首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 500 毫秒
1.
缺氧条件下含氮杂环化合物吲哚和吡啶的共代谢研究   总被引:1,自引:0,他引:1  
以含氮杂环化合物吲哚和吡啶为研究对象,在传统的缺氧反硝化机理研究基础上,通过向配制废水中加入硝酸盐氮,研究吡啶和吲哚在缺氧条件下的共代谢作用.结果表明,吡啶和吲哚缺氧共代谢的最佳碳氮比为8.4~8.9之间.硝酸还原酶适宜作用的环境条件为:温度28℃,pH值7.0~7.5.吡啶的加入有利于硝酸还原酶活性的提高,吡啶对吲哚的缺氧降解有协同作用.在最佳碳氮比条件下,当吲哚起始浓度为150mg/L,吲哚和吡啶的浓度比例为1~10之间时,吲哚的降解符合零级动力学规律,反应过程中亚硝酸盐氮基本没有积累.当吡啶和吲哚的浓度比小于0.25时,随着吡啶浓度比例的提高,硝酸还原酶活性及吲哚降解速率的增长较快;当吡啶和吲哚的浓度比大于0.25时,硝酸还原酶活性及吲哚降解速率的增长变得比较缓慢.  相似文献   

2.
缺氧反硝化去除难降解杂环化合物吡啶研究   总被引:6,自引:2,他引:6  
在实验室中,采用好氧、厌氧和缺氧间歇试验,研究焦化废水中一种难降解有机物--吡啶的生物降解性能。试验主要研究了在缺氧状态下吡啶的生物降解性能、适宜的N/C比、N源的变化情况等。研究结果表明,缺氧反硝化状态下吡啶的生物降解性能有显著的提高。  相似文献   

3.
生物脱氮包括硝化与反硝化两个过程.硝化过程主要是在亚硝化细菌和硝化菌的作用下,将废水中的氨氮氧化成亚硝氮,再进一步氧化成硝氮的过程,这一过程是在好氧的条件下完成的,一般要求溶解氧在2.0mg/L以上,经过硝化的废水,在缺氧条件下,由反硝化细  相似文献   

4.
温度对反硝化过程的影响以及pH 值变化规律   总被引:27,自引:2,他引:25       下载免费PDF全文
马娟  彭永臻  王丽  王淑莹 《中国环境科学》2008,28(11):1004-1008
以乙酸钠为碳源,采用序批式反应器(SBR)考察了不同温度对全程和短程2 种类型反硝化的影响.结果表明,在温度为10~30℃时,2 种类型反硝化均可以进行完全.相同温度下,短程反硝化的平均比反硝化速率是全程的1.312 倍.降低温度,2 种电子受体的比反硝化速率均会下降,且20~10℃的温度转变较30~20℃转变的影响显著,其中以NO2--N 的还原过程受低温影响较大.低温(10~15 ) ℃ 条件对NO3--N 向NO2--N 的还原过程有一定抑制作用.在起始电子受体浓度与pH 值相同的条件下,温度越低,反硝化过程中2 种系统pH 值增量越大,反硝化结束时的pH 值越高;温度相同条件下,短程反硝化结束时pH 值曲线上峰点的值高于全程反硝化.  相似文献   

5.
氧化还原介体调控亚硝酸盐反硝化特性研究   总被引:3,自引:1,他引:2  
采用实验室驯化的亚硝酸盐反硝化菌群作为菌种,优化亚硝酸盐降解条件,探究在氧化还原介体蒽醌-2-磺酸钠(AQS)存在条件下亚硝酸盐反硝化的特性.结果表明,反硝化菌群降解亚硝酸盐的最适条件为:温度35℃,pH为8,丁二酸钠为碳源,碳氮比4∶1,初始亚硝酸盐浓度100 mg.L-1;AQS的最佳投加量为0.16 mmol.L-1,介体调控的反硝化体系氧化还原电位略有降低,维持在-400~-500 mV之间,pH随亚硝酸盐降解速率增加而增大,最终稳定到9~10之间;通过分析反硝化中间代谢产物,推测AQS在亚硝酸盐反硝化过程中不仅起到辅酶CoQ的作用而且加速了细胞色素传递电子的全过程.本研究可为氧化还原介体调控亚硝酸盐反硝化实际应用提供理论基础和优化参数.  相似文献   

