首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
(14)C specific activities were measured in grass samples collected around Brazilian nuclear power reactors. The specific activity values varied between 227 and 299 Bq/kg C. Except for two samples which showed (14)C specific activities 22% above background values, half of the samples showed background specific activities, and the other half had a (14)C excess of 1-18%. The highest specific activities were found close to the nuclear power plants and along the main wind directions (NE and NNE). The activity values were found to decrease with increasing distance from the reactors. The unexpectedly high (14)C excess values found in two samples were related to the local topography, which favors (14)C accumulation and limits the dispersion of the plume. The results indicate a clear (14)C anthropogenic signal within 5 km around the nuclear power plants which is most prominent along northeastwards, the prevailing wind direction.  相似文献   

2.
14C specific activities, above ambient background levels, were determined in individual treerings (corresponding to the years 1950-1999) sectioned from an oak tree that was felled in autumn 1999, from a location 1.5 km east of the Sellafield nuclear fuel reprocessing plant in Cumbria. north-west England. The data were used to produce a new, improved, reconstruction of Sellafield's annual atmospheric 14C discharges between 1951 and 1999, using the most reliable discharge data set (1994-1999) as the primary basis for the determination of a new calibration factor that relates excess 14C activity in individual tree rings to the annual discharge during the corresponding year. The results indicate that the current British Nuclear Fuels plc (BNFL) estimate of total 14C discharges to the atmosphere prior to 1978 is significantly overestimated, while the current estimate of total 14C discharges after 1978 is very similar to that determined in this study. In this study, the total activity of 14C discharged to the atmosphere from Sellafield between 1951 and 1999 is estimated to be 259+/-63 TBq (at 2 std. dev.). The BNFL current estimate is 360TBq.  相似文献   

3.
Nuclear power plants release 14C during routine operation mainly as airborne gaseous effluents. Because of the long half-life (5730 years) and biological importance of this radionuclide (it is incorporated in plant tissue by photosynthesis), several countries have monitoring programs in order to quantify and control these emissions. This paper compares the activity of 14C in soils taken within 1 km from a Brazilian nuclear power plant with soils taken within a reference area located 50 km away from the reactor site. Analyses of total carbon, δ13C and 137Cs were also performed in order to understand the local soil dynamics. Except for one of the profiles, the isotopic composition of soil organic carbon reflected the actual forest vegetation present in both areas. The 137Cs data show that the soils from the base of hills are probably allocthonous.  相似文献   

4.
This paper reports a study of the effect of three nuclear and one thermal power plants on the microbial ecology of soils. Populations of bacteria, actinomycetes, fungi, cellulolytic microbes, phosphate-solubilizing microbes and nitrogen-fixing microbes in the soil in the vicinity of each plant were studied. Soils were acidic at three sites, and moisture contents of the power plant soils were lower than those of the surrounding areas. Microbial populations of the topsoils (0-20 cm deep) were higher than the subsoils (21-40 cm deep), and only 10-15% of them showed significant difference (P < .05). Thirty-three percent of the samples from the surrounding areas had higher microbial population than those from the power plant areas, but 19% was the reverse. Populations of cellulolytic, phosphate-solubilizing and nitrogen-fixing microbes varied with sampling locations, season and environmental conditions. Ratios of cellulolytic, phosphate-solubilizing and nitrogen-fixing microbes to total viable counts in some samples of the surrounding areas were significantly higher than in the power plant areas. Although the microbial populations of power plant soil and its surrounding area were somewhat different, it cannot be attributed as an effect of power plant operation, as the differences were not consistent.  相似文献   

