首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Central Valley of California contains critical habitat for many aquatic and terrestrial biological resources. The purpose of this R-EMAP project was to assess the effects from a highly modified agriculturally dominated landuse area on the aquatic resources of the lower portion of the Central Valley watersheds. The study area is 24,346 mi2 and comprises the Sacramento Valley and San Joaquin Valley watersheds to the 1,000 ft. elevation contour. Populations of interest are man-made conveyances and wadeable natural streams. There are 40,756 miles of streams and constructed conveyances within the Central Valley as designated by RF3 database. Sample sites were selected to represent 14,399 miles of streams and sloughs, and 16,697 miles of constructed conveyances.  相似文献   

2.
Monitoring programs in the agriculturally intense San Joaquin River Valley of California have periodically found organophosphate (OP) insecticide concentrations, predominantly chlorpyrifos, diazinon and methidathion, at levels high enough to cause mortality for the aquatic invertebrate Ceriodaphnia dubia. These detections are likely the result of off-site movement from treated fields. However, the relative significance and magnitude of off-site transport pathways cannot be readily deduced from monitoring data alone. Therefore, a comprehensive modeling system has been constructed to estimate temporal and spatial pesticide source magnitudes and to follow the pesticide dissipation pathways once in surface water. The USEPA models HSPF and PRZM3 were used for the hydrology and non-point source predictions, respectively. Spray drift was accounted for using the mechanistic model AgDrift. The Orestimba Creek Watershed in the San Joaquin Valley was characterized and used as a typical watershed for this region. Representative transport pathways were ranked and quantified, and numerical implementation of best management practices (BMPs) determined which practice may have the highest likelihood for reducing pesticide loadings. Approximately 85% of the predicted chlorpyrifos mass detected between May 1, 1996, and April 30, 1997 resulted from drift, with the largest contributions coming from walnut orchards immediately adjacent to Orestimba Creek. Various simulated drift mitigation measures suggest chlorpyrifos mass loadings can be decreased by over 90% depending upon the type of mitigation chosen. Imposed drift BMPs should be effective in reducing chlorpyrifos levels found in surface waters of the San Joaquin valley if the Orestimba creek watershed is considered representative of watersheds found in this area of California.  相似文献   

3.
Organochlorines and selenium in California night-heron and egret eggs   总被引:2,自引:0,他引:2  
Exceptionally high concentrations of DDE were found in black-crowned night-heron (Nycticorax nycticorax) (geometric mean 8.62 g g–1 wet wt.) and great egret (Casmerodius albus) (24.0 g g–1) eggs collected from the Imperial Valley (Salton Sea), California in 1985. DDE concentrations in 14 of the 87 (16%) randomly selected night-heron eggs from six colonies (two in San Francisco Bay, three in the San Joaquin Valley, and one at Salton Sea) were higher than those associated with reduced reproductive success of night-herons (8 g g–1). In addition, mean shell thickness of night-heron eggs collected from the San Joaquin Valley and from San Francisco Bay during 1982–1984 was significantly less than pre-DDT thickness and was negatively correlated (r=–0.50, n=75, P<0.0001) with DDE concentration. Mean selenium concentration in night-heron eggs from Salton Sea (1.10 g g–1) was significantly higher than in eggs from three locations in the San Joaquin Valley, and in egret eggs from Salton Sea.  相似文献   

