首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
基于铁还原菌的微生物燃料电池研究进展   总被引:3,自引:0,他引:3  
微生物燃料电池(Microbial fuel cell, MFC)是未来理想的发电装置,而铁还原菌是目前MFC研究中重要的产电微生物.自然界中并无微生物产电的直接进化压力,而MFC电极与自然界中Fe(III)氧化物同为难溶性胞外电子受体,研究表明,铁还原菌对二者的还原有相似机制.基于铁还原菌的MFC具有无需外加介体,可利用多种有机电子供体作为燃料,能量转化率高等优点.本文分析了铁还原菌还原电极和还原Fe(III)氧化物机制的相似性,对近年来基于各种铁还原菌的MFC研究进展进行分述和总结,提出了铁还原菌MFC的发展趋势和研究方向.  相似文献   

2.
微生物燃料电池(microbial fuel cells, MFCs)能够将有机污染物化学能转化为电能,有望成为解决环境和能源问题的重要技术之一.但微生物代谢产电效率低制约其规模化应用,电子的产生及转移过程也将直接影响MFCs电能输出.本文综述了MFCs产电菌胞内电子传递及胞外电子转移机制近年来的研究进展,着重总结了阳极产电菌胞外电子传递方式以及促进胞外电子传递能力的途径,阐述了电子转移过程存在的影响因素及其作用机理,并指出了MFCs今后应用中面临的问题及发展方向.  相似文献   

3.
产电微生物的生物信息学分析是微生物燃料电池(Microbial Fuel Cell,MFC)研究中的关键环节,各种生物信息学分析方法已经开始应用于产电微生物研究.本文综述了目前产电微生物基因组、功能基因组和代谢网络分析的重要方法,包括基因和基因表达信息分析、基因组和比较基因组分析、代谢网络建模和计算机模拟等,其中,产电微生物代谢网络的构建是联系上游基因组分析和下游基因工程改造的关键,是目前相关研究面临的挑战.生物信息学分析必将促进干实验与湿实验的紧密结合,促进发现电子转移相关功能基因,解析微生物产电机制,优化代谢网络,由此指导基因工程改造产电微生物,最终提高产电效率.  相似文献   

4.
电活性生物膜(EAB)是微生物燃料电池(microbial fuel cell,MFC)的重要组成部分.为揭示群体感应(quorum sensing,QS)信号分子在MFC中对EAB的响应机制,在MFC阳极室接种铜绿假单胞菌,添加两种QS信号分子(N-丁酰基高丝氨酸内酯C4-HSL和喹诺酮PQS),观察其对阳极生物膜形态、结构及MFC产电性能的影响.结果显示:添加终浓度为10μmol/L N-丁酰基高丝氨酸内酯、喹诺酮的MFC的驯化启动期分别比对照组缩短了290.33 h、169.9h,最高输出电压分别提高了18.18%、22.73%,MFC运行后期传质电阻分别减小了9.77Ω、15.15Ω,绿脓素含量分别提高了20.27%、24.32%;扫描电子显微镜(SEM)照片显示添加两种信号分子生物膜的生物量均多于对照组;激光扫描共聚焦显微镜(CLSM)照片显示添加QS信号分子可以明显增大阳极生物膜的厚度并改善活死细胞比例.本研究表明添加QS信号分子显著促进了产电菌Pseudomonas aeruginosa PAO1在MFC阳极表面的成膜速率,强化了其生物活性,提高了EAB与电极间的电子传递效率及MFC的产电性能.(图9参21)  相似文献   

5.
微生物是土壤、湖泊、沉积物中重要的活性物种。胞外呼吸是微生物主要的能量代谢方式,是微生物与胞外受体间进行电子传递的主要路径。胞外电子传递过程是胞外呼吸作用的重要组成部分,影响着环境中的物质转变和能量交换。研究发现胞外电子传递方式主要包括直接电子传递和间接电子传递两大类。其中,直接电子传递方式主要分为直接接触、纳米导线和纳米导线网络;间接电子传递以穿梭体介导的电子传递为主。腐殖质是自然界中重要的氧化还原活性物种,能作为穿梭体参与间接电子传递过程。已有的研究表明穿梭体能影响单菌体系微生物胞外电子传递过程,但其影响微生物群落胞外电子传递过程的研究更具实际意义。本实验以浅海沉积物为研究对象,构建微生物燃料电池(Microbial Fuel Cell,MFC),结合电化学方法研究在核黄素、AQDS、2-HNQ 3种穿梭体介导下,微生物群落燃料电池的输出电压、极化曲线、功率密度等电化学参数的变化情况,以此来表征穿梭体对微生物群落胞外电子传递过程的影响。研究结果表明:(1)浅海沉积物中存在能进行胞外呼吸的微生物且能成功启动微生物燃料电池;(2)穿梭体的表观电极电位越低,其介导的微生物燃料电池的输出电压越高,此研究结果与纯菌体系相同;(3)纯菌体系中穿梭体的表观电极电位是胞外电子传递速率的决定因素,但在群落体系中并不成立。  相似文献   

