首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The Paris Agreement of the 21st Conference of the Parties of the United Nations Framework Convention on Climate Change refers to the 1.5 °C target as well as the 2 °C target, and it is important to estimate the emission pathways and mitigation measures for the 1.5 °C target for the discussions on the target. The possible emission pathways vary widely because of the uncertainties involved. We assumed three kinds of temperature trajectories for meeting below 1.5 °C compared with the pre-industrial level, and three numbers for the climate sensitivity. The first trajectory remains below 1.5 °C all the time until 2300, the second overshoots but returns to below 1.5 °C by 2100, and the third overshoots but returns to below 1.5 °C by 2300. There are large differences in terms of 2030 emissions between the estimate from the submitted Nationally Determined Contributions (NDCs) and any of assessed emission pathways involving climate sensitivity of 3.0 °C or higher, and high emission reduction costs were estimated, even for 2030. With climate sensitivity of 2.5 °C, only the third trajectory exhibits consistent emissions in 2030 with the NDCs. However, this case also appears very difficult to achieve, requiring enormous amounts of negative emissions after the middle of this century toward 2300. A climate mitigation strategy aiming for the 1.5 °C target will be debatable, because we face serious difficulties in near- or/and long-term for all the possible emission pathways, and therefore, we should rather focus on actual emission reduction activities than on the 1.5 °C target with poor feasibility.  相似文献   

2.
Significant international collaboration is required to limit global temperature increase to below 2 °C above pre-industrial levels. Equity is the foundation of cooperation, and therefore, this study proposed a new dynamic carbon permit allocation scheme based on four principles: equality, historical responsibility, capability, and future development opportunities. Decision makers could have different preferences for allocating carbon permits, therefore, four equity rules or indicators (equality, responsibility, capacity, and sovereignty) were assigned different weights. Based on the global carbon budget of the 2 °C target, emission permits were calculated and relevant economic implications analyzed using the Global Change Assessment Model. Results indicated that developed countries should reduce emissions immediately, while allowances for developing regions could permit an initial increase in emissions until peaking. Applying different weights to the indicators resulted in multifarious regional allowances. Developed regions would benefit from the “preferring sovereignty” scenario and most developing countries would benefit under the “preferring responsibility” and “preferring capacity” scenarios. Compared with the Intended Nationally Determined Contributions submitted to the United Nations Framework Convention on Climate Change, this study found that in the short term, developed countries might insist on sovereignty as the preferred indicator. However, preferring sovereignty would place substantial mitigation pressures on developing countries in the long term. Therefore, in addressing global climate change, a dynamic choice in the weighting distribution for different indicators might be conducive to international agreement. Furthermore, a market-based trading instrument could help all participants both mitigate global climate change by reducing regional and global costs and facilitate mitigation capital flow from developed to less developed regions.  相似文献   

3.
Recent climate modeling studies have concluded that cumulative carbon emissions determine temperature increase, regardless of emission pathways. Accordingly, the optimal emission pathway can be determined from a socioeconomic standpoint. To access the path dependence of socioeconomic impacts for cumulative carbon emissions, we used a computable general equilibrium model to analyze impacts on major socioeconomic indicators on a global scale for 30–50 pathways with different emission reduction starting years, different subsequent emission pathways, and three different cumulative 2100 emission scenarios (emissions that meet the 2 °C target, the 2 °C target emissions plus 10 %, and emissions producing radiative forcing of 4.5 W/m2). The results show that even with identical cumulative emission figures, the resulting socioeconomic impacts vary by the pathway realized. For the United Nations 2 °C target, for example, (a) the 95 % confidence interval of cumulative global gross domestic product (GDP) is 1355–1363 trillion US dollars (2010–2100, discount rate = 5 %), (b) the cumulative GDP of pathways with later emission reduction starting years grows weaker (5 % significance level), and (c) emissions in 2100 have a moderate negative correlation with cumulative GDP. These results suggest that GDP loss is minimized with pathways with earlier emission reduction followed by more moderate reduction rates to achieve lower emission levels. Consequently, we suggest an early emission peak to meet the stringent target. In our model setting, it is desirable for emissions to peak by 2020 to reduce mitigation cost and by 2030 at the latest to meet the 2 °C target.  相似文献   

