首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ground vegetation (GV) is an important component from which many forest biodiversity indicators can be estimated. To formulate policies at European level, taking into account biodiversity, European National Forest Inventories (NFIs) are one of the most important sources of forest information. However, for monitoring GV, there are several definitions, data collection methods, and different possible indicators. Even though it must be considered that natural conditions in different countries form very different understory types, each one has its own cost-efficient monitoring design, and they can hardly be compared. Therefore, the development of general guidelines is a particularly complex issue. This paper is a review of data collection methods and consequently a selection of the best available methods for the set of indicators with an emphasis on GV sampling methodologies in NFIs. As a final result, recommendations on GV definitions and classifications, sampling methodologies, and indicators are formulated for NFIs. Different sampling areas are recommended for each life form (shrubs, herbs, etc.). Inventory cycles and sampling seasons (depending on the phonological stages) should be specially considered and evaluated in the results. The proposed indicators are based on composition at different levels of sampling intensity for each life form and on coverage measurements.  相似文献   

2.
Part of this paper has been prepared for the lecture Forest Health Assessment-Criteria,Methods and Problems given by the author at the UIMPuniversity course Sanidad Forestal en el Bosques Mediterraneos yTemplados. Implicacion de la Contaminacion Atmosferica y del Cambio Global, held in Valencia, Spain, October, 1995. Assessment and monitoring of forest health representsa key point for environmental policy and for the management ofenvironmental resources. With the renewed interest in assessment andmonitoring of forest health generated by the suspected occurrence ofa widespread forest decline in Europe and North America, manyactivities have been undertaken: however, some questions should beconsidered and clarified when attempting to estimate forest health.Particularly, the objective(s) of the assessment and monitoringprogram should be carefully identified. Identification of a program‘stask has a number of implications and consequences: it implies adefinition of what concept of forest health (forest ecosystem health,forest health or forest trees health?) is assumed, what will be thetarget entity to be monitored, and therefore the identification of therelevant assessment questions and assessment endpoints.Consequences concern the definition of the spatial scale (frominternational to landscape and plot scale monitoring) and ecologicalcoverage (from single species population to population ofecosystems) of the program, which can have a considerable influenceon the choice of the proper sampling strategy and tactic, as well ason the most suitable methods, indicators and indices to be used.Although much of the work in the field of forest health and airpollution has concentrated on surveys on crown transparency anddiscoloration, there is an entire range of methods, indicators andindices developed to assess the health status of forests. The decisionas to which ones should be used will depend on the aim of theprogram and on economic and practical considerations. A furtherconsideration concerns the time span of the program, but anydecision in this field is subject to many limitations due to difficultiesin predicting future monitoring needs. All these points should becarefully considered and implemented according to a rigorousQuality Assurance procedure since any decision will influence futurework for many years.  相似文献   

3.
Air pollution, bulk precipitation, throughfall, soil condition, foliar nutrients, as well as forest health and growth were studied in 2006–2009 in a long-term ecological research (LTER) network in the Bucegi Mountains, Romania. Ozone (O3) was high indicating a potential for phytotoxicity. Ammonia (NH3) concentrations rose to levels that could contribute to deposition of nutritional nitrogen (N) and could affect biodiversity changes. Higher that 50% contribution of acidic rain (pH?<?5.5) contributed to increased acidity of forest soils. Foliar N concentrations for Norway spruce (Picea abies), Silver fir (Abies alba), Scots pine (Pinus sylvestris), and European beech (Fagus sylvatica) were normal, phosphorus (P) was high, while those of potassium (K), magnesium (Mg), and especially of manganese (Mn) were significantly below the typical European or Carpathian region levels. The observed nutritional imbalance could have negative effects on forest trees. Health of forests was moderately affected, with damaged trees (crown defoliation >25%) higher than 30%. The observed crown damage was accompanied by the annual volume losses for the entire research forest area up to 25.4%. High diversity and evenness specific to the stand type’s structures and local climate conditions were observed within the herbaceous layer, indicating that biodiversity of the vascular plant communities was not compromised.  相似文献   

4.
Habitat loss and fragmentation are often concurrent to land conversion and urbanization. Simple application of GIS-based landscape pattern indicators may be not sufficient to support meaningful biodiversity impact assessment. A review of the literature reveals that habitat definition and habitat fragmentation are frequently inadequately considered in environmental assessment, notwithstanding the increasing number of tools and approaches reported in the landscape ecology literature.This paper presents an approach for assessing impacts on habitats on a local scale, where availability of species data is often limited, developed for an alpine valley in northern Italy. The perspective of the methodology is multiple scale and species-oriented, and provides both qualitative and quantitative definitions of impact significance. A qualitative decision model is used to assess ecological values in order to support land-use decisions at the local level. Building on recent studies in the same region, the methodology integrates various approaches, such as landscape graphs, object-oriented rule-based habitat assessment and expert knowledge.The results provide insights into future habitat loss and fragmentation caused by land-use changes, and aim at supporting decision-making in planning and suggesting possible ecological compensation.  相似文献   