6.
为探究二氧化铅在微生物燃料电池(Microbial fuel cell,简称MFC)中的还原及对产电性能的影响,采用电沉积法成功制备了钛基二氧化铅(PbO2/Ti),并将其作为阴极材料应用于双室MFC.二氧化铅的价态、晶型、形态特征以及电化学特性分别采用X射线光电子能谱(XPS)、X射线衍射光谱(XRD)、扫描电子显微镜(SEM)和循环伏安扫描(CV)进行分析,MFC的产电能力通过COD的去除、输出电压和极化曲线进行表征.结果显示,在以PbO2/Ti为阴极的MFC中COD的降解率可以达到87.68%,明显高于纯钛板的对照(71.4%).当外阻为1 000Ω时,最大输出电压达到760 mV,约为对照的30倍.最大功率密度达379 mW m–2,相应的电流密度为1 185 mA m–2.同时,PbO2被还原为PbO和Pb3(PO4)2.由此可见,二氧化铅由于其具有的强氧化性可作为廉价高效的阴极材料应用于MFC,从而大大提高MFC产电能力.  相似文献   

7.
为提高微生物燃料电池(Microbial fuel cell,MFC)的输出功率,降低成本,使实际应用成为可能,首次以酒精酵母为产电微生物,在不添加电子传递中间体的条件下,采用开路电压法和极化曲线法对自行设计的电池装置进行性能优化及产电效果研究,同时选取菌种驯化法对酒精酵母的产电适应性进行探讨.结果显示,铁阳极的电化学活性远高于铝阳极和铜阳极,且阳极形状对产电能力有影响;此MFC最大开路电压和输出功率密度分别为1.252V和502.3mW/m2,内阻为777.43Ω;菌种经驯化电流峰值提前,产电适应性增强.实验结果表明,本研究设计的系统性能良好,调整阳极材料和形状可提高电池产电能力,可通过驯化对菌种进行产电稳定性研究.  相似文献   

8.
为促进微生物燃料电池(MFC)推广应用于实际,构建以填充碳毡构成的三维结构为电极的单室微生物燃料电池,用于处理生活污水同步产电.对比分析序批运行和连续运行方式对生活污水的处理效果以及MFC的产电性能.在序批实验中,5 d内化学需氧量(COD)、氨氮(NH_4~+-N)去除率分别达到91.1%和98.2%,处理结果符合城镇污水处理厂污染物排放标准(GB18918-2002)一级A标准;当MFC外接51Ω电阻时最大功率密度为27.88 m W/m~3.在连续实验中,污水以稳定流速(0.2 m L/min)自反应器底部注入,形成上流式连续运行模式,其水力停留时间(HRT)为5 d,此时出水中COD保持稳定,去除率变化范围为83.2%-97.4%,NH_4~+-N浓度逐渐降低保持在9.45 mg/L以下,反应器对污水中NH_4~+-N的去除效果较好,自第11天后出水中有NO_3~--N积累,导致总氮去除率较低.连续运行方式下MFC最大功率密度为582.5 m W/m~3,约是序批方式的21倍;平稳期平均输出电压为0.087 7 V,是序批运行时的2.9倍.结果表明在连续运行方式下,由于有机物得到补充,微生物可不断利用有机物用于产电,所以连续运行方式时MFC的产电性能更好,可以改善序批方式下输出电压较低的现象.最后基于16S rRNA高通量测序分析电极上微生物群落,发现主导微生物属于Thauera sp.、Saprospiraceae-UN sp.、OPB56-UN sp.,Thauera sp.是一类能以电极为电子供体而还原NO3--N的脱氮微生物.因此可通过富集此类脱氮菌来降低连续运行方式下出水NO3--N浓度,这为改善污水处理效果提供了一种新方法.  相似文献   

