首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
CO2 geological storage will be one of the cost-effective options for global warming mitigation, and this technology is under development widely in the world. However, the technology may face the challenge of public acceptance before its implementation. In order to evaluate the public acceptance, questionnaire surveys were conducted among Japanese university students. A cognitive map of geological storage, together with other major global warming mitigation options, everyday life activities, etc., was constructed by means of a statistical analysis of the responses to the questionnaire. The risk-benefit cognitive map consists of the following factors: “risk perception,” “benefit perception,” and “public acceptance.” The risk perception is further disaggregated into “dread risk” and “unknown risk.” Additionally, a second survey was conducted after providing the students with additional information on global warming and CO2 geological storage, and the effects of the information on their perceptions were evaluated. The effects of risk and benefit perceptions on public acceptance were evaluated and discussed based on the cognitive maps representing the perceptions before and after providing the information. The analyses revealed that the benefit perception was more influential than the risk perception on the public acceptance of CO2 geological storage. The benefit perception increased greatly after providing the information; however, the unknown risk remained considerably large. Further, RD&D relating unknown risk, for example, the monitoring technology for stored CO2 and the risk assessment of CO2 leakage, and the supply of related information to the public would be beneficial for increasing the public acceptance.  相似文献   

2.
This paper presents the outcome of a feasibility study on underground coal gasification (UCG) combined with direct carbon dioxide (CO2) capture and storage (CCS) at a selected site in Bulgaria with deep coal seams (>1,200 m). A series of state-of-the-art geological, geo-mechanical, hydrogeological and computational models supported by experimental tests and techno-economical assessments have been developed for the evaluation of UCG-CCS schemes. Research efforts have been focused on the development of site selection requirements for UCG-CCS, estimation of CO2 storage volumes, review of the practical engineering requirements for developing a commercial UCG-CCS storage site, consideration of drilling and completion issues, and assessments of economic feasibility and environmental impacts of the scheme. In addition, the risks of subsidence and groundwater contamination have been assessed in order to pave the way for a full-scale trial and commercial applications. The current research confirms that cleaner and cheaper energy with reduced emissions can be achieved and the economics are competitive in the future European energy market. However the current research has established that rigorous design and monitor schemes are essential for productivity and safety and the minimisation of the potential environmental impacts. A platform has been established serving to inform policy-makers and aiding strategies devised to alleviate local and global impacts on climate change, while ensuring that energy resources are optimally harnessed.  相似文献   

3.
For CO2 capture and storage (CCS) to succeed as a mitigation strategy, political commitment is one of several prerequisites. This article offers an appraisal of political commitment to a CCS strategy among high-income countries in Europe and North America: Which governments are committed, and what particular interests and concerns do they seek to accommodate by supporting CCS? In order to answer these questions, new data are reported on government CCS research, development and demonstration (RD&;D) budgets. RD&;D budgets divided by GDP is used as an indicator of political commitment, and explanations are sought for cross-national differences. The analysis shows that fossil fuels reserves and extraction within a country has a very strong bearing on funding levels. Likely explanations include the potential for combining CCS with enhanced resource recovery. All large economies (population >50 million) have a funding program. The smaller states that provide funding (Norway, Canada, the Netherlands) have the highest funding levels relative to GDP. These findings suggest that high-income petroleum producing countries are likely to be leaders in promoting CCS and a favorable regulatory environment. The fact that all large, high-income countries in the two regions now display some interest in CCS further improves its political outlook.  相似文献   

4.
The potential for CO2 emission reductions through carbon capture and storage (CCS) is depending on investments that can bring the technology from the current R&D through to commercial applications. The intermediate step in this development is demonstration plants that can prove the technical, economic, social, and ecological feasibility of CCS technologies. Based on a CCS stakeholder questionnaire survey and a literature review, we critically analyse discrepancies regarding perceptions of deployment obstacles and experiences from early demonstration plants. The analysis identifies discrepancies between CCS policies versus important deployment considerations and CCS stakeholder policy demands. The discrepancy gap is emphasised by lessons from restructured, postponed, and cancelled CCS projects. To bridge this cognitive gap towards proving CCS through demonstration activities, the article highlights policy implications of establishing a broad understanding of deployment obstacles. Attention to these obstacles is important for policymakers and industry in channelling efforts to demonstrating CCS, hence validating the current focus on CCS as a key abatement potential. Under present conditions, the findings question the robustness of current CCS abatement potential estimates and deployment goals as established by policymakers and in scenarios.  相似文献   