5.
To realize the dynamical behavior of 14C among exchangeable carbon reservoirs in terrestrial environment, a method for in situ determination of 14CO2 flux at soil-atmosphere interface and a high flow rate CO2 sampler were developed. This method allowed us to collect integrated quantity of CO2 for determining 14C activity over an extended time period under environmental conditions with minimal site disturbance. The 14CO2 flux from ground surface was estimated to be 1.59 x 10(-5) Bq m (-2) S (-1) in a forest floor with the method. The specific activities of 14C in environmental materials such as some biological and air samples were also determined in the vicinity of the place, where the flux measurement was made, to discuss the behavior of 14C in the forest ecosystem. The results indicated that fresh pine needles had a similar 14C specific activity to the atmospheric CO2 at the same height due to its fairly rapid equilibrium, 14C specific activity in the atmospheric CO2 has a concentration gradient near the ground surface and, at least in this site, CO2 with high 14C specific activity was generated by decomposition of soil organic matter which may be accumulated in soil as a result of former nuclear weapons tests.  相似文献   

6.
For 10 years, (14)C measurements have been performed around French nuclear power plant sites, both in zones influenced and zones not influenced by gaseous releases. Examining the results from these measurements in the terrestrial environment shows that the discharges have a very slight impact on the radiocarbon level (with a relative increase in the specific activity of the order of 3 Bqkg(-1)C in the influenced areas). In correlation, there is a near-negligible increase in dose, on average less than 0.1 microSvyr(-1), with reference to a dose from background radiation, which is of the order of 10 microSvyr(-1). The deltaC13 values are very similar between the influenced zone and the non-influenced zone, with a mean of -27 per thousand. The mean DeltaC14 varies from 101 per thousand in the non-influenced zone to 123 per thousand in the influenced zone. Moreover, a general reduction in (14)C concentration was found, with a time constant of the order of 95 years. The current level of (14)C specific activity in terrestrial environment is estimated to be 242+/-6 Bqkg(-1)C.  相似文献   

7.
More than 50 soil samples were analysed from different parts of the country, the activity concentration of 239+240Pu was in the range of 0.01-0.84 Bq/kg dry soil with the average of 0.10 Bq/kg. 238Pu could be detected only in few moss samples and 238Pu/239+240Pu ratio determines the origin of plutonium. 241Pu was determined by liquid scintillation spectrometry. The activity concentration of this isotope in the soil is between 0.04 and 3.74 Bq/kg with the average of 0.82 Bq/kg, while in the moss is also similar 0.01-2.07 Bq/kg fresh mass with the average of 0.43 Bq/kg. Significant difference could not be observed between the different types of soils occurring in the country, but the results could be sorted according to the sampling carried out on undisturbed or cultivated area. The isotope ratios 241Pu/239+240Pu prove that the origin of the plutonium in Hungary is the global fallout determined by the atmospheric nuclear weapon tests.  相似文献   

8.
A near field study was set up to follow the effects of the Temelin nuclear power plant construction. Reference levels of artificial radionuclides were monitored in the Vltava River upper course and its tributaries in the period 1990-2001. Monitoring continued even after the waste water release startup during the pilot operation in 2002. The assessment of the (90)Sr and (137)Cs concentrations histories in ground water, river bottom sediments and fish showed a decreasing trend. This trend was not influenced by the nuclear power plant pilot operation. In the case of tritium, trend of increasing concentration had been already observed since the pilot operation startup. The monitoring of changes in concentrations of artificial and natural radionuclides in influenced and uninfluenced profiles will be maintained to assess the possible influence of the operation of the Temelin nuclear power plant.  相似文献   

9.
In a long-term study of contaminated soil around Jaslovské Bohunice nuclear power plant (NPP), 24 species of local flora were used to show impact of serious accidents from 1976 to 1977. The 19-km-long banks of the Jaslovské Bohunice NPP wastewater recipient have been identified as contaminated by (137)Cs. In total, more than 67,000m(2) of riverbanks have been found as being contaminated at levels exceeding 1Bq (137)Csg(-1) of soil. Used phytotoxic and cytogenetic "in situ" tests were extended by analyses of pollen grains. Although the dose of some samples of radioactive soil was relatively high (322kBqkg(-1)) no significant impact on the biological level of tested wild plant species was observed.  相似文献   