4.
The primary goal of this study was to characterize physical habitat and benthic communities (macroinvertebrates) in the Stanislaus, Tuolumne and Merced Rivers in California’s San Joaquin Valley in 2003. These rivers have been listed as impaired water bodies (303 (d) list) by the State of California due to the presence of organophosphate (OP) insecticides chlorpyrifos and diazinon, Group A pesticides (i.e., organochlorine pesticides), mercury, or unknown toxicity. Based on 10 instream and riparian physical habitat metrics, total physical habitat scores in the Stanislaus River ranged from 124 to 188 (maximum possible total score is 200). The highest total habitat score was reported at the upstream site. Tuolumne River physical habitat scores ranged from 86 to 167. Various Tuolumne River physical habitat metrics, including total habitat score, increased from downstream to upstream in this river. Merced River physical habitat scores ranged from 121 to 170 with a significant increase in various physical habitat metrics, including total habitat score, reported from downstream to upstream. Channel flow (an instream metric) and bank stability (a riparian metric) were the most important physical habitat metrics influencing the various benthic metrics for all three rivers. Abundance measures of benthic macroinvertebrates (5,100 to 5,400 individuals) were similar among the three rivers in the San Joaquin watershed. Benthic communities in all three rivers were generally dominated by: (1) Baetidae species (mayflies) which are a component of EPT taxa generally considered sensitive to environmental degradation; (2) Chironomidae (midges) which can be either tolerant or sensitive to environmental stressors depending on the species; (3) Ephemerellidae (mayflies) which are considered sensitive to pollution stress; and (4) Naididae (aquatic worms) which are generally considered tolerant to environmental stressors. The presence of 117 taxa in the Stanislaus River, 114 taxa in the Tuolumne River and 96 taxa in the Merced River implies that the benthic communities in these streams are fairly diverse but without a clear definition of benthic community expectations it is unknown if these water bodies are actually impaired.  相似文献   

5.
The ecological and economic impacts associated with invasive species are of critical concern to land managers. The ability to map the extent and severity of invasions would be a valuable contribution to management decisions relating to control and monitoring efforts. We investigated the use of hyperspectral imagery for mapping invasive aquatic plant species in the Sacramento-San Joaquin Delta in the Central Valley of California, at two spatial scales. Sixty-four flightlines of HyMap hyperspectral imagery were acquired over the study region covering an area of 2,139 km2 and field work was conducted to acquire GPS locations of target invasive species. We used spectral mixture analysis to classify two target invasive species; Brazilian waterweed (Egeria densa), a submerged invasive, and water hyacinth (Eichhornia crassipes), a floating emergent invasive. At the relatively fine spatial scale for five sites within the Delta (average size 51 ha) average classification accuracies were 93% for Brazilian waterweed and 73% for water hyacinth. However, at the coarser, Delta-wide scale (177,000 ha) these accuracy results were 29% for Brazilian waterweed and 65% for water hyacinth. The difference in accuracy is likely accounted for by the broad range in water turbidity and tide heights encountered across the Delta. These findings illustrate that hyperspectral imagery is a promising tool for discriminating target invasive species within the Sacramento-San Joaquin Delta waterways although more work is needed to develop classification tools that function under changing environmental conditions.  相似文献   

6.
Riparian forest restoration has become a major focus of watershed initiatives to improve degraded stream ecosystems. In urban watersheds, however, the ability of riparian forests to improve stream ecosystems may be diminished due to widespread, upland disturbance. This paper presents the methodology and some preliminary results from the first year of fieldwork on a 3-year project designed to assess the ecological benefits of riparian reforestation in urban watersheds. The study is based on an integrated, multidisciplinary sampling of physical, chemical, and biological attributes at forested and non-forested sections of 12 streams with different amounts of urban developement within their watersheds. Restored sections of three streams are also being monitored over the 3-year duration of the project. Sampling and analysis will continue through December 2000.  相似文献   

7.
Data from 25 sites were used to evaluate associations between macroinvertebrate assemblages on large woody debris (snags) and environmental variables in the lower San Joaquin and Sacramento River drainages in California as part of the U.S. Geological Survey's National Water Quality Assessment Program. Samples were collected from 1993 to 1995 in the San Joaquin River drainage and in 1996 and 1997 in the Sacramento River drainage. Macroinvertebrate taxa were aggregated to the family (or higher) level of taxonomic organization, resulting in 39 taxa for analyses. Only the 31 most common taxa were used for two-way indicator species analysis (TWINSPAN) and canonical correspondence analysis (CCA). TWINSPAN analysis defined four groups of snag samples on the basis of macroinvertebrate assemblages. Analysis of variance identified differences in environmental and biotic characteristics among the groups. These results combined with the results of CCA indicated that mean dominant substrate type, gradient, specific conductance, water temperature, percentage of the basin in agricultural land use, percentage of the basin in combined agricultural and urban land uses, and elevation were important factors in explaining assemblage structure. Macroinvertebrate assemblages on snags may be useful in family level bioassessments of environmental conditions in valley floor habitats.  相似文献   