5.
Technological and regulatory responses to large-scale environmental threats, such as depletion of the natural resources and climate change, tend to focus on one issue at time. Emerging carbon capture and storage (CCS) technologies that are in different stages of development offer a case that demonstrates this dilemma. This article approximates the implications of two emerging CCS applications on existing steel mill’s CO2 emissions and its use of material resources. The evaluated applications are based on the mineralization method and the comparative case represents two versions of a geological CCS method. The results of the evaluation indicate that if technical bottleneck issues related to CO2 sequestration with mineralization can be solved, it can be possible to achieve a similar CO2 reduction performance with mineralization-based CCS applications as with more conventional CCS applications. If the CO2 capturing potential of mineralization-based applications could be taken into use, it could also enable the significant improvement of material efficiency of industrial operations. Urgent problem hampering the development of mineralization-based CCS applications is that the policy regimes related to CCS especially in the European Union (EU) do not recognize mineralization as a CCS method. Article suggests that the focus in the future evaluations and in policy should not be directed only on CO2 sequestration capacity of CCS applications. Similarly important is to consider their implications on material efficiency. Article also outlines modifications to the EU’s CCS policy in terms of the formal terminology.  相似文献   

6.
The study presents the results of an integrated assessment of carbon capture and storage (CCS) in the power plant sector in Germany, with special emphasis on the competition with renewable energy technologies. Assessment dimensions comprise technical, economic and environmental aspects, long-term scenario analysis, the role of stakeholders and public acceptance and regulatory issues. The results lead to the overall conclusion that there might not necessarily be a need to focus additionally on CCS in the power plant sector. Even in case of ambitious climate protection targets, current energy policy priorities (expansion of renewable energies and combined heat and power plants as well as enhanced energy productivity) result in a limited demand for CCS. In case that the large energy saving potential aimed for can only partly be implemented, the rising gap in CO2 reduction could only be closed by setting up a CCS-maximum strategy. In this case, up to 22% (41 GW) of the totally installed load in 2050 could be based on CCS. Assuming a more realistic scenario variant applying CCS to only 20 GW or lower would not be sufficient to reach the envisaged climate targets in the electricity sector. Furthermore, the growing public opposition against CO2 storage projects appears as a key barrier, supplemented by major uncertainties concerning the estimation of storage potentials, the long-term cost development as well as the environmental burdens which abound when applying a life-cycle approach. However, recently, alternative applications are being increasingly considered?Cthat is the capture of CO2 at industrial point sources and biomass based energy production (electricity, heat and fuels) where assessment studies for exploring the potentials, limits and requirements for commercial use are missing so far. Globally, CCS at power plants might be an important climate protection technology: coal-consuming countries such as China and India are increasingly moving centre stage into the debate. Here, similar investigations on the development and the integration of both, CCS and renewable energies, into the individual energy system structures of such countries would be reasonable.  相似文献   

7.
Stabilization of CO2 atmospheric concentrations requires practical strategies to address the challenges posed by the continued use of coal for baseload-electricity production. Over the next two decades, CO2 capture and sequestration (CCS) demonstration projects would need to increase several orders of magnitude across the globe in both size and scale. This task has several potential barriers which will have to be accounted for. These barriers include those that have been known for a number of years including safety of subsurface sequestration, pore-space competition with emerging activities like shale gas production, legal and regulatory frameworks, and public acceptance and technical communication. In addition water management is a new challenge that should be actively and carefully considered across all CCS operations. A review of the new insights gained on these previously and newly identified challenges, since the IPCC special report on CCS, is presented in this paper. While somewhat daunting in scope, some of these challenges can be addressed more easily by recognizing the potential advantageous synergies that can be exploited when these challenges are dealt with in combination. For example, active management of water resources, including brine in deep subsurface formations, can provide the additional cooling-water required by the CO2 capture retrofitting process while simultaneously reducing sequestration leakage risk and furthering efforts toward public acceptance. This comprehensive assessment indicates that water, sequestration, legal, and public acceptance challenges ought to be researched individually, but must also be examined collectively to exploit the promising synergies identified herein. Exploitation of these synergies provides the best possibilities for successful large-scale implementation of CCS.  相似文献   