4.
Many studies have been published to evaluate the consequences of different post-2012 emission allocation regimes on regional mitigation costs. This paper goes one step further and evaluates not only mitigation costs, but also adaptation costs and climate change damages. Three post-2012 emission allocation regimes (Contraction & Convergence, Multistage and Common but differentiated convergence) and two climate targets (2°C and 3°C above the pre-industrial level) are considered. This explorative analysis shows that including these other cost categories could lead to different perspectives on the outcomes of allocation regimes. Up to 2050, the poorest regions have negative mitigation costs under all allocation regimes considered, as they benefit from emission trading. However, these regions also suffer from the most severe climate impacts. As such, the financial flows due to emission trading from developed to developing countries created under these allocation regimes could also be interpreted as compensation of climate change damages and adaptation costs. In the longer run, the sum of climate change damages, adaptation costs and mitigation costs are the highest in the poorest regions of Sub-Saharan Africa and South Asia, for both climate targets and practically all emission allocation regimes.  相似文献   

5.
Carbon capture and storage (CCS) may become a key technology to limit human-induced global warming, but many uncertainties prevail, including the necessary technological development, costs, legal ramifications, and siting. As such, an important question is the scale of carbon dioxide abatement we require from CCS to meet future climate targets, and whether they appear reasonable. For a number of energy technology and efficiency improvement scenarios, we use a simple climate model to assess the necessary contribution from CCS to ‘fill the gap’ between scenarios’ carbon dioxide emissions levels and the levels needed to meet alternative climate targets. The need for CCS depends on early or delayed action to curb emissions and the characteristics of the assumed energy scenario. To meet a 2.5°C target a large contribution and fast deployment rates for CCS are required. The required deployment rates are much faster than those seen in the deployment of renewable energy technologies as well as nuclear power the last decades, and may not be feasible. This indicates that more contributions are needed from other low-carbon energy technologies and improved energy efficiency, or substitution of coal for gas in the first half of the century. In addition the limited availability of coal and gas by end of the century and resulting limited scope for CCS implies that meeting the 2.5°C target would require significant contributions from one or more of the following options: CCS linked to oil use, biomass energy based CCS (BECCS), and CCS linked to industrial processes.  相似文献   

6.
The effects of a 1.5 °C global change on irrigation costs and carbon emissions in a groundwater-dependent irrigation system were assessed in the northwestern region of Bangladesh and examined at the global scale to determine possible global impacts and propose necessary adaptation measures. Downscaled climate projections were obtained from an ensemble of eight general circulation models (GCMs) for three representative concentration pathways (RCPs), RCP2.6, RCP4.5, and RCP8.5 and were used to generate the 1.5 °C warming scenarios. A water balance model was used to estimate irrigation demand, a support vector machine (SVM) model was used to simulate groundwater levels, an energy-use model was used to estimate carbon emissions from the irrigation pump, and a multiple linear regression (MLR) model was used to simulate the irrigation costs. The results showed that groundwater levels would likely drop by only 0.03 to 0.4 m under a 1.5 °C temperature increase, which would result in an increase in irrigation costs and carbon emissions ranging from 11.14 to 148.4 Bangladesh taka (BDT) and 0.3 to 4% CO2 emissions/ha, respectively, in northwestern Bangladesh. The results indicate that the impacts of climate change on irrigation costs for groundwater-dependent irrigation would be negligible if warming is limited to 1.5 °C; however, increased emissions, up to 4%, from irrigation pumps can have a significant impact on the total emissions from agriculture. This study revealed that similar impacts from irrigation pumps worldwide would result in an increase in carbon emissions by 4.65 to 65.06 thousand tons, based only on emissions from groundwater-dependent rice fields. Restricting groundwater-based irrigation in regions where the groundwater is already vulnerable, improving irrigation efficiency by educating farmers and enhancing pump efficiency by following optimum pumping guidelines can mitigate the impacts of climate change on groundwater resources, increase farmers’ profits, and reduce carbon emissions in regions with groundwater-dependent irrigation.  相似文献   

