首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 875 毫秒
1.
珠江干流河口水体有机氯农药的研究   总被引:12,自引:0,他引:12       下载免费PDF全文
参考美国EPA标准对珠江干流河口表层水样颗粒相和溶解相有机氯农药进行定量分析,并对有机氯农药的含量及分布进行探讨,结果显示,洪季、枯季水体中有机氯农药总量(颗粒相和溶解相)分别是9.7~26.3ng/L、41.7~122.5ng/L;洪季、枯季HCHs总量分别为5.8~20.6ng/L、13.8~99.7ng/L, DDTs总量分别是0.52~1.13ng/L、5.85~9.53ng/L,其它有机氯农药总量分别为3.36~8.51ng/L、17.5~61.5ng/L.珠江干流河口水体的DDT/(DDE+DDD)比值向口门方向有逐渐递增趋势,表明沿程(特别是东江网河区)不断有浓度相对较高的DDT输入或仍有新使用的DDT农药进入珠江干流水体.  相似文献   

2.
X592200600820珠江干流河口水体有机氯农药的研究/杨清书(中科院广州地球化学研究所有机地球化学重点实验室)…∥中国环境科学/中国环境科学学会.-2005,25(增刊).-47~51环图X-58参考美国EPA标准对珠江干流河口表层水样颗粒相和溶解相有机氯农药进行定量分析,并对有机氯农药的含量及分布进行探讨,结果显示,洪季、枯季水体中有机氯农药总量(颗粒相和溶解相)分别是9.7~26.3ng/L、41.7~122.5ng/L;洪季、枯季HCHs总量分别为5.8~20.6ng/L、13.8~99.7ng/L,DDTs总量分别是0.52~1.13ng/L,其它有机氯农药总量分别为3.36~8.51ng/L、17.5~61.5ng/…  相似文献   

3.
多环芳烃在珠江口表层水体中的分布与分配   总被引:23,自引:9,他引:14  
为了解河口海岸带水体中多环芳烃(PAHs)的时空分布及其在水体及颗粒相中的分配及其控制因素,于2003年4月(春季)和2002年7月(夏季)采集了珠江河口及近海表层水体,采用GC-MS分析了水体中PAHs.结果表明,珠江河口及近海表层水体中多环芳烃浓度春季(颗粒相:4.0~39.1 ng/L;溶解相:15.9~182.4 ng/L)高于夏季(颗粒相:2.6~26.6 ng/L,溶解相:13.0~28.3 ng/L).河流径流、悬浮颗粒物含量及光降解程度是控制水体PAHs浓度的主要因素.水体中以3环PAHs为主,伶仃洋内样品比珠江口外样品相对富集5,6环PAHs,夏季样品较春季样品相对富集3环PAHs.颗粒物的来源和组成是造成这种差别的主要原因.PAHs在颗粒相及水相中的分配系数(Kp)随颗粒有机碳含量、水体盐度增加而增加,随悬浮颗粒物含量增加而减少.有机碳归一化分配系数(1gKdc)与辛醇/水分配系数(1gKow)间存在明显的线性关系,但高于线性自由能关系模拟值.  相似文献   

4.
利用固相萃取法和气相色谱-质谱联用技术对河北白洋淀南刘庄(包括府河)和采蒲台区域水体中24种有机氯农药(OCPs)进行提取和含量测定,分析了水体中OCPs的残留含量以及分布和组成特征,根据HCHs和DDTs的组成特征进行了来源解析,并对水体中的OCPs健康风险进行了评估。结果表明:(1)研究区域水体中检出的OCPs主要是HCHs、DDTs、三氯杀螨醇、狄氏剂和灭蚁灵;南刘庄(包括府河)的表层水体和上覆水体中OCPs总浓度范围分别为1.01~24.01 ng/L和3.02~23.51 ng/L,采蒲台表层水体和上覆水体中OCPs总浓度范围分别为0.05~5.63 ng/L和1.25~17.85 ng/L;南刘庄2019年12月已清淤区表层水体中OCPs总浓度为7.80 ng/L,低于未清淤区表层水体中OCPs的平均浓度(11.73 ng/L),2020年9月和11月已清淤区表层水体中OCPs总浓度分别为2.68 ng/L和3.01 ng/L;采蒲台2019年12月已清淤区表层水体中OCPs总浓度为0.18 ng/L,低于未清淤区表层水体中OCPs的平均浓度(1.56 ng/L),2020年9月已清淤区表层水体中OCPs总浓度为0.34 ng/L,2020年10月和11月清除围堰后区域表层水体中OCPs总浓度分别为0.76 ng/L和0.74 ng/L,低于未清除围堰区域表层水体中OCPs总浓度(0.86 ng/L)。说明采取清淤和清除围堰的措施能减少OCPs在表层水体中的残留。(2)南刘庄(包括府河)和采蒲台表层水体中HCHs和DDTs含量最高的是β-HCH、γ-HCH和p, p′-DDE,其主要来源于历史残留,在部分点位水体中存在林丹、工业HCHs和三氯杀螨醇、工业DDTs的新输入。DDTs在水体中的代谢产物主要是DDE,表明其代谢条件以好氧降解为主。(3)南刘庄(包括府河)和采蒲台表层水体中OCPs的致癌风险和非致癌风险均较低,不会对周围环境和人体健康产生威胁。  相似文献   