10.
A method by inductively coupled plasma mass spectrometry (ICP-MS) was developed which allows the measurement of (236)U at concentration ranges down to 3 x 10(-14)g g(-1) and extremely low (236)U/(238)U isotope ratios in soil samples of 10(-7). By using the high-efficiency solution introduction system APEX in connection with a sector-field ICP-MS a sensitivity of more than 5,000 counts fg(-1) uranium was achieved. The use of an aerosol desolvating unit reduced the formation rate of uranium hydride ions UH(+)/U(+) down to a level of 10(-6). An abundance sensitivity of 3 x 10(-7) was observed for (236)U/(238)U isotope ratio measurements at mass resolution 4000. The detection limit for (236)U and the lowest detectable (236)U/(238)U isotope ratio were improved by more than two orders of magnitude compared with corresponding values by alpha spectrometry. Determination of uranium in soil samples collected in the vicinity of Chernobyl nuclear power plant (NPP) resulted in that the (236)U/(238)U isotope ratio is a much more sensitive and accurate marker for environmental contamination by spent uranium in comparison to the (235)U/(238)U isotope ratio. The ICP-MS technique allowed for the first time detection of irradiated uranium in soil samples even at distances more than 200 km to the north of Chernobyl NPP (Mogilev region). The concentration of (236)U in the upper 0-10 cm soil layers varied from 2 x 10(-9)g g(-1) within radioactive spots close to the Chernobyl NPP to 3 x 10(-13)g g(-1) on a sampling site located by >200 km from Chernobyl.  相似文献   

11.
To clarify the behavior of 14C in terrestrial ecosystems, 14C abundance in soil respiration was evaluated in an urban forest with a new method involving a closed chamber technique and 14C measurement by accelerator mass spectrometry (AMS). Soil respiration had a higher Delta14C than the contemporary atmosphere. This indicates that a significant portion of soil respiration is derived from the decomposition of soil organic matter enriched in 14C by atmospheric nuclear weapons tests, with a notable time lag between atmospheric 14C addition and re-emission from soil. On the other hand, delta14C in soil respiration demonstrated that 14C abundance ratio itself in soil-respired CO2 is not always high compared with that in atmospheric CO2 because of the isotope fractionation during plant photosynthesis and microbial decomposition of soil organic matter. The Delta14C in soil respiration was slightly lower in August than in March, suggesting a relatively high contribution of plant root respiration and decomposition of newly accumulated and/or 14C-depleted soil organic matter to the total soil respiration in August.  相似文献   

12.
The present study was conducted to compare the 137Cs, 40K, 232Th, and 238U activity concentrations in epigeic moss (Hypnum cupressiforme) and lichen (Cladonia rangiformis). The activity levels in 37 moss and 38 lichen samples collected from the Marmara region of Turkey were measured using a gamma spectrometer equipped with a high purity germanium (HPGe) detector. The activity concentrations of 137Cs, 40K, 232Th, and 238U in the moss samples were found to be in the range of 0.36-8.13, 17.1-181.1, 1.51-6.17, and 0.87-6.70 Bq kg−1 respectively, while these values were below detection limit (BDL)-4.32, 16.6-240.0, 1.32-6.47, and BDL-3.57 Bq kg−1 respectively in lichen. The average moss/lichen activity ratios of 137Cs, 40K, 232Th, and 238U were found to be 1.32 ± 0.57, 2.79 ± 1.67, 2.11 ± 0.82, and 2.19 ± 1.02, respectively. Very low 137Cs concentrations were observed in moss and lichen samples compared to soil samples collected from the same locations in a previous study. Seasonal variations of the measured radionuclide activities were also examined in the three sampling stations.  相似文献   

