首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Central Valley, California, R-EMAP project assessed the effects of highly modified, agriculturally dominated landuse on the aquatic resources of the lower portion of the Central Valley watersheds. The focus of this paper is to assess the utility of the EMAP design and the River Reach File version 3 (RF3) 1:100,000 scale Digital Line Graph (DLG) as a sampling frame. The study area is 34,099 mi2(88,316 km2) and comprises the lower reaches of the Sacramento River and San Joaquin River watersheds to the 1000 ft. (305 m) elevation. Sampling sites are selected using a tessellation stratified design to represent the two main populations of interest: natural streams and man-made waterways. Sites are selected to represent 13,226 miles of streams and sloughs, and 14,648 miles of irrigation canals, ditches and drains. To achieve an approximately equal sample size across stream orders and basins, the sample design was weighted by Strahler order categories to ensure sampling occurred in the higher order streams. Based on office and field reconnaissance, the study provided information on the quality of RF3 as a sampling frame. Site selection using RF3 had a success rate of approximately 44%. The RF3 database has an error rate of approximately 7%. When human influence factors were included, the error rate increased to 16%. There was an 11% error rate when selecting sites for natural streams, and approximately a 14% error rate for man-made waterways. The reconnaissance information indicated that presence or absence of irrigation ditches and return drains depends on changing agricultural uses. Some of the error in the RF3 for natural streams and man-made waterways can be attributed to rapid urban expansion, especially in the San Joaquin basin.  相似文献   

2.
Management of stream nutrients is becoming increasingly important in order to protect both water quality and aquatic resources throughout the USA. Using an extensive water quality database from the long-term Maryland Biological Stream Survey (MBSS), we describe nutrient relationships to landscape characteristics as total nitrogen (TN) and total phosphorus (TP) of small-order, non-tidal streams in USEPA L2 and L3 ecoregions in Maryland and by MBSS stream order at the L2 and L3 ecoregion levels. To protect stream ecosystem integrity, preliminary reference nutrient estimates (TN and TP) as percentiles (25th of all stream reaches and 75th of stream reference reaches) for the six Maryland L3 ecoregions are: Blue Ridge TN 0.29 and 0.64 mg/L, TP 0.0065 and 0.0090 mg/L; Central Appalachians TN 0.40 and 1.0 mg/L, TP 0.0060 and 0.015 mg/L; Middle Atlantic Coastal Plains TN 0.93 and 2.5 mg/L, TP 0.094 and 0.065 mg/L; Northern Piedmont TN 1.6 and 1.8 mg/L, TP 0.010 and 0.015 mg/L; Ridge and Valley TN 0.40 and 0.98 mg/L, TP 0.0063 and 0.012 mg/L; and Southeastern Plains TN 0.33 and 0.82 mg/L, TP 0.016 and 0.042 mg/L. High levels of both TN and TP are present in many streams found in non-tidal watersheds associated with all Maryland ecoregions, but are especially elevated in the Northern Piedmont and Middle Atlantic Coastal Plain ecoregions, with the latter second-order streams (average TN?>?2.9 mg/L) significantly higher than all other ecoregion–order combinations. Across all six ecoregions, mean nutrient loading for both TN and TP was generally equivalent in first-order streams to nutrient concentrations seen in both second- and third-order streams, indicating a definite need to increase efforts in preventing nutrients from entering first-order streams. Small-order stream nutrient levels are the drivers for subsequent TN and TP inputs into the upper freshwater tidal reaches of the Chesapeake Bay, resulting in a potential risk for altered estuarine ecosystems.  相似文献   

3.
Streamflow values are commonly synthesized for locations where flow measurement stations are lacking or where only intermittent measurements are available. In an Appalachian Mountains dataset comprised of 29 watersheds, the most appropriate among geomorphic, geologic, and hydrogeologic datasets were selected for use in prediction of streamflow at watershed scale. A statistical model was developed using principal components analysis (PCA) and cluster analysis (CA) for. Using CA on variables derived from the PCA, an optimum set of variables was derived for predicting streamflow. Results indicate there are two categories of watersheds in the study area. The first is strongly correlated with climatic variables (precipitation, temperature, elevation, and groundwater recharge). The second is strongly correlated with two geomorphic variables (watershed slope and percentage of forested area). The spatial distribution of cluster classifications shows that watersheds dominated by the climatic component are located along the Allegheny Front while watersheds dominated by the geomorphic component are located in the Allegheny Plateau and Valley and Ridge physiographic provinces. These variations between the Allegheny Plateau and Valley and Ridge physiographic provinces suggest that, to accurately model streamflow, modeling needs be done based on natural physiographic boundaries rather than political boundaries. In this physiographic setting, elevation seems to be a major control.  相似文献   