8.
The level of sampling effort required to characterize fish assemblage condition in a river for the purposes of bioassessment may be estimated via different approaches. However, the goal with any approach is to determine the minimum level of effort necessary to reach some specific level of confidence in the assessment. In the Ohio River, condition is estimated and reported primarily at the level of pools defined by lock and dam structures. The goal of this study was to determine the minimum level of sampling effort required to adequately characterize pools in the Ohio River for the purpose of bioassessment. We followed two approaches to estimating required sampling effort using fish assemblage data from a long-term intensive survey across a number of Ohio River pools. First, we estimated the number of samples beyond which variation in the multimetric Ohio River Fish Index (ORFIn) leveled off. Then, we determined the number of samples necessary to collect approximately 90% of the fish species observed across all samples collected within the pool. For both approaches, approximately 15 samples were adequate to reduce variation in IBI scores to acceptable levels and to capture 90% of observed species in a pool. The results of this evaluation provide a basis not only for the Ohio River Valley Water Sanitation Commission (ORSANCO) but also states and other basin commissions to develop sampling designs for bioassessment that ensure adequate sampling of all assessment units.  相似文献   

9.
The spatial and temporal distribution of macrobenthic assemblages in the San Francisco Estuary and Sacramento–San Joaquin River Delta were identified using hierarchical cluster analysis of 501 samples collected between 1994 and 2008. Five benthic assemblages were identified that were distributed primarily along the salinity gradient: (1) a polyhaline assemblage that inhabits the Central Bay, (2) a mesohaline assemblage that inhabits South Bay and San Pablo Bay, (3) a low-diversity oligohaline assemblage primarily in Suisun Bay, (4) a low-diversity sand assemblage that occurs at various locations throughout the Estuary, and (5) a tidal freshwater assemblage in the Delta. Most sites were classified within the same assemblage in different seasons and years, but a few sites switched assemblage designations in response to seasonal changes in salinity from freshwater inflows.  相似文献   

10.
Suspended sediment and nutrient loadings from agricultural watersheds have lead to habitat degradation in Lake Takkobu. To examine their relationships with land-use activities, we monitored sediment, nutrient and water discharges into the lake for a 1-year sampling period. The Takkobu River contributed the largest portion of the annual water discharge into the lake, compared with the other tributaries. During dry conditions, lake water flowed into the Kushiro River, and conversely during flooding, Kushiro River water flowed into the lake. Inflows from the Kushiro River had a high proportion of inorganic matter, with high concentrations of total nitrogen and total phosphorus, attributed to agricultural land-use development and stream channelization practiced since the 1960s in the Kushiro Mire. Nutrient loadings from these two rivers were significantly higher during flooding than in dry conditions. However, there was no clear correlation between river discharge and nutrient concentrations. Since land-use activities in the Kushiro River and Takkobu River watersheds were concentrated near rivers, nutrients easily entered the drainage system under low flow conditions. In contrast, water discharged from small, forest-dominated watersheds contained a low proportion of inorganic matter, and low nutrient concentrations. The suspended sediment delivered to the lake during the sample period was estimated as approximately 607 tons, while the total nitrogen and total phosphorus inflows were about 10,466 and 1,433 kg, respectively. Suspended sediment input into the lake was 65%, and total nitrogen and total phosphorus were 40% and 48%, respectively, being delivered by the Kushiro River.  相似文献   