7.
Land use, land-use change and forestry (LULUCF) projects may becomeeligible under Article 12 of the United Nations Framework Convention onClimate Change (UNFCCC) Kyoto Protocol's Clean DevelopmentMechanism (CDM). Some of the issues, which need to be addressed,include identifying the types of greenhouse gas (GHG) mitigation activitiesin LULUCF, which could be undertaken as CDM projects. Other issuesinvolve evaluating the mitigation potential and cost effectiveness of theactivities, as well as their likely socio-economic impacts and their influenceon the national carbon (C) stock. Three broad categories of mitigationactivities in LULUCF analyzed in this study include managing Cstorage, C conservation and carbon substitution. The C intensityof the activities was estimated to range from 37 to 218 Mg C per ha. The highest is in reforested land with slow growing species and the lowestin short-rotation plantations. At a real discount rate of 10%, investmentcosts required to implement the mitigation activities ranged from US$0.07 to 0.88 per Mg C, with life cycle costs ranging from US$ 0.07to 3.87 per Mg C, and benefits ranging from US$ –0.81 to 6.57 perMg C. Mitigation options with negative benefits are forest protection,reforestation, reduced impact logging and enhanced natural regeneration,while those with positive benefits are short rotation timber plantation, andbio-energy. Reforestation gave negative benefit since no revenue fromwood as trees are left in the forest for conservation, while Reduced ImpactLogging (RIL) and Enhanced Natural Regeneration (ENR)gave negative benefits because additional cost required to implement theoptions could not be compensated by the increase in round-hardwoodyield. Other factor is that the local price of round-hardwood is very low,i.e. US$ 160 per m3, while FOB price is between 250–400 US$ per m3. Total area available for implementing mitigationoptions (planting trees) in 1997 was 31 million hectares (× 106ha) (about 40% are critical lands, 35% grasslands and 25%unproductive lands).Total area being considered for implementing the options under baseline,government-plans and mitigation scenarios in the period 2000–2030 is12.6, 16.3 and 23.6 × 106 ha respectively. Furthermore, total area of production forest being considered for implementing reduced impactlogging and enrichment planting under the tree scenarios is 9, 26 and 16 × 106 ha respectively, and that for forest protection is 2.1, 3.7, 3.1× 106 ha respectively. The cumulative investment for implementingall mitigation activities in the three scenarios was estimated at 595, 892and 1026 million US$ respectively. National C stock under thebaseline scenario will continuously decline through 2030, while undergovernment-plans and mitigation scenarios the carbon stock increases. In2030, national C stock of the government and mitigation scenarios isalmost the same, 13% higher than that of baseline. However, the increasein national carbon stock in both scenarios could not offset carbon emissionsdue to deforestation.  相似文献   

8.
This paper discusses how the 630 million sub-Saharan Africa (SSA) people can be electrified with new government policy, new renewables, and innovative business models. These initiatives are translating the ambitious goals of Sustainable Development Goal 7 (SDG7) on energy and the United Nations Framework Convention on Climate Change Conference of the Parties 2015 Paris Agreement. The Paris Agreement’s central aim is to strengthen the global response to the threat of climate change by keeping a global temperature rise in this century well below 2 °C above pre-industrial levels and to pursue efforts to limit the temperature increase even further to 1.5 °C. The objective of this paper is to evaluate the feasibility and cost-effectiveness to electrify the 630 million people within the Paris Agreement. Economic status and willingness to pay for electricity services by the poor are briefly analyzed for four new business models. Cost-effectiveness analyses on technologies are undertaken. The results show that a private investment-based financial model is the most effective and environmentally friendly in rural electrification for the poorest households in SSA. The new policy, new renewable energy technologies, and financing models are shaping contemporary climate strategies that facilitate investment in clean energy, spur community economy, enhance national energy security, and improve global environment.  相似文献   

