首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
安全科学   9篇
环保管理   1篇
污染及防治   1篇
评价与监测   2篇
  2013年   2篇
  2012年   2篇
  2011年   1篇
  2008年   1篇
  2007年   3篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  1995年   1篇
排序方式: 共有13条查询结果,搜索用时 31 毫秒
1.
Electrical apparatus for use in the presence of explosive gas atmospheres has to be specially designed to prevent the apparatus from igniting the gas. Flameproof design is one of several options, and one requirement is then that any holes and slits in the enclosure wall be designed to prevent a possible gas explosion inside the enclosure from being transmitted to an explosive gas cloud outside it. Current standards (IEC) require that joint surfaces have a surface roughness of <6.3 μm. Any damaged joint surface has be restored to this quality. The present investigation has demonstrated that flame gap surfaces in flameproof electrical apparatuses can suffer considerable mechanical and corrosive damage before the flame gaps no longer function satisfactorily. In some cases very significant mechanical surface damage in fact improves the gap performance. This indicates that current high costs of repairing and replacing flameproof electrical apparatus in process plants offshore and onshore can be reduced considerably without any increase of the explosion risk.  相似文献   
2.
Explosive gas mixtures and explosive dust clouds, once existing, exhibit similar ignition and combustion features. However, there are two basic differences between dusts and gases which are of substantially greater significance in design of safety standards than these similarities. Firstly, the physics of generation and up-keeping of dust clouds and premixed gas/vapour clouds are substantially different. This means that in most situations where accidental explosive gas clouds may be produced quite readily, generation of explosive dust clouds would be highly unlikely. Secondly, contrary to premixed gas flame propagation, the propagation of flames in dust/air mixtures is not limited only to the flammable dust concentration range of dynamic clouds. The state of stagnant layers/deposits offers an additional discrete possibility of flame propagation.

The two European Directives 94/9/EC (1994) and 1999/92/EC (1999) primarily address gases/vapours, whereas the particular properties of dusts are not addressed adequately. Some recent IEC and European dust standards resulting from this deficiency are discussed, and the need for revising the two directives accordingly is emphasized.  相似文献   

