat, and nutrient data from wadeable stream reaches and compared metrics of structure and integrity. Principal component analyses showed significant negative correlation of indicators for stream physicochemical, habitat, and instream biodiversity with increasing residential land use (RLU) in the watershed. The physicochemical variables that were most responsive to percent RLU were conductivity, instream habitat, nitrate, and dissolved inorganic nitrogen (DIN). The positive correlation of DIN with percent RLU indicated an anthropogenic source of pollution affecting the streams. The biotic composition of the streams shifted from sensitive to insensitive taxa as percent RLU increased; the most responsive biological variables were percent Ephemeroptera, percent Scrapers, percent Insects, and the Hilsenhoff biotic index. These data show the importance of land management and conservation at the watershed scale to sustaining the biotic integrity of coastal stream ecosystems.  相似文献   

15.
To explore the value of high-frequency monitoring to characterise and explain riverine nutrient concentration dynamics, total phosphorus (TP), reactive phosphorus (RP), ammonium (NH4-N) and nitrate (NO3-N) concentrations were measured hourly over a 2-year period in the Duck River, in north-western Tasmania, Australia, draining a 369-km2 mixed land use catchment area. River discharge was observed at the same location and frequency, spanning a wide range of hydrological conditions. Nutrient concentrations changed rapidly and were higher than previously observed. Maximum nutrient concentrations were 2,577 μg L?1 TP, 1,572 μg L?1 RP, 972 μg L?1 NH4-N and 1,983 μg L?1 NO3-N, respectively. Different nutrient response patterns were evident at seasonal, individual event and diurnal time scales—patterns that had gone largely undetected in previous less frequent water quality sampling. Interpretation of these patterns in terms of nutrient source availability, mobilisation and delivery to the stream allowed the development of a conceptual model of catchment nutrient dynamics. Functional stages of nutrient release were identified for the Duck River catchment and were supported by a cluster analysis which confirmed the similarities and differences in nutrient responses caused by the sequence of hydrologic events: (1) a build-up of nutrients during periods with low hydrologic activity, (2) flushing of readily available nutrient sources at the onset of the high flow period, followed by (3) a switch from transport to supply limitation, (4) the accessibility of new nutrient sources with increasing catchment wetness and hydrologic connectivity and (5) high nutrient spikes occurring when new sources become available that are easily mobilised with quickly re-established hydrologic connectivity. Diurnal variations that could be influenced by riverine processes and/or localised point sources were also identified as part of stage (1) and during late recession of some of the winter high flow events. Illustrated by examples from the Duck River study, we demonstrate that the use of high-frequency monitoring to identify and characterise functional stages of catchment nutrient release is a constructive approach for informing and supporting catchment management and future nutrient monitoring strategies.  相似文献   

16.
Nonpoint source (NPS) pollution is tightly linked to land use activities that determine the sources and magnitudes of pollutant loadings to stream water. The pollutant loads may also be alleviated within reservoirs because of the physical interception resulting from changed hydrological regimes and other biochemical processes. It is important but challenging to assess the NPS pollution processes with human effects due to the measurement limitations. The objective of this study is to evaluate the effects of human activities such as land uses and reservoir operation on the hydrological and NPS pollution processes in a highly agricultural area-the Iowa River Basin-using the Soil and Water Assessment Tool (SWAT). The evaluation of model performance at multiple sites reveals that SWAT can consistently simulate the daily streamflow, and monthly/annual sediment and nutrient loads (nitrate nitrogen and mineral phosphorus) in the basin. We also used the calibrated model to estimate the trap efficiencies of sediment (~78%) and nutrients (~30%) in the Coralville Reservoir within the basin. These non-negligible effects emphasize the significance of incorporating the sediment and nutrient removal mechanisms into watershed system studies. The spatial quantification of the critical NPS pollution loads can help identify hot-spot areas that are likely locations for the best management practices.  相似文献   

17.
Patterns of Spatial Autocorrelation in Stream Water Chemistry   总被引:2,自引:0,他引:2  
Geostatistical models are typically based on symmetric straight-line distance, which fails to represent the spatial configuration, connectivity, directionality, and relative position of sites in a stream network. Freshwater ecologists have explored spatial patterns in stream networks using hydrologic distance measures and new geostatistical methodologies have recently been developed that enable directional hydrologic distance measures to be considered. The purpose of this study was to quantify patterns of spatial correlation in stream water chemistry using three distance measures: straight-line distance, symmetric hydrologic distance, and weighted asymmetric hydrologic distance. We used a dataset collected in Maryland, USA to develop both general linear models and geostatistical models (based on the three distance measures) for acid neutralizing capacity, conductivity, pH, nitrate, sulfate, temperature, dissolved oxygen, and dissolved organic carbon. The spatial AICC methodology allowed us to fit the autocorrelation and covariate parameters simultaneously and to select the model with the most support in the data. We used the universal kriging algorithm to generate geostatistical model predictions. We found that spatial correlation exists in stream chemistry data at a relatively coarse scale and that geostatistical models consistently improved the accuracy of model predictions. More than one distance measure performed well for most chemical response variables, but straight-line distance appears to be the most suitable distance measure for regional geostatistical modeling. It may be necessary to develop new survey designs that more fully capture spatial correlation at a variety of scales to improve the use of weighted asymmetric hydrologic distance measures in regional geostatistical models.  相似文献   