8.
Carbon dioxide (CO2) capture and storage is increasingly being considered as an important climate change mitigation option. This paper explores provisions for including geological CO2 storage in climate policy. The storage capacity of Norway's Continental Shelf is alone sufficient to store a large share of European CO2 emissions for many decades. If CO2 is injected into oil reservoirs there is an additional benefit in terms of enhanced oil recovery. However, there are significant technical and economic challenges, including the large investment in infrastructure required, with related economies of scale properties. Thus CO2 capture, transportation and storage projects are likely to be more economically attractive if developed on a large scale, which could mean involving two or more nations. An additional challenge is the risk of future leakages from storage sites, where the government must take on a major responsibility. In institutional and policy terms, important challenges are the unsettled status of geological CO2 storage as a policy measure in the Kyoto Protocol, lack of relevant reporting and verification procedures, and lack of decisions on how the option should be linked to the flexibility mechanisms under the Kyoto Protocol. In terms of competitiveness with expected prices for CO2 permits under Kyoto Protocol trading, the relatively high costs per tonne of CO2 stored means that geological CO2 storage is primarily of interest where enhanced oil recovery is possible. These shortcomings and uncertainties mean that companies and governments today only have weak incentives to venture into geological CO2 storage.  相似文献   

9.
Employing global multi-regional input–output models, this paper revisits the carbon dioxide (CO2) emission trade (including exports and imports) and assesses their positions in the national emissions of 14 major countries with large national emissions or large emission trades during 1995–2009. It especially explores the evolution of the emission trades of these countries from both continuous time series and comparative perspectives, in order to provide an explanation for CO2 emission spillovers across countries. The main findings obtained were as follows: (1) China was the largest CO2 exporter to other countries, accounting for over 20 % of global exports since 2005; the CO2 exports of the United States of America (USA), Germany, and Japan varied slightly over this time period, but overall, their proportions had decreased. (2) The CO2 imports of the USA were the largest, occupying around 20 % of the global CO2 imports; meanwhile, China’s CO2 imports increased rapidly and ranked the second largest. (3) For Chinese Taiwan, its proportion of CO2 exports in production-based emissions ranked the highest while that of the USA ranked the lowest; highly CO2 import-dependent countries with an over 40 % proportion of CO2 imports in its consumption-based emissions included France, Germany, Italy, and Spain, while China, India, and Russia remained the lowest, distinguished from their physical energy imports. These results suggested that the global policy makers should take the CO2 emissions in trade into consideration when carefully accounting for national emissions inventories.  相似文献   

10.
The principles of hydrocarbon exploration and production provide well-established and tested principles and technologies to investigate storage of fluids in the subsurface. CO2 can be stored in the subsurface using settings of: (A) thick permeable coal seams; (B) depleted oil and gas fields; (C) saline aquifers of regional extent, with an overlying seal. The North Sea Sleipner project shows that CO2 can be injected into the pore space of deep geological aquifers deeper than 800 m at 1 Mt/yr, using established technology. Suitable sediment sequences of saline aquifers exist in all hydrocarbon-producing areas, are volumetrically much larger than exploited oil and gas fields, and hold the potential to easily store all worldwide CO2 emissions until 2050. Geological principles are established to assess entire continents for candidate sites of CO2 storage. This shows that opportunity may be widespread, but needs more specific local investigations. Onshore sub-Saharan Africa is considered the most problematic region – but even here there are potentially viable sediment sequences. No demonstration projects currently exist for CO2 capture and storage using small-scale onshore facilities. A simple estimate, assuming CO2 value of $20 per ton, suggests that single boreholes onshore may be viable over 20 years with supply rates of 100,000 ton CO2 per year. In principle, atmospheric CO2 could be captured by cultivated biomass, and co-fired in existing power stations. Or energy crops could be grown, CO2 to be used, and stored deep below ground, in a country distant from an original fossil-fuel CO2 emission site.  相似文献   

11.
We present a science-based approach to the regulation and permitting of CO2 sequestration activities. Any such regulatory scheme should address both operational (or short-term) issues and the long-term goals of geological sequestration of CO2. In the United States many of the key operational issues, such as permitting injection wells and CO2 pipelines, are reasonably well addressed in current Federal- and State-based rules and legislation. The long-term, overarching goal of sequestration projects of decreasing the rate of increase in atmospheric concentrations of CO2 is not addressed by current regulations. We propose a hierarchical approach, in which the State/Federal government is responsible for developing regional assessments that result in broad regions of brine reservoirs being rated as “sequestration ready” (and designated in this paper as general permits). The burden faced by an applicant in permitting an injection site should be considerably less if the general area of the chosen site has been ranked favorably. Such a phased, hierarchical permitting process would be helpful in addressing public and stakeholder concerns related to the impact and safety of geological sequestration operations. It will also build in coordination between neighboring injection sites, where interferences are likely because of the large amount of CO2 to be injected.  相似文献   