4.
Accurate estimation of total nitrogen loads is essential for evaluating conditions in the aquatic environment. Extrapolation of estimates beyond measured streams will greatly expand our understanding of total nitrogen loading to streams. Recursive partitioning and random forest regression were used to assess 85 geospatial, environmental, and watershed variables across 636 small (<585 km2) watersheds to determine which variables are fundamentally important to the estimation of annual loads of total nitrogen. Initial analysis led to the splitting of watersheds into three groups based on predominant land use (agricultural, developed, and undeveloped). Nitrogen application, agricultural and developed land area, and impervious or developed land in the 100-m stream buffer were commonly extracted variables by both recursive partitioning and random forest regression. A series of multiple linear regression equations utilizing the extracted variables were created and applied to the watersheds. As few as three variables explained as much as 76 % of the variability in total nitrogen loads for watersheds with predominantly agricultural land use. Catchment-scale national maps were generated to visualize the total nitrogen loads and yields across the USA. The estimates provided by these models can inform water managers and help identify areas where more in-depth monitoring may be beneficial.  相似文献   

5.
Urban land use has been implicated as a major contributor of nonpoint source pollution in aquatic systems. Through increased nonpoint delivery of pollutants, including constituents found in stormwater, Lake Tahoe is undergoing a marked decline in its transparency, primarily due to increasing production of algae from enhanced nutrient loading and delivery of fine particles to the lake from the watershed. In response to these findings, a regional restoration effort is underway to improve basin watersheds and the water quality in Lake Tahoe. In this study, stormwater autosamplers were used to collect flow-weighted composite samples that characterized event mean concentrations for event and nonevent conditions within a small, urbanized watershed in the Tahoe basin. An event-specified constant-concentration water quality model was then applied to the event mean concentration and continuous streamflow data to estimate pollutant loads for nitrate, nitrite, ammonia, orthophosphate, and suspended sediment. These data were compared with previously reported load estimates from 10 primary monitored streams in larger watersheds of the Tahoe basin. Results from a linear regression analysis demonstrate strong and significant relationships between watershed impervious area and pollutant loadings from Lake Tahoe watersheds. These small, urbanized watersheds and intervening zones, which only comprise 10 % of the total Lake Tahoe drainage area, include a significant portion of the total Lake Tahoe impervious area. The findings of this study suggest that small, urbanized watersheds and intervening zones are disproportionately important contributors of nonpoint source pollution, including nutrients and suspended particles.  相似文献   

6.
Water quality in urban streams and stormwater systems is highly dynamic, both spatially and temporally, and can change drastically during storm events. Infrequent grab samples commonly collected for estimating pollutant loadings are insufficient to characterize water quality in many urban water systems. In situ water quality measurements are being used as surrogates for continuous pollutant load estimates; however, relatively few studies have tested the validity of surrogate indicators in urban stormwater conveyances. In this paper, we describe an observatory aimed at demonstrating the infrastructure required for surrogate monitoring in urban water systems and for capturing the dynamic behavior of stormwater-driven pollutant loads. We describe the instrumentation of multiple, autonomous water quality and quantity monitoring sites within an urban observatory. We also describe smart and adaptive sampling procedures implemented to improve data collection for developing surrogate relationships and for capturing the temporal and spatial variability of pollutant loading events in urban watersheds. Results show that the observatory is able to capture short-duration storm events within multiple catchments and, through inter-site communication, sampling efforts can be synchronized across multiple monitoring sites.  相似文献   