18.
Quantifying the relative impacts of soil restoration or disturbance on watershed daily sediment and nutrients loads is essential towards assessing the actual costs/benefits of the land management. Such quantification requires stream monitoring programs capable of detecting changes in land-use or soil functional and erosive area “connectivity” conditions across the watershed. Previously, use of a local-scale, field-data based runoff and erosion model for three Lake Tahoe west-shore watersheds as a detection monitoring “proof of concept” suggested that analyses of midrange average daily flows can reveal sediment load reductions of relatively small watershed fractional areas (~5 %) of restored soil function within a few years of treatment. Developing such an effective stream monitoring program is considered for tributaries on the west shore of the Lake Tahoe Basin using continuous (15-min) stream monitoring information from Ward (2,521 ha), Blackwood (2,886 ha), and the Homewood (260 ha, HMR) Creek watersheds. The continuous total suspended sediment (TSS) and discharge monitoring confirmed the hysteretic TSS concentration—flowrate relationship associated with the daily and seasonal spring snowmelt hydrographs at all three creeks. Using the complete dataset, daily loads estimated from 1-h sampling periods during the day indicated that the optimal sampling hours were in the afternoon during the rising limb of the spring snowmelt hydrograph, an observation likely to apply across the Sierra Nevada and other snowmelt driven watersheds. Measured rising limb sediment loads were used to determine if soils restoration efforts (e.g., dirt road removal, ski run rehabilitation) at the HMR creek watershed reduced sediment loads between 2010 and 2011. A nearly 1.5-fold decrease in sediment yields (kg/ha per m3/s flow) was found suggesting that this focused monitoring approach may be useful towards development of TMDL “crediting” tools. Further monitoring is needed to verify these observations and confirm the value of this approach.  相似文献   

19.
A set of geographically isolated differential nitrogen (N) and phosphorus (P) load model scenarios from major Chesapeake basins provides information on the relative impact of nutrient loads on primary production and dissolved oxygen in the Chesapeake Bay. Model results show the relationships of deep water dissolved oxygen with nutrient limitation-related algal blooms, organic carbon loads from the watershed, estuarine circulation, nutrient cycling, and nutrient diagenesis. The combined effect of changes in load from multiple basins is additive for changes in both chlorophyll-a and deep water dissolved oxygen concentrations. Management of both N and P are required in the Chesapeake watershed and tidal waters to achieve water quality standards, but overall efficiencies could be gained with strategies that place greater emphasis on P control in the upper Bay and greater emphasis on N control in the lower Bay. The areas of the Bay with the highest degree of dissolved oxygen degradation that generally drive management decisions are mostly P-limited and are significantly influenced by the load from the upper Bay’s basins. Reducing P from the upper Bay’s basins will intensify P limitation and would allow an increase in N of about six times the weight of P reduction. Combining the relative nutrient reduction effectiveness with the relative control cost information could improve management efficiency and provide benefits at a lower cost. This article describes initial steps that can be taken to examine the benefits from N-P exchanges.  相似文献   

20.
Urbanization and the subsequent changes in land use/cover inevitably influence the quality and even the quantity of stream water. This issue is widely studied through evaluations on land-use change scenarios or comparisons among historical patterns at the same watershed. However, observational stream discharge changes through urbanization gradient have rarely been discussed. In this study, we analyzed 5-year discharge data from 13 gauges in the Danshui River network with a wide range of urbanization gradient to explore the impacts on observational hydrological characteristics in individual catchments. The results reveal that stream discharge in pristine watersheds is characterized by a larger proportion of baseflow and is less fluctuating. When the forest coverage is <90%, the discharge fluctuation almost doubles. Meanwhile, the baseflow fraction decreases gradually with the increase of paddy area, which may concomitantly result from the increasing irrigation. Such a drop in baseflow may threaten the maintenance of the minimum flow required for the stream aquatic ecosystem. Furthermore, we simulated the stream discharges by TOPMODEL with blind land-use-independent parameters. The results show that the simulated discharges are satisfactory, particularly for the pristine catchments, but not as fitting for the paddy-intensive watersheds perhaps due to the unexpected irrigation. On the whole, the calibrated parameters are dependent with the landscape characteristics. The landscape-based parameter estimations can be applied to simulate discharge well, meaning the potential to assess the ungauged watersheds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号