5.
徐维海  张干  邹世春  李向东  刘玉春 《环境科学》2006,27(12):2458-2462
采用固相萃取、液相色谱/串联质谱法(LC-MS/MS)分析香港维多利亚港(维港)与珠江广州河段水体中9种典型抗生素药物含量.结果表明,在维港海水中,只检出较低含量的氟喹诺酮和大环内酯类抗生素;无论是在枯季(3月)还是洪季(6月),珠江广州河段河水中各种抗生素(阿莫西林除外)均可检出,而且含量较高(分别在70~489 ng·L-1和13~69 ng·L-1之间),其含量水平明显高于美、欧等国河流中相应污染物的含量,其中红霉素、磺胺嘧啶等与国外污水处理厂所检出的含量水平相当.数据也表明,河水中抗生素含量水平受季节和水量变化的影响很大,枯季河水中抗生素含量明显高于洪季.与枯季相比,洪季河水中药物含量具有明显的日变化.  相似文献   

6.
利用GC-ECD对海南岛东寨港区域水体中有机氯农药(OCPs)进行检测.结果表明,地表水中ρ(OCPs)为2.53~241.97 ng/L,海水中ρ(OCPs)为3.60~28.30 ng/L;地表水中的ρ(OCPs)呈季节性分布,枯水期ρ(OCPs)高于丰水期;同时西南部三江水体中ρ(OCPs)最高.地表水中同时期的ρ(DDTs)高于ρ(HCHs),且地表水中ρ(DDTs)呈现季节性分块分布,DDTs组成随季节而变化.海水中ρ(OCPs)分布规律为内外交接处>外港>内港.地表水和海水中有机氯农药组成不同,地表水中有机氯农药是海水中有机氯农药来源之一.与国内外河流相比较,研究区地表水有机氯农药含量处于中低水平.   相似文献   

7.
长江口营养盐浓度变化及分布特征   总被引:9,自引:1,他引:8       下载免费PDF全文
根据2003年11月(枯季)和2004年8月(洪季)对长江口的2次现场调查,分析探讨了长江口的营养盐浓度变化及分布特征.结果表明,长江口水体3种不同形态的溶解无机氮中,以NO3--N含量最高,洪、枯季分别占溶解态无机氮的92.8%~97.7%和84.3%~98.4%.洪季NO3--N和NH+-N含量高于枯季,洪季与枯季NO2--N含量接近.洪、枯季长江口ρ(PO43-P)平均值分别为0.014和0.016 mg/L,接近国家海水一类标准.洪、枯季N3--N和PO3-4P含量均是由长江口内向口外近海逐渐降低,而NH4+-N含量则表现出相反的空间分布规律,即口外高于口内.通过计算长江口营养盐比值发现,枯季长江口氮、磷供应充分,不存在磷受限的情况,而洪季长江口水体受到磷的限制.   相似文献   