7.
Most landscape design models have been applied to the problem of maximizing species richness in a network of nature reserves. This paper describes a combined hydrologic simulation and landscape design model designed to prioritize sites for wetlands restoration, where the objective is to maximize the amount of nutrients in non-point-source runoff attenuated in the restored wetlands. Targeted site selection in four small watersheds in the Central Valley resulted in predicted levels of nitrogen attenuation two to eight times greater than that from maximizing wetland area without consideration of the location of the restoration sites. Disclaimer  The views expressed in this paper are those of the author and do not necessarily represent those of the US Environmental Protection Agency. No official Agency endorsement should be inferred.  相似文献   

8.
Monitoring programs in the agriculturally intense San Joaquin River Valley of California have periodically found organophosphate (OP) insecticide concentrations, predominantly chlorpyrifos, diazinon and methidathion, at levels high enough to cause mortality for the aquatic invertebrate Ceriodaphnia dubia. These detections are likely the result of off-site movement from treated fields. However, the relative significance and magnitude of off-site transport pathways cannot be readily deduced from monitoring data alone. Therefore, a comprehensive modeling system has been constructed to estimate temporal and spatial pesticide source magnitudes and to follow the pesticide dissipation pathways once in surface water. The USEPA models HSPF and PRZM3 were used for the hydrology and non-point source predictions, respectively. Spray drift was accounted for using the mechanistic model AgDrift. The Orestimba Creek Watershed in the San Joaquin Valley was characterized and used as a typical watershed for this region. Representative transport pathways were ranked and quantified, and numerical implementation of best management practices (BMPs) determined which practice may have the highest likelihood for reducing pesticide loadings. Approximately 85% of the predicted chlorpyrifos mass detected between May 1, 1996, and April 30, 1997 resulted from drift, with the largest contributions coming from walnut orchards immediately adjacent to Orestimba Creek. Various simulated drift mitigation measures suggest chlorpyrifos mass loadings can be decreased by over 90% depending upon the type of mitigation chosen. Imposed drift BMPs should be effective in reducing chlorpyrifos levels found in surface waters of the San Joaquin valley if the Orestimba creek watershed is considered representative of watersheds found in this area of California.  相似文献   

9.
Mountainous areas in the northern Pakistan are blessed by numerous rivers that have great potential in water resources and hydropower production. Many of these rivers are unexploited for their water resource potential. If the potential of these rivers are explored, hydropower production and water supplies in these areas may be improved. The Indus is the main river originating from mountainous area of the Himalayas of Baltistan, Pakistan in which most of the smaller streams drain. In this paper, the hydrology of the mountainous areas in northern Pakistan is studied to estimate flow pattern, long-term trend in river flows, characteristics of the watersheds, and variability in flow and water resource due to impact of climate change. Eight watersheds including Gilgit, Hunza, Shigar, Shyok, Astore, Jhelum, Swat, and Chitral, Pakistan have been studied from 1960 to 2005 to monitor hydrological changes in relation to variability in precipitation, temperature and mean monthly flows, trend of snow melt runoff, analysis of daily hydrographs, water yield and runoff relationship, and flow duration curves. Precipitation from ten meteorological stations in mountainous area of northern Pakistan showed variability in the winter and summer rains and did not indicate a uniform distribution of rains. Review of mean monthly temperature of ten stations suggested that the Upper Indus Basin can be categorized into three hydrological regimes, i.e., high-altitude catchments with large glacierized parts, middle-altitude catchments south of Karakoram, and foothill catchments. Analysis of daily runoff data (1960-2005) of eight watersheds indicated nearly a uniform pattern with much of the runoff in summer (June-August). Impact of climate change on long-term recorded annual runoff of eight watersheds showed fair water flows at the Hunza and Jhelum Rivers while rest of the rivers indicated increased trends in runoff volumes. The study of the water yield availability indicated a minimum trend in Shyok River at Yogo and a maximum trend in Swat River at Kalam. Long-term recorded data used to estimate flow duration curves have shown a uniform trend and are important for hydropower generation for Pakistan which is seriously facing power crisis in last 5 years.  相似文献   