11.
The objectives of this study were to use both parametric and probabilistic approaches to analyze water column concentrations of both salinity (24,845 measurements) and boron (13,028 measurements) from numerous investigations conducted in the San Joaquin River watershed from 1985 to 2002 to assess spatial and temporal trends and determine the probability of exceeding regulatory targets during both the irrigation and non-irrigation season. Salinity and boron concentrations from 26 mainstem and tributary sites were highly correlated based on this 17 yr data set. Generally, salinity and boron concentrations were higher in winter/spring and lower in summer/fall; higher concentrations of both constituents were reported in tributary sites when compared with the mainstem San Joaquin River. Approximately half the sites showed showed a negative correlation between flow and both constituents. Concentrations of both salinity and boron were somewhat variable with flow conditions for the other sites. Both linear and curvilinear trends were inconsistent over time. The salinity 90th centiles for the 26 sites ranged from 143 to 7,559 micros cm(-1) with the highest 90th centiles in tributary sites. Probabilistic analysis of salinity 90th centiles by year for five sites with extensive data showed a significant decrease over time at two sites and no significant trend for the other three sites. The probability of exceeding the salinity targets during either the irrigation (700 microm cm(-1)) or non-irrigation (1,000 micros cm(-1)) season was greater than 19% for all but three sites. The boron 90th centiles for the 26 sites ranged from 0.41 to 13.6 mg L(-1) with the highest 90th centiles from tributary sites. Probabilistic analysis of the boron 90th centile values by year for the five sites with the most extensive data showed a significant decrease over time at two sites and no significant trend for the other three sites. The probability of exceeding the boron target during the irrigation season (0.80 mg L(-1)) and non-irrigation (1.0 mg L(-1)) season was greater that 18% for all but three sites. Results from this analysis have important regulatory implications as targets for both salinity and boron are frequently exceeded at various sites in the San Joaquin River watershed.  相似文献   

12.
Stream restoration has increasingly been used as a best management practice for improving water quality in urbanizing watersheds, yet few data exist to assess restoration effectiveness. This study examined the longitudinal patterns in carbon and nitrogen concentrations and mass balance in two restored (Minebank Run and Spring Branch) and two unrestored (Powder Mill Run and Dead Run) stream networks in Baltimore, Maryland, USA. Longitudinal synoptic sampling showed that there was considerable reach-scale variability in biogeochemistry (e.g., total dissolved nitrogen (TDN), dissolved organic carbon (DOC), cations, pH, oxidation/reduction potential, dissolved oxygen, and temperature). TDN concentrations were typically higher than DOC in restored streams, but the opposite pattern was observed in unrestored streams. Mass balances in restored stream networks showed net uptake of TDN across subreaches (mean ± standard error net uptake rate of TDN across sampling dates for Minebank Run and Spring Branch was 420.3 ± 312.2 and 821.8 ± 570.3 mg m(-2) d(-1), respectively). There was net release of DOC in the restored streams (1344 ± 1063 and 1017 ± 944.5 mg m(-2) d(-1) for Minebank Run and Spring Branch, respectively). Conversely, degraded streams, Powder Mill Run and Dead Run showed mean net release of TDN across sampling dates (629.2 ± 167.5 and 327.1 ± 134.5 mg m(-2) d(-1), respectively) and net uptake of DOC (1642 ± 505.0 and 233.7 ± 125.1 mg m(-2) d(-1), respectively). There can be substantial C and N transformations in stream networks with hydrologically connected floodplain and pond features. Assessment of restoration effectiveness depends strongly on where monitoring is conducted along the stream network. Monitoring beyond the stream-reach scale is recommended for a complete perspective of evaluation of biogeochemical function in restored and degraded urban streams.  相似文献   

13.
The construction of small dams in principal streams is one of the most common forms of regulation in the province of San Luis since they cause changes of physical, chemical and biological nature downstream. The purpose of this study was to analyze the short-term modifications in the food organization of benthic macroinvertebrates communities due to the construction of a dam in the Grande River (San Luis, Argentina). Two sampling sites were established: one before the dam and another one after it. The samplings were carried out with Surber sampler and during an annual cycle extending from April 1997 to March 1998, and two complementary samplings were done in low and high waters. The field sampling design was stratified randomly, and 3 pseudo replicas were taken in a transect seasonally and monthly and were then averaged. Macroinvertebrates were classified in different functional feeding groups. The comparisons at the level of physical and chemical variables and absolute abundances of the functional groups were carried out by means of the Wilcoxon test for two related samples. The collector-filterers, scrapers and predators increase whereas the collector-gatherers and shredders decreased. There were significant differences at the level of gatherers and shredders.  相似文献   