12.
魏宁  刘胜男  魏凤  李小春 《环境科学》2023,44(12):6621-6629
中国水泥行业面临巨大的碳达峰与碳中和压力.CO2捕集利用与封存(CCUS)技术是能够实现化石资源低碳利用的碳减排技术.在中国水泥企业数据基础上,采用全流程CCUS系统模型(ITEAM-CCUS)评估CCUS的碳减排潜力对水泥企业碳中和非常重要.模型从源汇匹配距离、捕集率、CCUS技术和技术水平这4个方面设置了10种情景,完成了水泥行业的企业筛选、场地筛选、CCUS技术经济评估和源汇匹配,初步回答了水泥企业结合CCUS的封存场地、减排规模、成本范围和优先项目分布等关键问题.在250 km匹配距离、85%净捕集率、CO2-EWR技术和当前技术水平情景,44%的水泥企业可以利用CO2强化地下水开采(CO2-EWR)技术开展碳减排,累计年碳减排量为6.25亿t,平准化成本为290~1838元·t-1;具有全流程CO2-EWR早期示范优势的地区为新疆、内蒙古、宁夏、河南和河北等.水泥企业开展全流程CCUS项目技术可行,可以实现大规模CO2减排,低成本项目具有早期示范机会.研究结果可为水泥行业低碳发展和CCUS商业化部署提供定量参考.  相似文献   

13.
Carbon dioxide capture and permanent storage (CCS) is one of the most frequently discussed technologies with the potential to mitigate climate change. The natural target for CCS has been the carbon dioxide (CO2) emissions from fossil energy sources. However, CCS has also been suggested in combination with biomass during recent years. Given that the impact on the earth's radiative balance is the same whether CO2 emissions of a fossil or a biomass origin are captured and stored away from the atmosphere, we argue that an equal reward should be given for the CCS, independent of the origin of the CO2. The guidelines that provide assistance for the national greenhouse gas (GHG) accounting under the Kyoto Protocol have not considered CCS from biomass (biotic CCS) and it appears that it is not possible to receive emission credits for biotic CCS under the first commitment period of the Kyoto Protocol, i.e., 2008–2012. We argue that it would be unwise to exclude this GHG mitigation alternative from the competition with other GHG mitigation options. We also propose a feasible approach as to how emission credits for biotic CCS could be included within a future accounting framework.  相似文献   

14.
This paper investigates overall CO2 balances of combined heat and power (CHP) plants with CO2 capture and storage (CCS) in Kraft pulp and paper mills. The CHP plants use biomass-based fuels and feature advanced gasification and combined cycle technology. Results from simple process simulations of the considered CHP plants are presented. Based on those results and taking into account the major direct and indirect changes in CO2 emissions, the study shows that implementing CCS leads to steep emission reductions. Furthermore, a preliminary cost assessment is carried out to analyse the CO2 mitigation cost and its dependence on the distance that the CO2 must be transported to injection sites.  相似文献   

15.
Nitrous oxide (N2O) is a major greenhouse gas (GHG) product of intensive agriculture. Fertilizer nitrogen (N) rate is the best single predictor of N2O emissions in row-crop agriculture in the US Midwest. We use this relationship to propose a transparent, scientifically robust protocol that can be utilized by developers of agricultural offset projects for generating fungible GHG emission reduction credits for the emerging US carbon cap and trade market. By coupling predicted N2O flux with the recently developed maximum return to N (MRTN) approach for determining economically profitable N input rates for optimized crop yield, we provide the basis for incentivizing N2O reductions without affecting yields. The protocol, if widely adopted, could reduce N2O from fertilized row-crop agriculture by more than 50%. Although other management and environmental factors can influence N2O emissions, fertilizer N rate can be viewed as a single unambiguous proxy—a transparent, tangible, and readily manageable commodity. Our protocol addresses baseline establishment, additionality, permanence, variability, and leakage, and provides for producers and other stakeholders the economic and environmental incentives necessary for adoption of agricultural N2O reduction offset projects.  相似文献   

16.
Because volcanic soils store large amounts of soil organic carbon (SOC), they play a far more important role in the carbon (C) cycle than their limited global coverage suggests. We analysed the C released as CO2 from a range of volcanic soils under natural conditions and analysed the influence of environmental variables (moisture and temperature), substrate availability (as assessed from the contents of various SOC fractions and the inputs of plant residues from litterfall), respiratory agents (roots, microorganisms and decomposing enzymes) and other pedological features of the topsoils (0–30 cm depth) on the CO2 efflux rates over a 2-year experimental period. High CO2 efflux rates (419 g C-CO2 m?2 y?1 as the average for Andisols) were obtained that were related to significant decreases in the amount of SOC stored. CO2 release was strongly controlled by soil moisture, although it was inhibited in the Andisols with the highest moisture levels (above 50 kg m?2 in topsoil). It was not responsive to the availability of decomposing microorganisms or enzymes and appeared more related to the inputs of easily decomposable plant residues than to the amount of either labile or recalcitrant SOC. Among the SOC pools, only the water-soluble C in saturated paste extracts (WSCse) of air-dried soil samples was consistently correlated with the CO2 efflux rates. The desiccation of Andisols appeared to induce the release of previously stabilised SOC, which was readily mineralised when the moisture conditions became favourable. The results of this study indicate that SOC storage in Andisols is highly vulnerable to drying-wetting processes even in unmanaged natural ecosystems and that microclimate conditions can be critical for successful C sequestration in these soils.  相似文献   