8.
黄浦江表层水体中有机氯农药的分布特征   总被引:26,自引:4,他引:22  
用双柱GC-ECD对黄浦江表层水体中的20种有机氯农药(OCPs)进行了分析,水体中ρ(OCPs)为87.28~148.97 ng/L,含量较高的组分有β-BHC,δ-BHC,α-BHC,4,4′-DDT和七氯等,ρ(BHCs)高于ρ(DDTs),分别为42.13~75.47和3.83~20.90 ng/L.组分分布特征表明,水体中BHCs主要为环境中的早期残留,在淀峰断面显示近期输入特征;水体中DDTs显示近期输入特征.高平潮时ρ(OCPs)低于低平潮,高平潮时大量长江水的涌入对黄浦江水体中的有机氯农药起到一定的稀释作用.水体中有机氯农药呈现较明显的季节性变化,丰水期含量高于枯水期,丰水期农田径流和土壤剥蚀作用的加强是导致水体中ρ(OCPs)升高的重要原因,说明黄浦江水体中有机氯农药的来源具有面源特征;水温升高加强了沉积物中有机氯农药的二次释放与其他地区相比较,黄浦江表层水体中ρ(OCPs)较低,ρ(DDTs)和ρ(BHCs)均未超过地表水环境质量标准限值.   相似文献   

9.
黄河流域有机氯农药的浓度水平及污染特征   总被引:1,自引:0,他引:1  
有机氯农药(OCPs)在中国大量的生产和使用给生态环境安全和人群健康造成了严重的威胁,但目前关于黄河全流域OCPs的污染状况还不清楚。该研究从青藏高原到黄河入海口采集了黄河流域10个采样点的表层水及沉积物样品,分析了样品中16种OCPs的浓度水平。黄河流域表层水体∑_(16)OCPs的浓度为0.67~4.9 ng/L,其中滴滴涕(DDTs)、六六六(HCHs)和六氯苯(HCB)是最主要的OCPs,分别占∑_(16)OCPs的55%、28%和15%;黄河流域沉积物中∑_(16)OCPs的浓度为0.17~1.4 ng/g干重,DDTs和HCB是最主要的污染物,分别占∑_(16)OCPs的67%和28%。DDT工业品的输入可能是黄河流域DDTs污染的主要来源,其中p,p’-DDT是黄河流域最主要的DDTs污染物。对于HCHs、HCB、硫丹和氯丹而言,部分地区可能存在一定的新源输入,但总体而言黄河流域HCHs、HCB、硫丹和氯丹的污染以历史残留为主,新源输入相对有限,而沉积物的释放可能是水中上述污染物的重要来源。  相似文献   

10.
林明兰  林田  徐良  贺静 《环境科学研究》2022,35(9):2100-2109
河流作为陆源持久性有机污染物(POPs)进入海洋的重要途径,其POPs污染问题备受关注. 为了解我国“十三五”时期长江水体多氯联苯(PCBs)和有机氯农药(OCPs)的污染特征,以2017年11月—2018年11月在长江大通站采集的表层水为研究对象,利用气相色谱-三重四级杆串联质谱仪(GC-MS/MS)测定水体中溶解态、颗粒态PCBs和OCPs的浓度,分析水体中溶解态、颗粒态PCBs和OCPs的污染特征,通过化合物组成特征和比值揭示水体中PCBs、OCPs的来源,估算输出通量,并从污染物浓度、年径流量及输沙量三方面加以比较. 结果表明:大通站水体中溶解态∑41PCBs和∑9OCPs浓度范围分别为0.059~0.29和0.21~0.52 ng/L,颗粒态∑41PCBs和∑9OCPs浓度范围分别为0.26~0.88和0.34~0.89 ng/L. 六六六(HCHs)、滴滴涕(DDTs)和氯丹(CHLs)均以历史使用残留为主,而PCBs存在新的输入. PCBs、HCHs和DDTs的总输出通量(溶解态+颗粒态)分别为0.57、0.35和0.29 t/a,远低于其他学者于2009—2015年得到的长江入海PCBs、HCHs和DDTs的年均通量. 研究显示,大通站水体中溶解态、颗粒态PCBs和OCPs的污染特征不同,大通站相对较低的PCBs、HCHs和DDTs的输出通量与长江流域过去10年污染物浓度、年径流量和输沙量的整体降低直接相关,溶解态PCBs、HCHs和DDTs浓度显著降低是重要因素. 研究结果反映了我国“十三五”期间提出的长江经济带“共抓大保护,不搞大开发”和近20年坚持履行《关于持久性有机污染物的斯德哥尔摩公约》的重要成效. 今后应重点关注大通以下至长江河口的污染物跨介质分配和交换通量,以系统揭示长江输出POPs在区域污染物“源汇”关系中扮演的角色.   相似文献   