10.
Nine stream sites in the Blackfoot River, Salt River, and Bear River watersheds in southeast Idaho, USA were sampled in May 2001 for water, surficial sediment, aquatic plants, aquatic invertebrates, and fish. Selenium was measured in these aquatic ecosystem components, and a hazard assessment was performed on the data. Water quality characteristics such as pH, hardness, and specific conductance were relatively uniform among the nine sites. Of the aquatic components assessed, water was the least contaminated with selenium because measured concentrations were below the national water quality criterion of 5 g/L at eight of the nine sites. In contrast, selenium was elevated in sediment, aquatic plants, aquatic invertebrates, and fish from several sites, suggesting deposition in sediments and food web cycling through plants and invertebrates. Selenium was elevated to concentrations of concern in fish at eight sites (> 4 g/g in whole body). A hazard assessment of selenium in the aquatic environment suggested a moderate hazard at upper Angus Creek (UAC) and Smoky Creek (SC), and high hazard at Little Blackfoot River (LiB), Blackfoot River gaging station (BGS), State Land Creek (SLC), upper (UGC) and lower Georgetown Creek (LGC), Deer Creek (DC), and Crow Creek (CC). The results of this study indicate that selenium concentrations from the phosphate mining area of southeast Idaho were sufficiently elevated in several ecosystem components to cause adverse effects to aquatic resources in southeastern Idaho.  相似文献   

11.
As a step towards determining the extent of degradation in non-tidal streams, a multi-metric Index of Biotic Integrity (IBI) based on fish assemblages was developed for the Maryland Biological Stream Survey (MBSS). The MBSS is a probability-based statewide sampling program designed to assess the status of biological resources and to evaluate the effects of anthropogenic activities. We used data from 419 MBSS sites sampled in 1994-95 to develop the IBI. Two distinct geographic strata, corresponding with ecoregional and physiographic boundaries, were identified via cluster analysis and multivariate analysis of variance (MANOVA) as supporting distinctly different species groups. Reference conditions were based on minimally degraded sites. We quantitatively evaluated the ability of various attributes of the fish assemblage (candidate metrics) to discriminate between these reference sites and sites known to be degraded, using statistical tests and classification efficiency. Provisional formulations of the IBI were selected for each region based on high classification efficiency and broad representation of fish assemblage attributes. Fish IBI scores for 1995 MBSS sites spanned a wide range of biological conditions, from good to very poor. Over all six basins sampled in 1995, half of the stream miles fell into the range of good to fair. Roughly 25% of stream miles showed some degradation. The IBI will be used in conjunction with physical and chemical data to answer critical questions about the health of Maryland streams and the relative impacts of human-induced stresses on the state's aquatic systems.  相似文献   

12.
This article describes a simultaneously autoregressive model applied to the erosion data collected at 17 natural lake watersheds in Greece. The methodology considers spatially correlated random area effects taking into account the information provided by neighbouring torrents/streams. The article discusses the gain obtained from modelling the spatial correlation among small area random effects useful in representing the unexplained variation of the small area target quantities.  相似文献   

13.
The Chillán River in Central Chile plays a fundamental role in local society, as a source of irrigation and drinking water, and as a sink for urban wastewater. In order to characterize the spatial and temporal variability of surface water quality in the watershed, a Water Quality Index (WQI) was calculated from nine physicochemical parameters, periodically measured at 18 sampling sites (January–November 2000). The results indicated a good water quality in the upper and middle parts of the watershed. Downstream of the City of Chillán, water quality conditions were critical during the dry season, mainly due to the effects of the urban wastewater discharge. On the basis of the results from a Principal Component Analysis (PCA), modifications were introduced into the original WQI to reduce the costs associated with its implementation. WQIDIR2 and WQIDIR, which are both based on a laboratory analysis (Chemical Oxygen Demand) and three (pH, temperature and conductivity), respectively, four field measurements (pH, temperature, conductivity and Dissolved Oxygen), adequately reproduce the most important spatial and temporal variations observed with the original index. They are proposed as useful tools for monitoring global water quality trends in this and other, similar agricultural watersheds in the Chilean Central Valley. Possibilities and limitations for the application of the used methodology to watersheds in other parts of the world are discussed.  相似文献   