9.
This paper analyzes potential impacts of climate change on biomass carbon (C) density and water-use (actual evapotranspiration, AET) of savannah woodlands in Sudan. Climate change scenarios were developed from five General Circulation Models (GCMs; CGCM2, CSIRO2, ECHam4, HadCM3 and PCM) under two IPCC (Intergovernmental Panel on Climate Change) emission scenarios (A1FI and B1). Baseline (1961-90) climate and climate change scenarios for 2080s for eight map sheet grids (1° latitude x 1.5° longitude) were constructed. Compared to baseline values, mean annual precipitation (MAP) showed both increases (+112 to +221 mm) and decreases (?13 to ?188 mm) but mean annual temperature (MAT) only showed increases (+1.2 to +8.3 °C). Baseline biomass C densities showed an exponential relationship with MAP (y?=?6.798 e 0.0054x, R2?=?0.70). Depending on climate change MAP, biomass C densities increased (+14 to +241 g C m?2) or decreased (?1 to ?148 g?C m?2). However, because of uncertainty in biomass C density estimates, the changes were only significant (P <0.05) for some of the climate change scenarios and for grids with MAP >260 mm. Under A1FI emission scenarios, only HadCM3 did not have a significant effect while under B1 emission scenarios, only CGCM2 and ECHam4 had a significant effect on biomass C density. AET also showed both increases (+100 to +145 mm for vertisols and +82 to +197 mm for arenosols) and decreases (?12 to ?178 mm for vertisols and ?12 to ?132 mm for arenosols). The largest relative changes in AET (up to 31 %) were associated with grids receiving the lowest rainfall. Thus, even if MAP increases across the study region, the increase will have little impact on biomass levels in the driest areas of the region, emphasizing the need for improved management and use of savannah woodlands.  相似文献   

10.
There is much optimism that the 2015 Conference of the Parties of the United Nations Framework Convention will yield an agreement on mitigation of climate change, to become effective in 2020. In this context, Bahrain represents a developing country with insufficient data to assess mitigation opportunities: its per capita carbon emissions rank among the world’s highest, yet there has been no research on the reduction potential of its rapidly growing transport sector. We examine this reduction potential and the costs of various mitigation measures and, further, explore barriers and the view of policymakers and experts. Potential benefits of combined mitigation scenarios are also identified based on their acceptability. We adopt a modified participatory method to develop the scenarios, using the long-range energy alternative planning (LEAP) modelling system, and find that an integrated policy approach can deliver a 23 % reduction in carbon dioxide emissions, costing 108 United States dollars per avoided metric tonne, with politically acceptable scenarios. Better performance, however, would require less acceptable approaches. These findings are significant for decision-making in Bahrain and other Gulf Cooperation Council countries; national target preparation and the setting of fuel economy standards should be begun promptly. We offer lessons to other developing countries on the timely regulation of technical specifications and numbers of passenger vehicles. Participatory approaches to the assessment of mitigation measures can advance environmentally effective, economically feasible and politically acceptable scenarios. The global community can use these results to provide necessary technical and financial assistance to developing countries.  相似文献   

11.
The climate mitigation potential of tropical peatlands has gained increased attention as Southeast Asian peatlands are being deforested, drained and burned at very high rates, causing globally significant carbon dioxide (CO2) emissions to the atmosphere. We used a process-based dynamic tropical peatland model to explore peat carbon (C) dynamics of several management scenarios within the context of simulated twenty-first century climate change. Simulations of all scenarios with land use, including restoration, indicated net C losses over the twenty-first century ranging from 10 to 100 % of pre-disturbance values. Fire can be the dominant C-loss pathway, particularly in the drier climate scenario we tested. Simulated 100 years of oil palm (Elaeis guineensis) cultivation with an initial prescribed burn resulted in 2400–3000 Mg CO2?ha?1 total emissions. Simulated restoration following one 25-year oil palm rotation reduced total emissions to 440–1200 Mg CO2?ha?1, depending on climate. These results suggest that even under a very optimistic scenario of hydrological and forest restoration and the wettest climate regime, only about one third of the peat C lost to the atmosphere from 25 years of oil palm cultivation can be recovered in the following 75 years if the site is restored. Emissions from a simulated land degradation scenario were most sensitive to climate, with total emissions ranging from 230 to 10,600 Mg CO2?ha?1 over 100 years for the wettest and driest dry season scenarios, respectively. The large difference was driven by increased fire probability. Therefore, peat fire suppression is an effective management tool to maintain tropical peatland C stocks in the near term and should be a high priority for climate mitigation efforts. In total, we estimate emissions from current cleared peatlands and peatlands converted to oil palm in Southeast Asia to be 8.7 Gt CO2 over 100 years with a moderate twenty-first century climate. These emissions could be minimized by effective fire suppression and hydrological restoration.  相似文献   