14.
High selenium (Se) concentrations have been found in surface waters in the Kendrick Reclamation Project, Wyoming. Precipitation and irrigation water moving over seleniferous soils are contributing causes, and drought may exacerbate this. This study surveyed Se concentrations and discharges in local surface streams, irrigation drains, and the delivery canal. Sites were sampled monthly and analyzed for Se and total suspended solids (TSS). A completely randomized design with two factors (soil parent material and location, inside or outside irrigation district) was used. Mean Se concentrations were 64 μg L???1 inside the irrigation district on shale soils, 17 μg L???1 inside the district off shale soils, 5 μg L???1 outside the district on shale soils, and 3 μg L???1 outside the district off shale soils. Correlations between discharge and Se concentrations were generally negative, while correlations between discharge and Se load were generally positive. There was little correlation between load and concentration, and little correlation between TSS and Se. A comparison of Se concentrations in streams and drains showed Se concentrations were significantly higher (p?<?0.001) in streams during the irrigation season, but not in the off-season (p?=?0.515). We conclude that higher discharges decrease Se concentration, but increase load. Conversion from flood to sprinkle irrigation may increase Se concentrations by reducing discharge, but decrease Se loads going into the N. Platte River, and will likely alter the timing and magnitude of flows. Both load and concentration should be considered when implementing Se regulations and standards.  相似文献   

15.
The Maryland Department of Natural Resources is conducting the Maryland Biological Stream Survey, a probability-based sampling program, stratified by river basin and stream order, to assess water quality, physical habitat, and biological conditions in first through third order, non-tidal streams. These streams comprise about 90% of all lotic water miles in the state. About 300 sites (75 m segments) are being sampled during spring and summer each year. All basins in the state will be sampled over a three-year period, 1995-97. MBSS developments in 1995-96 included (1) an electrofishing capture efficiency correction method to improve the accuracy of fish population estimates, (2) two indices of biotic integrity (IBI) for fish assemblages to identify degraded streams, and (3) land use information for catchments upstream of sampled sites to investigate associations between stream condition and anthropogenic stresses. Based on fish IBI scores at 270 stream sites in six basins sampled in 1995, 11% of non-tidal stream miles in Maryland were classified as very poor, 15% as poor, 24% as fair, and 27% as good. IBIs have not yet been developed for stream sites with catchment areas less than 120 hectares (23% of non-tidal stream miles). IBI scores declined with stream acid neutralizing capacity (ANC) and pH, an association that was also evident for fish species richness, biomass, and density. Low IBI scores were associated with several measures of degraded stream habitat, but not with local riparian buffer width. There was a significant negative association between IBI scores and urban land use upstream of sampled sites in the only extensively urbanized basin assessed in 1995. Future plans for the MBSS include (1) identifying all benthic macroinvertebrate samples to genus, (2) developing benthic macroinvertebrate, herpetofaunal, and physical habitat indicators, and (3) enhancing the analysis of stream condition-stressor associations by refining landscape metrics and using multi-variate techniques.  相似文献   

16.
Radioactive materials which are released into streams on the Savannah River Site (SRS) eventually flow into the Savannah River. Tritium, 90Sr, 137Cs, and 239Pu account for the majority of the radiation dose received by users of the Savannah River. This paper focuses on the dose uncertainties originating from variability in parameters describing the transport and uptake of these nuclides. Parameter sensitivity has also been determined for each liquid pathway exposure model. The models used here to estimate radiation dose to an exposed individual provide a range of possible dose estimates that span approximately one order of magnitude. A pathway analysis reveals that aquatic food and water consumption account for more than 95% of the total dose to an individual.  相似文献   

17.
Accurate estimation of total nitrogen loads is essential for evaluating conditions in the aquatic environment. Extrapolation of estimates beyond measured streams will greatly expand our understanding of total nitrogen loading to streams. Recursive partitioning and random forest regression were used to assess 85 geospatial, environmental, and watershed variables across 636 small (<585 km2) watersheds to determine which variables are fundamentally important to the estimation of annual loads of total nitrogen. Initial analysis led to the splitting of watersheds into three groups based on predominant land use (agricultural, developed, and undeveloped). Nitrogen application, agricultural and developed land area, and impervious or developed land in the 100-m stream buffer were commonly extracted variables by both recursive partitioning and random forest regression. A series of multiple linear regression equations utilizing the extracted variables were created and applied to the watersheds. As few as three variables explained as much as 76 % of the variability in total nitrogen loads for watersheds with predominantly agricultural land use. Catchment-scale national maps were generated to visualize the total nitrogen loads and yields across the USA. The estimates provided by these models can inform water managers and help identify areas where more in-depth monitoring may be beneficial.  相似文献   