14.
The effects of timber harvesting on stream water quality and efficiency of alternate streamside management zones were evaluated in Pockwock Lake and Five Mile Lake watersheds in central Nova Scotia, Canada. The streamside management zone (SMZ) included a 20 m no cut, 20 m select cut and a 30 m select cut buffer strips along the stream. Water quality of eight streams, six in harvested and two in not-harvested watersheds were monitored for two years before and two years after the harvesting of timber. Nonparametric statistical tests on stream water quality showed that there was significant change in the concentration of potassium in six streams, manganese in five streams, zinc in two streams and total nitrogen in one stream after timber harvesting. There was no significant change in the quality of water in two streams used as control sites in the neighboring watersheds of similar size and hydrological characteristics. The results show that forest management practices were most favorable in streams maintained with 30 m select cut followed by 20 m no cut and 20 m select cut SMZ. The streamside zone width and treatment of select cut or no cut in the zone played an important role in filtering or retaining the minerals in surface water runoff. In buffer zones of similar width, the buffer zone with no cut or forested buffer was relatively more effective at protecting stream water quality than select cut SMZ. The vegetation in the zone may have decreased the flow velocity and increased residence time and thus increased filtration and retention of minerals in the riparian soil.  相似文献   

15.
The Viburnum Trend lead–zinc mining subdistrict is located in the southeast Missouri portion of the Ozark Plateau. In 2003 and 2004, we assessed the ecological effects of mining in several watersheds in the region. We included macroinvertebrate surveys, habitat assessments, and analysis of metals in sediment, pore water, and aquatic biota. Macroinvertebrates were sampled at 21 sites to determine aquatic life impairment status (full, partial, or nonsupport) and relative biotic condition scores. Macroinvertebrate biotic condition scores were significantly correlated with cadmium, nickel, lead, zinc, and specific conductance in 2003 (r?=??0.61 to ?0.68) and with cadmium, lead, and pore water toxic units in 2004 (r?=??0.55 to ?0.57). Reference sites were fully supporting of aquatic life and had the lowest metals concentrations and among the highest biotic condition scores in both years. Sites directly downstream from mining and related activities were partially supporting, with biotic condition scores 10% to 58% lower than reference sites. Sites located greater distances downstream from mining activities had intermediate scores and concentrations of metals. Results indicate that elevated concentrations of metals originating from mining activities were the underlying cause of aquatic life impairment in several of the streams studied. There was general concurrence among the adversely affected sites in how the various indicators responded to mining activities during the overall study.  相似文献   

16.
Riparian forest restoration has become a major focus of watershed initiatives to improve degraded stream ecosystems. In urban watersheds, however, the ability of riparian forests to improve stream ecosystems may be diminished due to widespread, upland disturbance. This paper presents the methodology and some preliminary results from the first year of fieldwork on a 3-year project designed to assess the ecological benefits of riparian reforestation in urban watersheds. The study is based on an integrated, multidisciplinary sampling of physical, chemical, and biological attributes at forested and non-forested sections of 12 streams with different amounts of urban developement within their watersheds. Restored sections of three streams are also being monitored over the 3-year duration of the project. Sampling and analysis will continue through December 2000.  相似文献   

17.
Semipermeable membrane devices (SPMDs) were deployed in streams along a gradient of urban land-use intensity in and around six metropolitan areas: Atlanta, Georgia; Raleigh-Durham, North Carolina; and Denver-Fort Collins, Colorado, in 2003; and Dallas-Fort Worth, Texas; Milwaukee-Green Bay, Wisconsin; and Portland, Oregon, in 2004 to examine relations between percent urban land cover in watersheds and the occurrence, concentrations, and potential toxicity of hydrophobic compounds. Of the 142 endpoints measured in SPMD dialysates, 30 were significantly (alpha = 0.05) related to the percent of urban land cover in the watersheds in at least one metropolitan area. These 30 endpoints included the aggregated measures of the total number of compounds detected and relative toxicity (Microtox(R) and P450RGS assays), in addition to the concentrations of 27 individual hydrophobic compounds. The number of compounds detected, P450RGS assay values, and the concentrations of pyrogenic polycyclic aromatic hydrocarbons (PAHs) were significantly related to percent urban land cover in all six metropolitan areas. Pentachloroanisole, the most frequently detected compound, was significantly related to urban land cover in all metropolitan areas except Dallas-Fort Worth. Petrogenic PAHs and dibenzofurans were positively related to percent urban land cover in Atlanta, Raleigh-Durham, Denver, and Milwaukee-Green Bay. Results for other endpoints were much more variable. The number of endpoints significantly related to urban land cover ranged from 6 in Portland to 21 Raleigh-Durham. Based on differences in the number and suite of endpoints related to urban intensity, these results provide evidence of differences in factors governing source strength, transport, and/or fate of hydrophobic compounds in the six metropolitan areas studied. The most consistent and significant results were that bioavailable, aryl hydrocarbon receptor agonists increase in streams as basins become urbanized. Potential toxicity mediated by this metabolic pathway is indicated as an important factor in the response of aquatic biota to urbanization.  相似文献   