12.
Climate change is likely to exacerbate the negative effects of invasive alien species (IAS) as it will foster their further spread. This paper analyses the potential socio-economic effects of three emerging IAS (giant ragweed, Ambrosia trifida; annual wormwood, Artemisia annua; and burweed marshelder, Iva xanthiifolia), which are known to cause substantial harm to human health and to have negative effects on agricultural production. The novelty of the study consists in an integrated approach that combines several aspects of IAS research and management. We model the future spread of the study species in Central Europe by the year 2050 under several climate change, management and spread scenarios. The costs and benefits of controlling the expansion of these IAS are based on this forecast. The results show that an early and coordinated response to the spread of these IAS yields substantial net benefits under all scenarios. Under the conditions of moderate climate change (+1.5 °C), discounted net benefits range from €19 to €582 million. Assuming more severe climate change (+2.4 °C), total savings over the full period are projected to add up to €1063 million. These large socio-economic benefits provide compelling evidence that public authorities should act preventively to restrict the spread of these three IAS.  相似文献   

13.
Water scarcity in China would possibly be aggravated by rapid increase in water demand for irrigation due to climate change. This paper focuses on the mechanism of climate change impact on regional irrigation water demand by considering the dynamic feedback relationships among climate change, irrigation water demand and adaptation measures. The model in implemented using system dynamics approach and employed in Baojixia irrigation district located in Shaanxi Province of China to analyses the changes in irrigation water demand under different climate change scenarios. Obtained results revealed that temperature will be the dominant factor to determine irrigation water demand in the area. An increase of temperature by 1 °C will result in net irrigation water demand to increase by about 12,050?×?104 m3 and gross water demand by about 20,080?×?104 m3 in the area. However, irrigation water demand will not increase at the same rate of temperature rise as the adaptation measures will eventually reduce the water demand increased by temperature rise. It is expected that the modeling approach presented in this study can be used in adopting policy responses to reduce climate change impacts on water resources.  相似文献   

14.

Climate change is a global phenomenon that affects biophysical systems and human well-being. The Paris Agreement of the United Nations Framework Convention on Climate Change entered into force in 2016 with the objective of strengthening the global response to climate change by keeping global temperature rise this century well below 2 °C above pre-industrial levels and to pursue efforts to limit the temperature increase even further to 1.5 °C. The agreement requires all Parties to submit their “nationally determined contributions” (NDCs) and to strengthen these efforts in the years ahead. Reducing carbon emissions from deforestation and forest degradation is an important strategy for mitigating climate change, particularly in developing countries with large forests. Extensive tropical forest loss and degradation have increased awareness at the international level of the need to undertake large-scale ecological restoration, highlighting the need to identify cases in which restoration strategies can contribute to mitigation and adaptation. Here we consider Brazil as a case study to evaluate the benefits and challenges of implementing large-scale restoration programs in developing countries. The Brazilian NDC included the target of restoring and reforesting 12 million hectares of forests for multiple uses by 2030. Restoration of native vegetation is one of the foundations of sustainable rural development in Brazil and should consider multiple purposes, from biodiversity and ecosystem services conservation to social and economic development. However, ecological restoration still presents substantial challenges for tropical and mega-diverse countries, including the need to develop plans that are technically and financially feasible, as well as public policies and monitoring instruments that can assess effectiveness. The planning, execution, and monitoring of restoration efforts strongly depend on the context and the diagnosis of the area with respect to reference ecosystems (e.g., forests, savannas, grasslands, wetlands). In addition, poor integration of climate change policies at the national and subnational levels and with other sectorial policies constrains the large-scale implementation of restoration programs. The case of Brazil shows that slowing deforestation is possible; however, this analysis highlights the need for increased national commitment and international support for actions that require large-scale transformations of the forest sector regarding ecosystem restoration efforts. Scaling up the ambitions and actions of the Paris Agreement implies the need for a global framework that recognizes landscape restoration as a cost-effective nature-based solution and that supports countries in addressing their remaining needs, challenges, and barriers.