5.
The forests of Abies religiosa Schl. et Cham. in the north and the northeast slopes of the mountains of the southwestern region of the Valley of Mexico are in an acute process of decline, particularly the fir forest of the Cultural and Recreational Park Desierto de los Leones. The mortality of the trees began in 1981, and by 1987 30% of the trees of the Park had died; the mortality continues. The surviving trees are in a very poor crown condition, having thin crowns with many dead branches. in the light of current knowledge air pollution, in particular the oxidant gases (ozone), are the primary cause of decline, but other conditions or agents (age of the trees and diseases) could be contributing factors in the dying of the trees.Contribution from Fourth World Wilderness Congress-Acid Rain Symposium, Denver (Estes Park), Colorado, September 11–18, 1987.  相似文献   

6.
Birds are important components of biodiversity conservation since they are capable of indicating changes in the general status of wildlife and of the countryside. The Pan-European Common Bird Monitoring Scheme (PECBM) has been launched by the BirdLife Partnership in Europe, where the European Bird Census Council has been collecting data from 20 independent breeding bird survey programs across Europe over the last 25 years. These data show dramatic declines in European farmland birds. We suggest that seasonal characteristics of vegetation cover derived from high temporal resolution remote sensing images could facilitate the monitoring the suitability of farmland bird habitats, and that these indicators may be a better choice for monitoring than climate data. We used redundancy analysis to link the PECBM data of the estimated number of farmland birds in Europe to a set of phenological and climatic indicators and to the biogeographic regions of Europe. Variance partitioning was used to account for the variation explained by the phenological and climate variables and by the area of the environmental strata individually, to define the pure effect of the variables, and to extract the total explained variance. The analysis revealed high statistical significance (p < 0.001) of the correlations between species and environment. Phenological indices explained 38% of the variance in community composition of the 23 farmland bird species, whereas climate explained 30% of the variance. After partitioning the other variables as covariables, the pure effect of phenology, climate, and environmental strata were 16%, 8%, and 16%, respectively. Based on the probability results, we suggest that phenological indicators derived from remote sensing may supply better indicators for continental scale biodiversity studies than climate only. In addition, these indicators are cost and time effective, are on continuous scale, and are readily repeatable on a large spatial coverage while supplying standardized results.  相似文献   

7.
Visitor’s access to understorey vegetation in park forest stands results in the impoverishment of plant species composition and a reduction in habitat quality. The phenomenon of biotic homogenisation is typical in urban landscapes, but it can proceed differently depending on the scale, a detail that has not been observed in previous studies. This research was carried out in seven Warsaw parks (both public and restricted access). Thirty-four forested areas were randomly selected, some subjected to strong visitors’ pressure and some within restricted access areas, free of such impacts. The latter category included woodlands growing in old forest and secondary habitats. Public access to the study areas contributed to the disappearance of some forest species and their replacement by cosmopolitan non-forest species, leading to loss of floristic biodiversity in areas of high ecological importance at the city scale. Some human-induced factors, including soil compaction and changes in soil pH, moisture and capillary volume, were found to cause habitat changes that favoured native non-forest plants. Despite changes in species composition, the taxonomic similarity of understorey vegetation in both categories—public access and restricted access—was comparable. In a distance gradient of measurements taken around selected individual trees, there was found to be significant variation (in light, soil pH and compaction) affecting the quality and quantity of understorey vegetation (including rare species). In conclusion, the protection of rare forest species could be achieved by limiting access to forested areas, particularly in old forest fragments, and we highly recommend its consideration in the proposal of future park restoration plans.  相似文献   