18.
Urbanization and the subsequent changes in land use/cover inevitably influence the quality and even the quantity of stream water. This issue is widely studied through evaluations on land-use change scenarios or comparisons among historical patterns at the same watershed. However, observational stream discharge changes through urbanization gradient have rarely been discussed. In this study, we analyzed 5-year discharge data from 13 gauges in the Danshui River network with a wide range of urbanization gradient to explore the impacts on observational hydrological characteristics in individual catchments. The results reveal that stream discharge in pristine watersheds is characterized by a larger proportion of baseflow and is less fluctuating. When the forest coverage is <90%, the discharge fluctuation almost doubles. Meanwhile, the baseflow fraction decreases gradually with the increase of paddy area, which may concomitantly result from the increasing irrigation. Such a drop in baseflow may threaten the maintenance of the minimum flow required for the stream aquatic ecosystem. Furthermore, we simulated the stream discharges by TOPMODEL with blind land-use-independent parameters. The results show that the simulated discharges are satisfactory, particularly for the pristine catchments, but not as fitting for the paddy-intensive watersheds perhaps due to the unexpected irrigation. On the whole, the calibrated parameters are dependent with the landscape characteristics. The landscape-based parameter estimations can be applied to simulate discharge well, meaning the potential to assess the ungauged watersheds.  相似文献   

19.
Hydrologic disturbance reduces biological integrity in urban streams   总被引:1,自引:0,他引:1  
The impact of urbanization on stream ecosystems is linked by land cover changes to the alteration of the natural hydrology and subsequent physical disruption of stream biota and habitat. Seasonal floods are part of the natural disturbance regime of many streams, but urbanization increases their frequency and magnitude. This study evaluated the impact of hydrologic disturbance on fish and aquatic macroinvertebrates in 81 (56 urban/25 reference) Ohio streams. Hydrologic variables included annual and monthly 24-h rainfall maxima and computed annual peak discharge, with computation supported by GIS-based drainage area delineation and land cover characterization. Ohio biological criteria for fish and macroinvertebrates measured during the late spring and summer were negatively impacted by annual peak discharge in urban streams as compared to reference streams. Results support the application of stormwater best management practices as part of stream restoration efforts to mitigate urbanization impacts to fish and macroinvertebrates.  相似文献   

20.
Managers of aquatic resources benefit from indices of habitat quality that are reproducible and easy to measure, demonstrate a link between habitat quality and biota health, and differ between human-impacted (i.e., managed) and reference (i.e., nonimpacted or minimally impacted) conditions. The instability index (ISI) is an easily measured index that describes the instability of a streambed by relating the tractive force of a stream at bankfull discharge to the median substrate size. Previous studies have linked ISI to biological condition but have been limited to comparisons of sites within a single stream or among a small number of streams. We tested ISI as an indicator of human impact to habitat and biota in mountain streams of the northwestern USA. Among 1428 sites in six northwestern states, ISI was correlated with other habitat measures (e.g., residual pool depth, percent fine sediment) and indices of biotic health (e.g., number of intolerant macroinvertebrate taxa, fine sediment biotic index) and differed between managed and reference sites across a range of stream types and ecoregions. While ISI could be useful in mountain streams throughout the world, this index may be of particular interest to aquatic resource managers in the northwestern USA where a large dataset, from which ISI can be calculated, exists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号