  相似文献   

15.
A simulation study has been carried out using the InfoCrop mustard model to assess the impact of climate change and adaptation gains and to delineate the vulnerable regions for mustard (Brassica juncea (L.) Czernj. Cosson) production in India. On an all India basis, climate change is projected to reduce mustard grain yield by ~2 % in 2020 (2010–2039), ~7.9 % in 2050 (2040–2069) and ~15 % in 2080 (2070–2099) climate scenarios of MIROC3.2.HI (a global climate model) and Providing Regional Climates for Impact Studies (PRECIS, a regional climate model) models, if no adaptation is followed. However, spatiotemporal variations exist for the magnitude of impacts. Yield is projected to reduce in regions with current mean seasonal temperature regimes above 25/10 °C during crop growth. Adapting to climate change through a combination of improved input efficiency, additional fertilizers and adjusting the sowing time of current varieties can increase yield by ~17 %. With improved varieties, yield can be enhanced by ~25 % in 2020 climate scenario. But, projected benefits may reduce thereafter. Development of short-duration varieties and improved crop husbandry becomes essential for sustaining mustard yield in future climates. As climatically suitable period for mustard cultivation may reduce in future, short-duration (<130 days) cultivars with 63 % pod filling period will become more adaptable. There is a need to look beyond the suggested adaptation strategy to minimize the yield reduction in net vulnerable regions.  相似文献   

16.
We present a methodology for using a domestic water use time series that were obtained from Yellow River Conservancy Commission, together with the climatic records from the National Climate Center of China to evaluate the effects of climate variability on water use in the Yellow River Basin. A suit of seven Global Circulation Models (GCMs) were adopted to anticipate future climate patterns in the Yellow River. The historical records showed evidences of rises in temperature and subsequent rises in domestic water demand in the basin. For Upstream of Longyangxia region, the impact was the least, with only 0.0021?×?108 m3 for a temperature increase of 1 °C; while for Longyangxia-Lanzhou region, domestic water use was found to increase to 0.18?×?108 m3 when temperature increases 1 °C. Downstream of Huayuankou was the region with the most changes in temperature that gave the highest increase of 1.95?×?108 m3 in domestic water demand for 1 °C of change of temperature. Downstream of Huayuankou was identified as the most vulnerable area, where domestic water demand increases nearly by 42.2 % with 1 °C increase of temperature. Judging from the trends of temperature range, we concluded that future temperature in Yellow River Basin has an increasing tendency. This could worsen the existing issues of domestic water demand and even more to trigger high competition among different water-using sectors.  相似文献   

17.
This paper examines the short-run climate variability (change in the levels of temperature and precipitation) with a focus on the Manas River Valley, North-Western China, over the past 50 years (1956 to 2006) using data collected from four meteorological stations. The results show that the annual mean temperature had a positive trend, with temperature increasing at 0.4 °C per decade. Application of the Mann-Kendall test revealed that the overall positive trend became statistically significant at the p?=?0.95 level only after 1988. The increase in temperature was most marked in winter and spring (0.8 and 0.7 °C per decade, respectively), absent in summer and very small in autumn (0.1 °C per decade). Concerning precipitation, our results indicate a negative but not significant trend for the period between 1956 and 1982, while annual total precipitation tended to increase thereafter and the increase was mainly during the crop growing-season. Concerning variability in temperature and precipitation, the characteristic time scales were identified by application of wavelet analysis. For temperature the quasi-decadal variations were found on time scales between approximately 5 and 15 years, with a peak in wavelet variance on a time scale of 9 years. For precipitation, the most striking features were a precipitation increase (6.7 mm per decade) during the crop growing season. Irregularities and abrupt changes in both temperature and precipitation were more common at scales less than 10 years, indicating the complexity and uncertainty in the short-period climate variability. Possible causes of climate variability in the Manas River Valley may include anthropogenic factors such as intensive human activity and the expansion of both farmland and irrigation. Global climate variability might also have some impacts on the local climate variability; analyses of local and regional climate trends can better inform local adaptation actions for global impacts.  相似文献   