11.
洪季珠江三角洲水系烷基酚污染状况研究   总被引:31,自引:4,他引:27  
对夏季珠江三角洲河流及珠江口表层水中溶解态的壬基酚(NPs)和辛基酚(OP)的污染状况进行了分析.结果表明,河流样品中除珠江正干平洲水道口、沙湾水道口及西江虎跳门处NPs值较高分别达98.84、129.82和164.98 ng/L外,其他地点均为<20~40ng/L;伶仃洋及近海表层水NPs含量较低为<10~14ng/L.OP值以澳门内港处最高为8.54ng/L,另外在白鹅潭、沙湾水道口和虎跳门处分别为2.89、2.44、2.12ng/L,其余采样点均低于检测限2ng/L,伶仃洋及近海表层水样OP值低于检测限1ng/L.  相似文献   

12.
小海湾水体有机氯农药的浓度水平和特征   总被引:5,自引:1,他引:5  
以海南省万宁市小海湾为研究区,按照美国EPA8080A方法,使用仪器GC-ECD对小海湾海水和汇入其中地表水中样品的OCPs含量进行分析,样品中18种有机氯农药均出,以HCHs和DDTs为主,它们的和占到OCPs含量的60%。外海HCH含量0.26ng/L,DDTs含量0.53ng/L,OCPs含量1.34ng/L。海水中HCHs含量范围:2.39~4.59ng/L,平均值是3.31ng/L;DDTs含量范围:0.27~6.34ng/L,平均值是3.42ng/L;OCPs含量范3.63~17.01ng/L,平均值是11.15ng/L。地表水中HCHs含量范围:0.95~3.46ng/L,总含量是9.70ng/L;DDTs含量:0.96~2.86ng/L,总含量是9.70ng/L;OCPs含量范围3.71~17.16ng/L,总含量是59.13ng/L后山村河以及桥头村河的OCPs含量高出其它河流很多,周围是农田、居民点。由数据及小海湾的地理状况,得出海水中OCPs来源于地表径流,小海湾是OCPs巨大的储存库,OCPs主要汇集在沉积物中。  相似文献   

13.
黄河中下游表层沉积物中有机氯农药含量及分布   总被引:8,自引:1,他引:7  
利用GC-ECD检测了黄河中下游干支流23个表层沉积物中的有机氯农药,主要检测出HCHs、DDTs、六氯苯、氯丹等,总含量范围为0.35~22.92 ng/g,其中HCHs和DDTs的含量较高,分别为0.09~12.88 ns/g和0.05~5.03 ng/g.干流中有机氯农药的含量从中游到中下游呈逐渐升高趋势,主要支流中的含量为:新蟒河>金堤河>汜水>伊洛河>沁河.干流中HCHs含量较海河、珠江、长江和黄浦江明显偏高;DDTs含量与除海河外的其它河流基本相同,但两者均低于国外河流.沿河流区域工业废水和主要支流的汇入、农药的广泛施用所引起的长期残留与风化土壤是黄河有机氯农药污染的主要来源.  相似文献   

14.
珠江及南海北部海域表层沉积物中多环芳烃分布及来源   总被引:45,自引:13,他引:32  
珠江三角洲河流、河口及南海北部近海区域多环芳烃(PAHs)分析表明,PAHs总量分布范围在255.9~16670.3ng/g,整体污染水平处于中偏低下水平.分布特征为珠三角河流>伶仃洋>南海;珠江广州段是高污染区;沿南海近海海域4条剖面,随离岸距离增加,浓度下降.西江、伶仃洋及珠江部分站点石油污染比重大,南海近海则受燃烧来源比重大.PAHs来源诊断指标表明,珠江三角河流及伶仃洋更多受石化燃料燃烧的影响,南海近海区则主要受木柴、煤燃烧的影响.与1997年样品的对比表明,多环芳烃污染程度无明显下降,但区域内PAHs来源从以煤燃烧为主转变为以油燃烧为主,这种近期能源结构的转变在沉积速率较快的珠三角河流及伶仃洋表层沉积物中得到反映.  相似文献   