13.
Inter-plant concentration ratios (IPCR) [Bqg(-1)(137)Cs in coral atoll tree food crops/Bqg(-1)(137)Cs in leaves of native plant species whose roots share a common soil volume] can replace transfer factors (TF) to predict (137)Cs concentration in tree food crops in a contaminated area with an aged source term. The IPCR strategy has significant benefits relative to TF strategy for such purposes in the atoll ecosystem. IPCR strategy applied to specific assessments takes advantage of the fact that tree roots naturally integrate (137)Cs over large volumes of soil. Root absorption of (137)Cs replaces large-scale, expensive soil sampling schemes to reduce variability in (137)Cs concentration due to inhomogeneous radionuclide distribution. IPCR [drinking-coconut meat (DCM)/Scaevola (SCA) and Tournefortia (TOU) leaves (native trees growing on all atoll islands)] are log-normally distributed (LND) with geometric standard deviation (GSD)=1.85. TF for DCM from Enewetak, Eneu, Rongelap and Bikini Atolls are LND with GSDs of 3.5, 3.0, 2.7, and 2.1, respectively. TF GSD for Rongelap copra coconut meat is 2.5. IPCR of Pandanus fruit to SCA and TOU leaves are LND with GSD=1.7 while TF GSD is 2.1. Because IPCR variability is much lower than TF variability, relative sampling error of an IPCR field sample mean is up 6- to 10-fold lower than that of a TF sample mean if sample sizes are small (10-20). Other IPCR advantages are that plant leaf samples are collected and processed in far less time with much less effort and cost than soil samples.  相似文献   

14.
Extensive studies of the radiocarbon (14C) distribution and transfer in the marine environment of the North-Cotentin peninsula and along the English Channel have been carried out. The main aims of these studies have been to estimate the spatial and temporal variation of the 14C concentration in seawater and to calculate 14C concentration factors for some biological species. Such information will be helpful in order to calculate precisely radiation doses to humans. First results obtained in the vicinity of the COGEMA La Hague nuclear plant (Goury) indicate a 14C labelling of the dissolved inorganic carbon (DIC) in seawater (8.0-26.2 Bq.m(-3)) and a tight relationship between the 14C in the liquid releases from the plant and the 14C concentrations in DIC. The particulate organic carbon (POC) is also labelled. The concentration factor calculations for the brown algae (Fucus serratus) sampled from Goury, and also along the English Channel, give 14C values around 3000 Bq.kg(-1) fresh weight / Bq.L(-1).  相似文献   

15.
Atmospheric air samples were taken within 3 km from power plants encompassing five different distances and wind directions. Samples were taken between 2002 and 2005 aiming to evaluate the environmental 14C enrichment due to the operation of Brazilian nuclear power plants. The sampling system consisted of a pump connected to a trapping column filled with a 3 M NaOH solution. The trapped CO2 was analyzed for 14C by using a single stage accelerator mass spectrometry (SSAMS).  相似文献   

16.
Fifty-two soil samples in the vicinity of a coal-fired power plant (CFPP) in Figueira (Brazil) were analyzed. The radionuclide concentration for the uranium and thorium series in soils ranged from <9 to 282 Bq kg(-1). The range of 40K concentration in soils varied from <59 to 412 Bq kg(-1). The CFPP (10 MWe) has been operating for 35 years and caused a small increment in natural radionuclide concentration in the surroundings. This technologically enhanced natural radioactivity (TENR) was mainly due to the uranium series (234Th, 226Ra and 210Pb) and was observable within the first kilometer from the power plant. The CFPP influence was only observed in the 0-25 cm soil horizon. The soil properties prevent the radionuclides of the 238U-series from reaching deeper soil profiles. The same behavior was observed for 40K as well. No influence was observed for 232Th, which was found in low concentrations in the coal.  相似文献   

17.
Bi X  Feng X  Yang Y  Qiu G  Li G  Li F  Liu T  Fu Z  Jin Z 《Environment international》2006,32(7):883-890
Total heavy metal (Cd, Cr, Cu, Pb and Zn) concentrations were evaluated in smelting waste, soil, crop and moss samples collected from the Hezhang artisanal zinc smelting areas, Guizhou, China. Soil samples from the cornfield near the smelting sites contained extremely high Cd (5.8-74 mg kg(-1)), Pb (60-14,000 mg kg(-1)) and Zn (260-16,000 mg kg(-1)) concentrations. Elevated heavy metal concentrations were also found in corn plants and total Pb (0.80-1.5 mg kg(-1)) and Cd (0.05-0.76 mg kg(-1)) concentrations in corn grain have totally or partially exceeded the national guidance limits for foodstuff. Thus, the soil-to-crop transfer of heavy metals might pose a potential health risk to the local residents. Similar to the high heavy metal levels in soil and corn, Cd, Cr, Cu, Pb and Zn concentrations in moss samples collected from the smelting sites ranged from 10 to 110, 10 to 55, 26 to 51, 400 to 1200 and 330 to 1100 mg kg(-1), respectively, exhibiting a local spatial pattern of metals deposition from the atmosphere. Based on examination of Zn/Cd and Pb/Cd ratios of the analyzed samples, we have distinguished between the flue gas dust derived and smelting waste derived metals in different environmental compartments.  相似文献   

