首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   1篇
安全科学   1篇
环保管理   3篇
综合类   1篇
基础理论   9篇
污染及防治   5篇
社会与环境   5篇
  2019年   1篇
  2016年   1篇
  2013年   3篇
  2009年   2篇
  2008年   2篇
  2007年   2篇
  2006年   2篇
  2003年   1篇
  2002年   1篇
  1995年   1篇
  1989年   1篇
  1986年   1篇
  1984年   3篇
  1981年   1篇
  1967年   2篇
排序方式: 共有24条查询结果,搜索用时 93 毫秒
1.
Generally, one expects evapotranspiration (ET) maps derived from optical/thermal Landsat and MODIS satellite imagery to improve decision support tools and lead to superior decisions regarding water resources management. However, there is lack of supportive evidence to accept or reject this expectation. We “benchmark” three existing hydrologic decision support tools with the following benchmarks: annual ET for the ET Toolbox developed by the United States Bureau of Reclamation, predicted rainfall‐runoff hydrographs for the Gridded Surface/Subsurface Hydrologic Analysis model developed by the U.S. Army Corps of Engineers, and the average annual groundwater recharge for the Distributed Parameter Watershed Model used by Daniel B. Stephens & Associates. The conclusion of this benchmark study is that the use of NASA/USGS optical/thermal satellite imagery can considerably improve hydrologic decision support tools compared to their traditional implementations. The benefits of improved decision making, resulting from more accurate results of hydrologic support systems using optical/thermal satellite imagery, should substantially exceed the costs for acquiring such imagery and implementing the remote sensing algorithms. In fact, the value of reduced error in estimating average annual groundwater recharge in the San Gabriel Mountains, California alone, in terms of value of water, may be as large as $1 billion, more than sufficient to pay for one new Landsat satellite.  相似文献   
2.
Remotely operated vehicle dive video recordings of deep-sea squid ink release were examined to determine species, ink release type, release depth, and accompanying behavior/s. Ink release was commonly observed between the surface and 1,842.1 m in Monterey Bay, CA, and surrounding waters. Six ink release types were observed: pseudomorphs, pseudomorph series, ink ropes, clouds/smokescreens, diffuse puffs and mantle fills. Each species released ink throughout all or most of its depth range; inking was not limited to shallow, sunlit waters. Individuals of each species produced one ink release type more commonly than other types, however, multiple ink types could be released by individuals of all species. Common behaviors preceded and/or followed each release type; pseudomorphs and pseudomorph series were generally associated with escape behaviors, while ink ropes, clouds, and puffs normally involved the animal remaining adjacent to or amid the ink. Deep-sea squids may use ink for defensive purposes similar to those of shallow-dwelling species when they release pseudomorphs, pseudomorph series, or large clouds, and may use ink puffs in intra-specific communication. The function of ink ropes and mantle fills is unknown.  相似文献   
3.
During a study of midwater fish feeding in the oligotrophic North Pacific gyre in August 1978, nine specimens of a tropical-subtropical myctophid, Ceratoscopelus warmingii, were found to have been feeding on mats of diatoms, Rhizosolenia spp. Chemical analyses of the intestinal contents of several additional specimens showed significantly elevated levels of diatom degradation products. Therefore, C. warmingii, although known to feed on zooplankton, appears to be adapted for occasional herbivory. Such an adaptation is exceptional within a major ecological group of oceanic fishes that was previously thought to be exclusively carnivorous. Like omnivorous and herbivorous fishes in general, C. warmingii has a longer intestine than other myctophid species. As an adaptive response to competition from a diverse fish fauna in a low-productivity environment, occasional herbivory by C. warmingii runs counter to the theoretical expectation by expanding rather than narrowing the range of potential food types.  相似文献   
4.
The United States (US) conducted nuclear weapons testing from 1946 to 1958 at Bikini and Enewetak Atolls in the northern Marshall Islands. Based on previous detailed dose assessments for Bikini, Enewetak, Rongelap, and Utirik Atolls over a period of 28 years, cesium-137 (137Cs) at Bikini Atoll contributes about 85-89% of the total estimated dose through the terrestrial food chain as a result of uptake of 137Cs by food crops. The estimated integral 30, 50, and 70-year doses were based on the radiological decay of 137Cs (30-year half-life) and other radionuclides. However, there is a continuing inventory of 137Cs and 90Sr in the fresh water portion of the groundwater at all contaminated atolls even though the turnover rate of the fresh groundwater is about 5 years. This is evidence that a portion of the soluble fraction of 137Cs and 90Sr inventory in the soil is lost by transport to groundwater when rainfall is heavy enough to cause recharge of the lens, resulting in loss of 137Cs from the soil column and root zone of the plants. This loss is in addition to that caused by radioactive decay. The effective rate of loss was determined by two methods: (1) indirectly, from time-dependent studies of the 137Cs concentration in leaves of Pisonia grandis, Guettarda specosia, Tournefortia argentea (also called Messerschmidia), Scaevola taccada, and fruit from Pandanus and coconut trees (Cocos nucifera L.), and (2) more directly, by evaluating the 137Cs/90Sr ratios at Bikini Atoll. The mean (and its lower and upper 95% confidence limits) for effective half-life and for environmental-loss half-life (ELH) based on all the trees studied on Rongelap, Bikini, and Enewetak Atolls are 8.5 years (8.0 years, 9.8 years), and 12 years (11 years, 15 years), respectively. The ELH based on the 137Cs/90Sr ratios in soil in 1987 relative to the 137Cs/90Sr ratios at the time of deposition in 1954 is less than 17 years. The magnitude of the decrease below 17 years depends on the ELH for 90Sr that is currently unknown, but some loss of 90Sr does occur along with 137Cs. If the 15-year upper 95% confidence limit on ELH (corresponding to an effective half-life of 9.8 years) is incorporated into dose calculations projected over periods of 30, 50, or 70 years, then corresponding integral doses are 58, 46 and 41%, respectively, of those previously calculated based solely on radiological decay of 137Cs.  相似文献   
5.