15.
岩溶区不同水体有机氯农药对比研究   总被引:1,自引:0,他引:1  
为研究岩溶区地下水、地表水之间有机氯农药的差异,用气相色谱-微池电子捕获检测器(GC-μECD)分析了水中OCPs含量.结果表明:研究区水样中有机氯农药检出率达100%.OCPs浓度范围32.13~319.53ng/L,均值为134.17ng/L.OCPs浓度季节差异明显,枯水期高于丰水期.水井(sj)中OCPs,DDTs、HCHs浓度均大于水池(sc).通过采样点间的对比可知,雨季水池、水井间OCPs含量相当,旱季水池小于水井.水池、水井间DDTs、HCHs对比没有明显的季节性,表现为水池的DDTs含量小于水井,但HCHs含量大于水井.水井中的OCPs、DDTs、HCHs的最小值与水池相比均表现出了滞后性.地表水与地下水有机氯农药表现出的差异,是由于两采样点的环境不同.通过比值法得出HCHs来自于混合源,地表水的比值更能准确的反映出HCHs的来源.DDTs可能来自于混合DDTs,且为历史残留,降解环境为好氧环境.水井中DDTs、HCHs百分比组成由于土壤的影响发生了变化.  相似文献   

16.
The aquatic environments of the Pearl River Delta in Southern China are subjected to contamination with various industrial chemicals from local industries. In this paper, the occurrence, seasonal variation and spatial distribution of alkylphenol octylphenol (OP) and nonylphenol (NP) in fiver surface water and sediments in the runoff outlets of the Pearl River Delta were investigated. NP and OP were detected in all water and sediment samples and their mean concentrations in surface water during the dry season ranged from 810 to 3366 ng/L and 85.5 to 581 ng/L, respectively, and those in sediments ranged from 14.2 to 95.2 ng/g dw and 0.4 to 3.0 ng/g dw, respectively. In surface water, much higher concentrations were detected in the dry season than those in the wet season. In sediments, the concentrations in the dry season were also mostly higher. High concentrations of NP and OP were found in Humen outlet, likely due to high levels of domestic and industrial wastewater discharges. An ecological risk assessment with the use of hazard quotient (HQ) was also carried out and the HQvalues ranged from 3.6 × 10^-5 to 35 and 64% of samples gave a HQ 〉 1, indicating that the current levels of NP and OP pose a significant risk to the relevant aquatic organisms in the region.  相似文献   

17.
以松花江哈尔滨段为研究对象,构建了EFDC水动力-水质模型,以主要污染物COD、NH3-N为指标,结合情景分析方法对松花江哈尔滨段支流污染负荷多情景变化下对干流水质及下游出口断面水质进行量化评估.结果表明,大顶子山出口断面COD浓度值在满足Ⅲ类及以下水质要求时,阿什河口与呼兰河口的浓度在枯水期、桃花汛期、平水期和丰水期分别最高不能超过29.3、22.3、41.82和32.13mg/L以及47.75、36.27、65.4和41.47mg/L,大顶子山断面的NH3-N浓度,枯水期保持在Ⅲ类,则要求阿什河口和呼兰河口NH3-N浓度最高为8.73和2.92mg/L,桃花汛期保持在Ⅱ类时,则二者最高分别为6.3和2.23mg/L,枯水期大顶子山断面保持在I类时,阿什河口和呼兰河口则最高不能超过7.57和1.79mg/L.  相似文献   

18.
九龙江口水体中有机氯农药分布特征及归宿   总被引:44,自引:5,他引:39  
1999-06,对九龙江口15个站位的表层水,13个站位的间隙水进行了18种有机氯农药的测定结果表明,有机氯农药总含量在表层水中的浓度范围为51.3~2479nng/L在间隙水中的浓度范围是266~33355ng/L.对不同有机氯的含量在各站位的分布特征进行了探讨,发现Methoxychlor(甲氧滴涕),Endosulfan Sulfate(硫酸硫丹),Endrinaldehyde(乙醛异狄氏剂)以及Endosulfan II(硫丹),Dieldrin(狄氏剂),Deta-HCH和Beta-HCH 7种有机氯农药在18种有机氯农药中都占主要部分;九龙江口的六六六的含量顺序:β>δ>α>γ;对于滴滴涕,表层水中的含量:DDE>>DDD>DDT;间隙水中的含量:DDE>>DDT>DDD,二者DDE的含量都在总DDTs的50%以上,说明环境中的DDTs主要降解为DDE;九龙江口有机氯农药随着盐度梯度,在河口中呈去除趋势;且间隙水中有机氯农药比表层水中的浓度高,说明其倾向于吸附在沉积物颗粒上,其浓度差使得有机污染物可能通过再悬浮等过程从底层向上层迁移.九龙江口的有机氯农药污染与其他港湾相比,污染水平相当,部分站位水质有机氯农药(HCHs和DDTs)超过国家一类水质的标准.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号