3.
Potentially incendiary electrical apparatus for use in the presence of explosive gas atmospheres have to be specially designed to prevent the apparatus from igniting the gas. Flameproof design is one of several options, and one requirement is then that any holes and gaps in the enclosure wall be designed to prevent a gas explosion inside the enclosure from being transmitted to an explosive gas cloud outside it. Current standards (IEC) require that flame gap surfaces have a surface roughness of <6.3 μm. Any damaged flame gap surface has to be restored to this quality. The present investigation has demonstrated that flame gap surfaces in flameproof electrical apparatuses can suffer considerable corrosive and mechanical damage without any reduction of gap performance. In some cases very significant mechanical surface damage in fact improves gap performance. Possible physical reasons for this are discussed. These findings indicate that current high costs of repairing and replacing flameproof electrical apparatus in process plants offshore and onshore can be significantly reduced without any increase of explosion risks.  相似文献   
4.
Based on experience with powders of particle sizes down to the 1–0.1 μm range one might expect that dust clouds from combustible nm-particle powders would exhibit extreme ignition sensitivities (very low MIEs) and extreme explosion rates (very high KSt-values). However, there are two basic physical reasons why this may not be the case. Firstly, complete transformation of bulk powders consisting of nm-particles into dust clouds consisting of well-dispersed primary particles is extremely difficult to accomplish, due to very strong inter-particle cohesion forces. Secondly, should perfect dispersion nevertheless be achieved, the extremely fast coagulation process in clouds of explosive mass concentrations would transform the primary nm-particles into much larger agglomerates within fractions of a second. Furthermore, for organic dusts and coal the basic mechanism of flame propagation in dust clouds suggests that increased cloud explosion rates would not be expected as the particle size decreases into the <1 μm range. An overall conclusion is that dust clouds consisting of nm primary particles are not expected to exhibit more severe KSt-values than clouds of μm primary particles, in agreement with recent experimental evidence. In the case of the ignition sensitivity recently published evidence indicates that MIEs of clouds in air of some metal powders are significantly lower for nm particles than for μm particles. A possible reason for this is indicated in the paper.  相似文献   
5.
Explosibility of micron- and nano-titanium was determined and compared according to explosion severity and likelihood using standard dust explosion equipment. ASTM methods were followed using a Siwek 20-L explosion chamber, MIKE 3 apparatus and BAM oven. The explosibility parameters investigated for both size ranges of titanium include explosion severity (maximum explosion pressure (Pmax) and size-normalized maximum rate of pressure rise (KSt)) and explosion likelihood (minimum explosible concentration (MEC), minimum ignition energy (MIE) and minimum ignition temperature (MIT)). Titanium particle sizes were ?100 mesh (<150 μm), ?325 mesh (<45 μm), ≤20 μm, 150 nm, 60–80 nm, and 40–60 nm. The results show a significant increase in explosion severity as the particle size decreases from ?100 mesh with an apparent plateau being reached at ?325 mesh and ≤20 μm. Micron-size explosion severity could not be compared with that for nano-titanium due to pre-ignition of the nano-powder in the 20-L chamber. The likelihood of an explosion increases significantly as the particle size decreases into the nano range. Nano-titanium is very sensitive and can self-ignite under the appropriate conditions. The explosive properties of the nano-titanium can be suppressed by adding nano-titanium dioxide to the dust mixture. Safety precautions and procedures for the nano-titanium are also discussed.  相似文献   
6.
7.
Current status and expected future trends in dust explosion research   总被引:4,自引:0,他引:4  
In spite of extensive research and development for more than 100 years to prevent and mitigate dust explosions in the process industries, this hazard continues to threaten industries that manufacture, use and/or handle powders and dusts of combustible materials. Lack of methods for predicting real dust cloud structures and flame propagation processes has been a major obstacle to prediction of course and consequences of dust explosions in practice. However, work at developing comprehensive numerical simulation models for solving these problems is now on its way. This requires detailed experimental and theoretical studies of the physics and chemistry of dust cloud generation and combustion. The present paper discusses how this kind of work will promote the development of means for prevention and mitigation of dust explosions in practice. However, progress in other areas will also be discussed, e.g. ignition prevention. The importance of using inherently safe process design, building on knowledge in powder science and technology, and of systematic education/training of personnel, is also emphasized.  相似文献   
8.
A field study of triclosan loss rates in river water (Cibolo Creek, TX)   总被引:1,自引:0,他引:1  
Triclosan (TCS) is an anti-microbial agent used in down-the-drain consumer products. Following sewage treatment some of the triclosan will enter receiving waters. This study was designed to determine the die-away rate of triclosan released into a river as part of the sewage treatment plant effluent matrix. The study was conducted in Cibolo Creek, a moderate sized stream (discharge approximately 0.1 m(3)s(-1)) located in South Central Texas. Triclosan was analyzed from samples collected upstream of the sewage treatment plant, the sewage treatment plant effluent, and the river downstream from the effluent discharge. The first-order loss rate of parent triclosan from the water column was calculated from measured data (0.06 h(-1)) and this rate corresponded to a 76% reduction in triclosan over an 8 km river reach below the discharge. Mathematical modeling indicated that sorption and settling accounted for approximately 19% of total triclosan loss over 8 km. When removing sorption and settling, the remaining amount of triclosan had an estimated first-order loss rate of 0.25 h(-1). This loss rate was presumably due to other processes such as biodegradation and photolysis. These data show that loss of parent triclosan from the water column is rapid. Additional data are needed to fully document loss mechanisms.  相似文献   
9.
This paper is an overview of this special issue devoted to watershed research in Acadia National Park (Acadia NP). The papers address components of an integrated research program on two upland watersheds at Acadia NP, USA (44° 20′ N latitude; 68° 15′ E longitude). These watersheds were instrumented in 1998 to provide a long-term foundation for regional ecological and watershed research. The research was initiated as part of EPA/NPS PRIMENet (Park Research and Intensive Monitoring of Ecosystems Network), a system of UV-monitoring stations and long-term watershed research sites located in US national parks. The initial goals at Acadia NP were to address research questions about mercury, acid rain, and nitrogen saturation developed from prior research. The project design was based on natural differences in forests and soils induced by an intense wildfire in one watershed in 1947. There is no evidence of fire in the reference watershed for several hundred years. We are testing hypotheses about controls on surface water chemistry, and bioavailability of contaminants in the contrasting watersheds. The unburned 47-ha Hadlock Brook watershed is 70% spruce-fir mature conifer forest. In contrast, burned 32-ha Cadillac Brook watershed, 4 km northeast of the Hadlock watershed, is 20% regenerating mixed northern hardwoods and 60% shrub/rocky balds. Differences in atmospheric deposition are controlled primarily by forest stand composition and age. The watersheds are gauged and have water chemistry stations at 122 m (Cadillac) and 137 m (Hadlock); watershed maximum elevations are 468 and 380 m, respectively. The stream water chemistry patterns reflect, in part, the legacy of the intense fire, which, in turn, controls differences in forest vegetation and soil characteristics. These factors result in higher nitrogen and mercury flux from the unburned watershed, reflecting differences in atmospheric deposition, contrasting ecosystem pools of nitrogen and mercury, and inferred differences in internal cycling and bioavailabilty.  相似文献   
10.
Accidental electrostatic sparks in industrial plant producing/handling powders/dusts occur whenever a non-earthed electrically conducting object has been charged tribo-electrically to a high voltage and suddenly discharges its energy to earth via an air gap of appropriate length. When assessing the electrostatic spark ignition hazard in an industrial plant, the parameters of prime concern are the capacitances C of electrically conducting plant items that may become charged tribo-electrically, the voltages U to which they may become charged, and the minimum electric spark ignition energies (MIE) of the dust clouds of concern. Whenever , there is a possibility of accidental electrostatic spark ignition.

Current standard apparatuses for determining MIE of dust clouds have a lower spark energy limit of 2–3 mJ. In an investigation by the present authors, discussed in detail elsewhere, a new spark generator capable of producing synchronized capacitive sparks of energies down to the order of 0.01 mJ was developed and used for testing a selection of ignition-sensitive powders for MIE. Several of the MIEs found were 1–2 orders of magnitude lower than the lower energy limit of current standard test apparatus. Other experiments by the present authors, also reported elsewhere, have shown that quite low MIEs can be found for some dusts even with a less optimal synchronization mechanism, which may occur accidentally in practice.

The main object of the present paper is to discuss possible practical concerns arising from the finding that clouds in air of some dusts can have very low MIEs. In such cases, one may have to pay attention to even minor C values, i.e. minor plant items. Alternatively, with larger C values, even quite low voltages may give rise to hazardous spark discharges.

However, some types of fine metal powders of low MIEs will quite readily form electrically conductive layers on the solid surfaces with which they make contact. Hence, electrostatic spark ignition inside process equipment containing such dusts may be less probable than in the case of process equipment containing non-conducting dusts of correspondingly low MIEs.

There may be a need for a new standard test method for determination of MIEs of dust clouds in the <1 mJ range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号