18.
Identification of reference streams and human disturbance gradients are crucial steps in assessing the effects of human disturbances on stream health. We describe a process for identifying reference stream reaches and assessing disturbance gradients using readily available, geo-referenced stream and human disturbance databases. We demonstrate the utility of this process by applying it to wadeable streams in Michigan, USA, and use it to identify which human disturbances have the greatest impact on streams. Approximately 38% of cold-water and 16% of warm-water streams in Michigan were identified as being in least-disturbed condition. Conversely, approximately 3% of cold-water and 4% of warm-water streams were moderately to severely disturbed by landscape human disturbances. Anthropogenic disturbances that had the greatest impact on moderately to severely disturbed streams were nutrient loading and percent urban land use within network watersheds. Our process for assessing stream health represents a significant advantage over other routinely used methods. It uses inter-confluence stream reaches as an assessment unit, permits the evaluation of stream health across large regions, and yields an overall disturbance index that is a weighted sum of multiple disturbance factors. The robustness of our approach is linked to the scale of disturbances that affect a stream; it will be less robust for identifying less degraded or reference streams with localized human disturbances. With improved availability of high-resolution disturbance datasets, this approach will provide a more complete picture of reference stream reaches and factors contributing to degradation of stream health.  相似文献   

19.
Wildlife conservationists design monitoring programs to assess population dynamics, project future population states, and evaluate the impacts of management actions on populations. Because agency mandates and conservation laws call for monitoring data to elicit management responses, it is imperative to design programs that match the administrative scale for which management decisions are made. We describe a program to monitor population trends in American beaver (Castor canadensis) on the US Department of Agriculture, Black Hills National Forest (BHNF) in southwestern South Dakota and northeastern Wyoming, USA. Beaver have been designated as a management indicator species on the BHNF because of their association with riparian and aquatic habitats and its status as a keystone species. We designed our program to monitor the density of beaver food caches (abundance) within sampling units with beaver and the proportion of sampling units with beavers present at the scale of a national forest. We designated watersheds as sampling units in a stratified random sampling design that we developed based on habitat modeling results. Habitat modeling indicated that the most suitable beaver habitat was near perennial water, near aspen (Populus tremuloides) and willow (Salix spp.), and in low gradient streams at lower elevations. Results from the initial monitoring period in October 2007 allowed us to assess costs and logistical considerations, validate our habitat model, and conduct power analyses to assess whether our sampling design could detect the level of declines in beaver stated in the monitoring objectives. Beaver food caches were located in 20 of 52 sampled watersheds. Monitoring 20 to 25 watersheds with beaver should provide sufficient power to detect 15–40% declines in the beaver food cache index as well as a twofold decline in the odds of beaver being present in watersheds. Indices of abundance, such as the beaver food cache index, provide a practical measure of population status to conduct long-term monitoring across broad landscapes such as national forests.  相似文献   

20.
The objective of this study was to assess the applicability of using landscape variables in conjunction with water quality and benthic data to efficiently estimate stream condition of select headwater streams in the Mid-Atlantic Coastal Plains. Eighty-two streams with riffle sites were selected from eight-two independent watersheds across the region for sampling and analyses. Clustering of the watersheds by landscape resulted in three distinct groups (forest, crop, and urban) which coincided with watersheds dominant land cover or use. We used non-parametric analyses to test differences in benthos and water chemistry between groups, and used regression analyses to evaluate responses of benthic communities to water chemistry within each of the landscape groups. We found that typical water chemistry measures associated with urban runoff such as specific conductance and dissolved chloride were significantly higher in the urban group. In the crop group, we found variables commonly associated with farming such as nutrients and pesticides significantly greater than in the other two groups. Regression analyses demonstrated that the numbers of tolerant and facultative macroinvertebrates increased significantly in forested watersheds with small shifts in pollutants, while in human use dominated watersheds the intolerant macroinvertebrates were more sensitive to shifts in chemicals present at lower concentrations. The results from this study suggest that landscape based clustering can be used to link upstream landscape characteristics, water chemistry and biotic integrity in order to assess stream condition and likely cause of degradation without the use of reference sites. Notice: Although this work was reviewed by EPA and approved for publication, it may not necessarily reflect official Agency policy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号