18.
Recently, local governments have an increasing need to take extensive and effective local measures to adapt to regional climate change, but have difficulty knowing how and when to adapt to such change. This study aims: 1) to characterize an efficient and cost-effective database management tool (DMT) for developing a Geographic Information System (GIS) based approach to using observed and projected data, for decision-making by non-expert government authorities, and 2) to document how DMT can be used to provide specialized yet understandable climate change information to assist local decision-makers in clarifying regional priorities within a wide array of adaptation options. The DMT combines climate change mapping, statistical GIS, and a vulnerability assessment. Okutama-machi, a 225.63 km2 sparsely populated mountainous region (2012 population 5,856) northwest of Tokyo, Japan, was chosen for this pilot study. In this paper, the most recent regional climate projections (5 km resolution) are transcribed into an understandable form for use by non-expert citizens who use the GIS-based DMT. Results illustrate qualitative agreement in projection of summer daily mean temperatures; the mean temperature increase at Okutama-machi is the greatest of any area in Tokyo. In comparing near future and future conditions, August monthly mean temperature will increase more than 0.7–0.9 °C and 2.8–2.9 °C, and monthly precipitation by 50 % and 25–41 %, respectively. However, the root mean square (RMS) errors and bias of percentage change for monthly precipitation in summertime are 26.8 % and 4.3 %, respectively. These data provide an early warning and have implications for local climate policy response.  相似文献   

19.
The “South–North Dialogue” Proposal, developed by researchers from developing and industrialised countries, outlined equitable approaches to mitigation. These approaches were based on the criteria of responsibility, capability and potential to mitigate, and include deep cuts in industrialised (Annex I) countries and differentiated mitigation commitments for developing countries. This paper quantitatively analyses the implications of the proposal for countries’ emissions and costs. The analysis focuses on a “political willingness” scenario and four stabilisation scenarios. The analysis shows that stringent stabilisation targets imply that many developing countries would have to take on quantitative mitigation obligations by 2030, even when the Annex I countries take on ambitious mitigation commitments far beyond the Kyoto obligations. The “political willingness scenario” will probably not suffice to limit a warming of the Earth's atmosphere to below 2 °C.  相似文献   

20.
The utilization of forest residues for bioenergy in Norway is foreseen to increase due to the government call to double bioenergy output by 2020 to thirty Tera-Watt hours. This study focuses on the climate impacts of bioenergy utilization where four forest residue extraction scenarios at clear-cut are considered: i) 75 % above ground residues (branches, (25 %) foliage, tops); ii) 75 % above and below ground residues (branches, tops, (25 %) foliage, stumps, coarse and small roots); iii) extracting 100 % of all available forest residue; and iv) leaving all residues in the forest. The Yasso07 soil-carbon model was utilized to quantify the carbon flux to the atmosphere due to the forest residues that are left in the forest in each scenario. The climate impact potential for each scenario was then calculated for the carbon-flux neutral Norway Spruce (Picea abies) forest system in five regions of Norway. The biogenic carbon dioxide emissions associated to decomposition upon forest floor, procurement losses and bioenergy conversion are included in these calculations. Results suggest that if such bioenergy can directly replace a fossil source of energy, the utilization of this biomass was found to be climatically beneficial in most fossil energy replacement cases and time horizons when compared to leaving the residues in the forest. Integrated global temperature change displacement factors have been developed which have been used to estimate the magnitude of this climate change mitigation over a particular time horizon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号