8.
The general principles of scale and coarse and fine filters have been widely accepted, but management agencies and industry are still grappling with the question of what to monitor to detect changes in forest biodiversity following forest management. Part of this problem can be attributed to the lack of focused questions for monitoring including absence of null models and predicted effects, a certain level of disconnect between research and management, and recognition that monitoring can be designed as a research question. Considerable research from the past decade has not been adequately synthesized to answer important questions, such as which species or forest attributes might be the best indicators of change. A disproportionate research emphasis has been placed on community ecology, and mostly on a few groups of organisms including arthropods, amphibians, migratory songbirds, and small mammals, while other species, including soil organisms, lichens, bats, raptors, some carnivores, and larger mammals remain less well-known. In most studies of community ecology, the question of what is the importance, if any, of the regularly observed subtle changes in community structures, and causes of observed changes is usually not answered. Hence, our ability to deal with questions of persistence is limited, and demographic research on regionally--defined key species (such as species linked to processes, species whose persistence may be affected, species with large home ranges, species already selected as indicators, and rare and threatened species) is urgently needed. Monitoring programs need to be designed to enable managers to respond to unexpected changes caused by forest management. To do this, management agencies need to articulate null models for monitoring that predict effects, focus fine--scale monitoring on key species (defined by local and regional research) in key habitats (rare, declining, important) across landscapes, and have a protocol in place to adapt management strategies to changes observed. Finally, agencies must have some way to determine and define when a significant change has occurred and to predict the persistence of species; this too should flow from a well--designed null model.  相似文献   

9.
PurposeFor over 20 years the feasibility of including man-made impacts on biodiversity in the context of Life Cycle Assessment (LCA) has been explored. However, a comprehensive biodiversity impact assessment has so far not been performed. The aim of this study is to analyse how biodiversity is currently viewed in LCA, to highlight limitations and gaps and to provide recommendations for further research.MethodFirstly, biodiversity indicators are examined according to the level of biodiversity they assess (genetic, species, ecosystem) and to their usefulness for LCA. Secondly, relevant pressures on biodiversity that should be included in LCA are identified and available models (in and outside of an LCA context) for their assessment are discussed. Thirdly, existing impact assessment models are analysed in order to determine whether and how well pressures are already integrated into LCA. Finally, suggestions on how to include relevant pressures and impacts on biodiversity in LCA are provided and the necessary changes in each LCA phase that must follow are discussed.ResultsThe analysis of 119 indicators shows that 4% of indicators represent genetic diversity, 40% species diversity and 35% ecosystem diversity. 21% of the indicators consider further biodiversity-related topics. Out of the indicator sample, 42 indicators are deemed useful as impact indicators in LCA. Even though some identified pressures are already included in LCA with regard to their impacts on biodiversity (e.g. land use, carbon dioxide emissions etc.), other proven pressures on biodiversity have not yet been considered (e.g. noise, artificial light).ConclusionFurther research is required to devise new options (e.g. impact assessment models) for integrating biodiversity into LCA. The final goal is to cover all levels of biodiversity and include all missing pressures in LCA. Tentative approaches to achieve this goal are outlined.  相似文献   

10.
According to EC regulations the deliberate release of genetically modified (GM) crops into the agro-environment needs to be accompanied by environmental monitoring to detect potential adverse effects, e.g.unacceptable levels of gene flow from GM to non-GM crops, or adverse effects on single species or species groups thus reducing biodiversity. There is, however, considerable scientific and public debate on how GM crops should be monitored with sufficient accuracy, discussing questions of potential adverse effects, agro-environmental variables or indicators to be monitored and respective detection methods; Another basic component, the appropriate number and location of monitoring sites, is hardly considered. Currently, no consistent GM crop monitoring approach combines these components systematically. This study focuses on and integrates spatial agro-environmental aspects at a landscape level in order to design monitoring networks. Based on examples of environmental variables associated with the cropping of Bt-Maize (Zea maize L.), herbicide-tolerant (HT) winter oilseed rape (Brassica napus L.), HT sugar beet (Beta vulgaris L.), and starch-modified potato (Solanum tuberosum L.), we develop a transferable framework and assessment scheme that comprises anticipated adverse environmental effects, variables to be measured and monitoring methods.These we integrate with a rule-based GIS (geographic information system) analysis, applying widely available spatial area and point information from existing environmental networks. This is used todevelop scenarios with optimised regional GM crop monitoring networks.  相似文献   

11.
生态工程治理玄武湖水污染效果的监测与评价   总被引:10,自引:1,他引:9  
选取总磷、总氮、叶绿素a、浮游生物、浮游植物等多项环境监测指标,对利用生态工程治疗玄武湖水环境污染的效果进行了环境监测与评价。指出生态工程治理玄武湖水环境污染效果显著,经过治理使湖水中生物多样性大大增加,浮游植物大幅减少,湖水透明度增加,总磷、总氮等主要指标大幅下降,生态工程区中的水环境已从高度富营养化降到中度富营养化。  相似文献   