6.
7.
8.
During summer, a grizzly bear (Ursus arctos horribilis) in the Greater Yellowstone Ecosystem (GYE) (USA) can excavate and consume millions of army cutworm moths (Euxoa auxiliaris) (ACMs) that aggregate in high elevation talus. Grizzly bears in the GYE were listed as threatened by the US Fish and Wildlife Service in 1975 and were proposed for delisting in 2005. However, questions remain about key bear foods. For example, ACMs are agricultural pests and concern exists about whether they contain pesticides that could be toxic to bears. Consequently, we investigated whether ACMs contain and transport pesticides to bear foraging sites and, if so, whether these levels could be toxic to bears. In 1999 we collected and analyzed ACMs from six bear foraging sites. ACMs were screened for 32 pesticides with gas chromatography with electron capture detection (GC-ECD). Because gas chromatography with tandem mass spectrometry (GC-MS/MS) can be more sensitive than GC-ECD for certain pesticides, we revisited one site in 2001 and analyzed these ACMs with GC-MS/MS. ACMs contained trace or undetectable levels of pesticides in 1999 and 2001, respectively. Based on chemical levels in ACMs and numbers of ACMs a bear can consume, we calculated the potential of chemicals to reach physiological toxicity. These calculations indicate bears do not consume physiologically toxic levels of pesticides and allay concerns they are at risk from pesticides transported by ACMs. If chemical control of ACMs changes in the future, screening new ACM samples taken from bear foraging sites may be warranted.  相似文献   
9.
Observations from a one-person submersible (Wasp) in fall, 1982, revealed a persistent aggregation of non-migrating, Stage V copepodites of Calanus pacificus californicus Brodsky in a band 20±3 m thick at a depth of 450 m, about 100 m above the bottom of the Santa Barbara Basin, California. Copepod abundances, calculated from nearest-neighbor distances measured directly from the submersible, yielded maximum densities of 26×106 copepodites m-3. Quiescent behavior, low laminarinase activity, low protein content, high lipid content and evidence of low excretion rate all suggest that these copepodites were in a state of diapause. Diapausing C. pacificus californicus at other locations along the eastern Pacific coast were also captured in discrete depth plankton tows. Both the submersible observations and the net collections suggest that the dense aggregation of diapausing copepods we observed in the Santa Barbara Basin was a phenomenon associated with seasonal upwelling cycles, and that such aggregations occur during non-upwelling periods when food is scarce in surface waters. Numerous predators, especially the deep sea smelt Leuroglossus stilbius, were observed feeding upon the aggregated copepods; thus, in contrast to the conventional picture of surface-dominated food distribution, deep-water aggregations of C. pacificus californicus may support the mesopelagic community during periods of low food availability in surface waters.  相似文献   
10.
Behavioral observations using a remotely operated vehicle (ROV) in the Gulf of California in March, 2003, provided insights into the vertical distribution, feeding and anatomy of the rare and delicate ctenophore Thalassocalyce inconstans. Additional archived ROV video records from the Monterey Bay Aquarium Research Institute of 288 sightings of T. inconstans and 2,437 individual observations of euphausiids in the Gulf of California and Monterey Canyon between 1989 and 2005 were examined to determine ctenophore and euphausiid prey depth distributions with respect to temperature and dissolved oxygen concentration [dO]. In the Gulf of California most ctenophores (96.9%) were above 350 m, the top of the oxygen minimum layer. In Monterey Canyon the ctenophores were more widely distributed throughout the water column, including the hypoxic zone, to depths as great as 3,500 m. Computer-aided behavioral analysis of two video records of the capture of euphausiids by T. inconstans showed that the ctenophore contracted its bell almost instantly (0.5 s), transforming its flattened, hemispherical resting shape into a closed bi-lobed globe in which seawater and prey were engulfed. Euphausiids entrapped within the globe displayed a previously undescribed escape response for krill (‘probing behavior’), in which they hovered and gently probed the inner surfaces of the globe with antennae without stimulating further contraction by the ctenophore. Such rapid bell contraction could be effected only by a peripheral sphincter muscle even though the presence of circumferential ring musculature was unknown for the Phylum Ctenophora. Thereafter, several live T. inconstans were collected by hand off Barbados and microscopic observations confirmed that assumption.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号