18.
Depth profiles of the specific activities of (14)C and carbon isotopic compositions (Delta(14)C, delta(13)C) in soil organic matter and soil CO(2) in a Japanese larch forest were determined. For investigating the transport of CO(2) in soil, specific activities of (14)C, Delta(14)C and delta(13)C in the organic layer, and atmospheric CO(2) in the same forest area were also determined. The specific activity of (14)C and Delta(14)C in the soil organic matter decreased with the increase in depth of 0-60cm, while that of soil CO(2) did not vary greatly at a soil depth of 13-73cm and was more prevalent than that of atmospheric CO(2). Peaks of specific activities of (14)C appeared at the depth of 0-4cm and Delta(14)C values were positive in the depth range from 0 to 15cm. These results suggest that the present soil at a depth of 0-4cm had been produced from the mid-1950s up until 1963, and the bomb C had reached the depth of 15cm in the objective soil area. The delta(13)C in the soil organic matter increased at the depth of 0-55cm, while that of soil CO(2) collected on 8 November 2004 decreased rapidly at the depth of 0-13cm and only slightly at the depth of 53-73cm. By combining the Delta(14)C and delta(13)C of the respective components and using the Keeling plot approach it was made clear that the entering of atmospheric CO(2) showed a large contribution to soil CO(2) at the depth of 0-13cm and a negligible contribution at the depth of 53-73cm for soil air collected on 8 November 2004. Respiration of live roots was presumed to be the main source of soil CO(2) at the depth of 53-73cm on 8 November 2004.  相似文献   

19.
Spills in the nuclear fuel cycle have led to soil contamination with uranium. In case of small contamination just above release levels, low-cost yet sufficiently efficient remedial measures are recommended. This study was executed to test if low-level U contaminated sandy soil from a nuclear fuel processing site could be phytoextracted in order to attain the required release limits. Two soils were tested: a control soil (317 Bq 238U kg(-1)) and the same soil washed with bicarbonate (69 Bq 238U kg(-1)). Ryegrass (Lolium perenne cv. Melvina) and Indian mustard (Brassica juncea cv. Vitasso) were used as test plants. The annual removal of soil activity by the biomass was less than 0.1%. The addition of citric acid (25 mmol kg(-1)) 1 week before the harvest increased U uptake up to 500-fold. With a ryegrass and mustard yield of 15,000 and 10,000 kg ha(-1), respectively, up to 3.5% and 4.6% of the soil activity could be removed annually by the biomass. With a desired activity reduction level of 1.5 and 5 for the bicarbonate-washed and control soil, respectively, it would take 10-50 years to attain the release limit. However, citric acid addition resulted in a decreased dry weight production.  相似文献   

20.
Soil samples were collected around a coal-fired power plant from 81 different locations. Brown coal, unusually rich in uranium, is burnt in this plant that lies inside the confines of a small industrial town and has been operational since 1943. Activity concentrations of the radionuclides 238U, 226Ra, 232Th, 137Cs and 40K were determined in the samples. Considerably elevated concentrations of 238U and 226Ra have been found in most samples collected within the inhabited area. Concentrations of 235U and 226Ra in soil decreased regularly with increasing depth at many locations, which can be explained by fly-ash fallout. Concentrations of 235U and 226Ra in the top (0-5 cm depth) layer of soil in public areas inside the town are 4.7 times higher, on average, than those in the uncontaminated deeper layers, which means there is about 108 Bq kg(-1) surplus activity concentration above the geological background. A high emanation rate of 222Rn from the contaminated soil layers and significant disequilibrium between 238U and 226Ra activities in some kinds of samples have been found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号