12.
A majority of the native medicinal plants that are commercialized in Brazil are harvested from natural populations. In addition to this essentially unrestrained collecting, these plants have been heavily impacted by the cutting and the fragmentation of forest formations throughout the country. Considering the limited availability of natural resources, threats to species diversity, and the necessity of conservation efforts in light of the rapid exhaustion of natural ecosystems, it is becoming exceedingly important to establish conservation priorities. The present work sought to identify the native medicinal plants harvested for industrial purposes and to establish conservation priorities for the species of highest commercial value. To that end, a survey of Brazilian industrial products that use medicinal plants was undertaken in 54 shops in the city of Recife (Pernambuco, NE Brazil). The survey noted information concerning the commercial name of the product, its plant composition and pharmaceutical presentation, therapeutic indications, as well as the laboratory that produced it. Only native species were considered. A total of 74 different native species used to produce more than 300 types of products were encountered in the present survey. Twelve species demonstrated significant versatility (Species which had the highest numbers of different therapeutic indications and body systems), and 58.33% of these plants were trees. Destructive collecting predominates (58.11%), greatly affecting taxa collected exclusively from wild populations (86.49%). The intensive use of exclusively wild species and the destructive harvesting techniques employed in gathering them create serious problems that will threaten the availability of these resources to future generations.  相似文献   

13.
In natural boreal forests, disturbances such as fire and variation in surficial deposits create a mosaic of forest stands with different species composition and age. At the landscape level, this variety of stands can be considered as the natural mosaic diversity. In this paper, we describe a model that can be used to estimate the natural diversity level of landscapes. We sampled 624 stands for tree species composition and surficial deposits in eight stand-age classes corresponding to eight fire episodes in the region of Lake Duparquet, Abitibi, Québec at the southern fringe of the Boreal Forest. For six surficial deposit types, stand composition data were used to define equations for vegetation changes with time for a chronosequence of 230 years for four forest types. Using Van Wagner's (1978) model of age class distribution of stands, the proportion of each forest type for several lengths of fire cycle were defined. Finally, for real landscapes (ecological districts) of the ecological region of the Basses-Terres d'Amos, the proportion of forest types were weighted by the proportion of each surficial deposit type using ecological map information. Examples of the possible uses of the model for management purposes, such as biodiversity conservation and comparisons of different landscapes in terms of diversity and sensitivity to fire regime changes, are discussed.  相似文献   

14.
Mycorrhiza is the main spatial and temporal linkage between different constituents in a forest ecosystem. The functional compatibility and stress tolerance of ectomycorrhizal types is species specific, and therefore the information on the ectomycorrhizal community structure can add to the understanding of processes in forest ecosystems and can also be applied as tools for bioindication of pollution stress in forest soils. We have studied the effects of pollution (N and S) on trees and forest soils by: (1) quantification of ECM types diversity as in situ indicators in forest stands, (2) determination and quantification of pollution-sensitive or -insensitive ECM types as passive monitors, (3) root growth and development of ECM on nonmycorrhizal spruce seedlings, planted at the studied sites (active monitors), and (4) ECM infection (a bioassay based on mycorrhizal inoculum potential) of seedlings in an experimental set-up as ex situ testers. ECM species richness for Norway spruce trees (Picea abies) showed higher values in unpolluted sites than in polluted ones, while the differences were not significant for European beech trees (Fagus sylvatica). As pollution-sensitive or -insensitive ECM species in spruce forests, we suggest Hydnum rufescens (sensitive) and Paxillus involutus (unsensitive). Mycorrhizal potential in Norway spruce seedlings as a bioassay for soil N and S pollution was effective, and is suggested as an additional, standardized and widely comparable system in bioindication of soil pollution.  相似文献   

15.
Strategies to conserve biodiversity need to include the monitoring, modelling, adaptation and regulation of the composition of the atmosphere. Atmospheric issues include climate variability and extremes; climate change; stratospheric ozone depletion; acid deposition; photochemical pollution; suspended particulate matter; and hazardous air pollutants. Coarse filter and fine filter approaches have been used to understand the complexity of the interactions between the atmosphere and biodiversity. In the first approach, climate-based models, using GIS technology, helped create future biodiversity scenarios under a 2 × CO2 atmosphere. In the second approach, the SI/MAB forest biodiversity monitoring protocols helped calibrate the climate-forest biodiversity baseline and, as global diagnostics, helped identify where the biodiversity was in equilibrium with the present climate. Forest climate monitoring, an enhancing protocol, was used in a co-location approach to define the thermal buffering capacity of forest ecosystems and their ability to reduce and ameliorate global climate variability, extremes and change.  相似文献   