6.
利用序批式反应器中长期驯化好的以亚硝酸盐为主要基质的纯种污泥,做锥形瓶实验,分别研究pH和碳氮比对亚硝酸型反硝化的影响。结果表明,亚硝酸型反硝化适宜的pH范围在7.7~8.6,最佳pH值在8.2左右;碳氮比(C/N)大于1.94,可实现连续稳定的脱氮效果,起始亚硝氮比基质降解速率随C/N的增加而增加,大于3.11速率几乎不再增加,通过动力学分析,得出该实验条件下C/N的饱和常数Ks为9.36。  相似文献   

7.
含氮杂环化合物吲哚的缺氧降解性能研究   总被引:8,自引:0,他引:8  
以好氧、厌氧作为对比,研究了含氮杂环化合物——吲哚的缺氧生物降解性能。主要研究在缺氧状态下吲哚的生物降解性能、适宜N/C比、氮源的变化情况以及吲哚的缺氧降解途径。结果表明,缺氧反硝化状态下吲哚具有较好的生物降解性能。  相似文献   

8.
对缺氧环境下硫酸盐还原对反硝化脱氮过程影响进行了试验研究。试验结果表明和单纯的热力学和动力学分析不同,在硫酸盐和硝酸盐同时存在的生物脱氮体系中,具备着反硝化和硫酸盐还原同时进行的环境条件。缺氧环境下硫酸盐还原过程影响了反硝化脱氮效果和反硝化历程,即硫酸盐初始浓度越高,硝氮的去除率越低,当硫酸盐浓度从0mg/L增加到2000mg/L时,脱氮效率从100%降低到81.4%,脱氮速率从6.428mg/L.min降低到4.04mg/L.min,并且发现在硫酸盐影响下的反硝化过程出现了氨氮积累的现象。本研究结果对富含硫酸盐的有机废水生物处理有指导意义。  相似文献   

9.
复合式生物反应器填料内部存在多种多样的微环境类型,从而形成微观的好氧/缺氧/厌氧环境,造成同步硝化/反硝化反应的发生。在一定浓度范围内,硝化反应和反硝化反应的比基质消耗速率与基质浓度成零级动力学反应。好氧区悬浮污泥比NH3-N降解速率为0.236/d,反硝化速率为0.0627/d;缺氧区悬浮污泥比NH3-N降解速率为0.0973/d,反硝化速率为0.231/d。出水中可以检出大量的亚硝态氮和硝态氮,二者的浓度保持相同的变化趋势,其比值大约为1.78,出现了稳定的NO2--N的积累。  相似文献   

10.
碳源和硝态氮浓度对反硝化聚磷的影响及ORP的变化规律   总被引:32,自引:6,他引:26  
利用间歇试验研究了反硝化除磷过程中有机碳源和硝态氮浓度对厌氧放磷和缺氧吸磷的影响,同时对反硝化除磷过程ORP的变化规律及以其作为控制参数的可行性作了探讨.试验结果表明:厌氧段碳源COD浓度越高(100~300mg/L),放磷越充分,则缺氧段反硝化和吸磷速率越大;但当碳源COD浓度高达300mg/L时,未反应完全的有机物残留于后续缺氧段对缺氧吸磷产生抑制作用.随着缺氧段硝态氮浓度升高(5、15、40 mg/L),反应初期反硝化和吸磷速率也随之升高;当硝态氮耗尽后,系统由缺氧吸磷转变为内源放磷,且随着初始硝态氮浓度的增高,这个转折点的出现时间向后延迟.ORP可作为厌氧放磷的控制参数,在缺氧吸磷过程可预示反硝化的反应程度,但是无法作为吸磷过程的控制参数.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号