17.
本研究以3种钢铁厂碱渣直接法固碳技术为研究对象,该技术将钢渣进行碳酸化处理,可快速永久地将CO2固化储存在钢渣中,气固相反应可分别在高压釜、泥浆反应器和超重力旋转床的水溶液中一步完成,并将其分别定义为T1、T2、T3.通过Umberto软件建立生命周期模型,对3种技术的资源环境影响进行评估.结果表明,T1的环境影响最高,其次为T3,T2的环境影响最小.技术评价显示,T3在技术效率、资源消耗、环境影响方面具有较好的综合效益.敏感性分析表明,加热效率的敏感性系数分别为0.97、0.97和0.46.转换率与温室气体排放的关系分别呈上升、倒U型和下降的变化趋势.提高加热效率、合理利用热源及选择合适的技术效率,将有利于技术优化,减少技术的环境影响,提高固碳效率.  相似文献   

18.
Integration of CO2 capture and storage (CCS) into coal-fired power stations is seen as a way of significantly reducing the carbon emissions from stationary sources. A large proportion of the estimated cost of CCS is because of the additional energy expended to capture the CO2 and compress it for transport and storage, reducing the energy efficiency of the power plant. This study uses pinch analysis and heat integration to reduce the overall energy penalty and, therefore, the cost of implementing CCS for power plants where the additional heat and power for the CCS plant will be provided by the existing power plant. A combined pinch analysis and linear programming optimisation are applied to determine targets for the energy penalty of existing power plants. Two existing pulverised brown coal power plants with new CCS plants using solvent absorption are used as the basis for the study that show the energy penalty can be reduced by up to 50% by including effective heat integration. The energy penalty can be further reduced by pre-drying the coal.  相似文献   

19.
碳捕集与封存(CCS)技术是当前抑制大气中CO2过快增长的有效方法,但在CCS项目实施过程中仍存在CO2泄漏而影响地表环境及生态的风险.本研究以龙粳31号和龙稻18号为实验对象,模拟研究地质封存CO2以不同速率泄漏对稻田水环境基础水质指标DCO2、pH、DO和ORP的影响,探讨稻田水对地质封存CO2泄漏的响应规律.结果表明:CO2泄漏对稻田水的DCO2、pH、DO和ORP长期影响显著,不同CO2泄漏速率对稻田水质指标的影响差异显著.在各指标平衡后,稻田水各水质指标均呈现明显的日变化规律,其中DCO2呈早晚高、午间低的先减后增规律,而pH、DO和ORP均呈早晚低、午间高的先增后减规律.根据各指标差异性分析,建议将稻田水DCO2作为稻田系统CO2泄漏监测的主要指标,将pH、DO、ORP作为CO2泄漏监测的辅助指标.  相似文献   

20.
CO2收集封存战略及其对我国远期减缓CO2排放的潜在作用   总被引:7,自引:0,他引:7  
陈文颖  吴宗鑫  王伟中 《环境科学》2007,28(6):1178-1182
碳收集封存(CCS)已被广泛地认为是一种潜在的、可供选择的CO2减排方案,以稳定大气中CO2浓度、减缓气候变化.本文介绍了CCS的3大环节:碳的捕获、运输与储存,对不同捕获技术及其技术经济参数进行分析评价,介绍了不同碳地质储存的机理、潜力与成本, 以及CCS的应用对全球减缓碳排放的作用.更新中国MARKAL模型,加入各种可能的CCS技术,特别是考虑CCS的煤间接液化以及多联产技术,以同时考虑石油安全与CO2减排.通过设置不同的情景,应用中国MARKAL模型研究了CCS对我国远期(到2050年)减缓CO2排放的潜在作用,结果表明,CCS技术的应用不仅可能减少我国的碳排放,降低边际碳减排成本(碳减排率50%时,下降率达45%),减轻高减排率时对核电的高度依赖,还可能使我国更长时间地清洁利用煤炭资源(在C70情景下,2050年煤在一次能源消费中的比例可从10%增到30%).我国应重视对CCS技术的研发以及示范项目的建设.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号