16.
Defining “forest land” is a complex issue and has been discussed for decades. Today, a confusing multitude of definitions of forest land are in use making comparison of forest area figures difficult. But currently, comparability is receiving much attention when it comes to install market mechanisms for ecosystem services. Minimum crown cover is among the most frequently employed criteria of forest definitions. However, the size of the reference area on which the crown cover percent is to be measured is usually not defined. But how does a change of the size of the reference area affect the derived forest cover? In this study, we analyze the interactions of the crown cover threshold and the size of the reference area. We start with analyzing the interactions using a simple geometric model of the forest edge. Then, we extend the analysis by simulating artificial landscapes where we study how the interaction is affected by different degrees of forest fragmentation, crown cover proportion, and spatial resolution of the data source used. The simulation showed that large differences in forest cover (>50 %) may result for a fixed crown cover threshold value, just by changing the size of the reference area, where the magnitude of this effect is a function of the chosen threshold value and the spatial configuration of the crowns. As a consequence of the findings, we see an urgent need to complete forest definitions by defining a reference area in order to reduce uncertainties of forest cover estimates.  相似文献   

17.
The productivity of forest sites has been indirectly determined with solo wood production objective in forest management. Forest site productivity should, however, be determined directly in order to implement ecosystem based multipurpose forest management philosophy. This article tackles the problem in distinguishing and mapping forest sites using both direct method and indirect method in Genya Mountain located in central of Artvin State Forest Enterprise. About 112 sample plots were designed and distributed over the area. In each sample plot, soil samples were collected and the classical timber inventory measurements were taken. According to direct method, Soil Moisture Regime (SMR) method is preferred due to a water deficiency in the study area. Water holding capacity was used as an essential criterion for the classification of the forest site. Forest site classifications were assigned regarding the physiographic factors such as landform, aspect, and slope. Five different forest sites classes; dry, moderate fresh, fresh, humid and hygric were determined. According to direct method, the guiding curve was used to generate anamorphic site index (SI) equations and three site index classes; good (SI=I–II), medium (SI=III) and low (SI=IV–V) were determined. Some important differences between the methods were realized. The forest sites determined with site index estimation method indicate that site index I and II is 505.99 ha, III 1095.79 ha and IV and V 992.95 ha, whereas forest sites determined with direct method related to dry site of 937.58 ha, moderate fresh site of 931.90 ha, fresh site of 1,797.71 ha, humid site of 80.48 ha and hygric site of 356.55 ha. The forest site maps of both methods were created using GIS functions. The forest sites of open and degraded areas should be determined according to direct method.  相似文献   

18.
19.
The USDA Forest Service Forest Health Monitoring (FHM) program indicators, including forest mensuration, crown condition classification, and damage and mortality indicators were used in the Cadillac Brook and Hadlock Brook watershed forests at Acadia National Park (ANP) along coastal Maine. Cadillac Brook watershed burned in a wildfire in 1947. Hadlock Brook watershed, undisturbed for several centuries, serves as the reference site. These two small watersheds have been gauged and monitored at ANP since 1998 as part of the Park Research and Intensive Monitoring of Ecosystems Network (PRIMENet). Forest vegetation at Hadlock Brook was dominated by late successional species such as Acer saccharum, Fagus grandifolia, Betula alleghaniensis, Acer rubrum and Picea rubens. Forest vegetation at Cadillac Brook, on the other hand, was younger and more diverse and included those species found in Hadlock as well as early successional species such as Betula papyrifera and Populus grandidentata. Differences in forest species composition and stand structure were attributed to the severe wildfire that affected the Cadillac Brook watershed. Overall, the forests at these ANP watersheds were healthy with a low percentage (相似文献   

20.
A conceptual model of sustainable forest management is described based on three connected and necessary components: Policy/Strategic Planning, Operational Planning, and EffectivenessMonitoring/Science.Alberta’s proposed Forest Management Planning Standard is described as an example of operational planning. The standard utilizes coarse and fine filter approaches to conserving biodiversity and sets requirements for implementation monitoring.The Alberta Biodiversity Monitoring Program (ABMP) is described as an example of effectiveness monitoring supporting Operational Planning. The ABMP is a rigorous science-based initiative that is being developed to monitor and report on biodiversity status and trends throughout the province of Alberta, Canada. The basic survey design consists of 1656 sites, 20 km apart, evenly spaced on a grid pattern across Alberta. Sites will be sampled over a five-year period at a rate of 350 sites/year. Standardized sampling protocols will be used to cover a broad range of species and habitat elements within terrestrial and aquatic environments, as well as broader landscape-level features.Trends and associations detected by ABMP products will be validated through cause-effect research. ABMP focuses research on critical issues and informs both operational planning and the development of policy and strategic-level plans. The Alberta Forest Management Planning Standard and the ABMP are described as key components to implementing resource planning based on ecosystem management principles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号