9.
城市污水处理厂污泥因有机物含量高而成为微生物燃料电池(MFC)应用研究的主要方向之一,而污泥中有机质的释放成为限制其发展的主要因素.本实验利用低温热解和过氧化氢氧化处理的耦合方法预处理城市污水处理厂污泥,分析了其作为燃料对MFC产电性能的影响.研究表明,利用预处理后的污泥上清液作为燃料,预处理温度、时间、pH值和过氧化氢投加量对MFC的产电性能影响大.当温度、时间、pH值和过氧化氢分别为100℃、90 min、11和500 g·kg TSS~(-1)的预处理条件下,MFC功率密度最大,分别为235、287、233.2、280 mW·m~(-3).采用热氧化法预处理污泥,可有利于污泥的破解,使能被产电菌利用的营养物质增多,提高了MFC产电特性,可为污泥资源化利用提供有益的参考.  相似文献   

10.
利用厌氧污泥为接种源构建双室微生物燃料电池(Microbial fuel cell,MFC),研究其电子传递机制,并考察其底物利用谱及阴极电子受体对产电性能的影响.结果表明:该MFC主要通过生物膜机制实现电子从有机物到固体电极的传递过程.该混合菌MFC的底物利用谱范围广泛,单糖、二糖、小分子有机酸等有机物均可作为电子供体产电,其中以蔗糖和乳糖为底物产电效果较好,最大功率密度分别为69.69 mW/m2和60.75 mW/m2;而以乙醇为底物时,COD负荷最高,达123.55 mg L-1d-1.阴极不同电子受体对混合菌群MFC的产电性能也有显著影响,其中以KMnO4为电子受体电池性能最好,最大功率密度达1 396.74 mW/m2.  相似文献   

11.
微生物燃料电池(microbial fuel cell,MFC)是一种将化学能转化为电能的技术。它可以利用包括河涌与海底的沉积物在内的众多基质来产生电能。在利用微生物燃料电池对沉积物进行修复时,通常采用将阳极埋在水底沉积物中,阴极悬于上覆水中的方式来构建电池。由于上覆水的存在,底泥中的污染物质不仅会被电池修复,也会向上覆水释放,影响底泥和上覆水的整体修复情况。以广州某黑臭河涌底泥为阳极微生物接种源及阳极基质,50 m M·L-1铁氰化钾缓冲溶液为阴极室溶液构建了双室有膜型微生物燃料电池,排除上覆水对微生物燃料电池修复底泥的影响,研究在不同的外接电阻下,MFC的产电性能以及MFC对底泥的修复效果。结果表明:以黑臭河涌底泥为阳极底物能够保持MFC较长时间产电运行(650 h)。构建的电池内阻分别为:1 341.6、1 339.2、1 330.2、1 386.7和1 311.7Ω。外阻能够对MFC的产电和功率密度输出产生影响:在外接电阻为1 500Ω时,MFC获得的稳定输出电压最高为0.753 V,最大输出功率为4.94 m W·m-2。在运行中,微生物燃料电池对底泥进行了修复:在外接电阻为1 500Ω时,有机质去除效果最佳,去除率为7.834%;全磷在外阻100Ω达到29.98%的最高去除率;铵态氮在外阻100Ω处达到41.64%的最高去除率;在硝态氮最高去除率则在外接1000Ω时,为71.52%。这说明了外阻能够影响电池对底泥的修复效果。  相似文献   

12.
微生物燃料电池构造研究进展   总被引:2,自引:0,他引:2  
微生物燃料电池(Microbial fuel cell,MFC)的研究在近几年获得了快速发展.产电微生物在厌氧条件下氧化底物释放电子和质子,电子通过导线传递给阴极,从而在外电路中形成电流,而质子通过质子交换膜进入阴极与电子和氧气结合生成水.微生物燃料电池的研究与应用开发涉及到从微生物、电化学到材料学和环境工程等科学领域的交叉,特别是废水处理能与微生物产电相结合的研究成果,使污水、污泥、垃圾等环境污染物的治理有可能成为生物质能源的生产过程,展示了微生物燃料电池的广泛应用前景.本文着重综述微生物燃料电池在构造上的进展,并介绍了其在水处理中的应用前景.图8参56  相似文献   

13.
微生物燃料电池(microbial fuel cell,MFC)型生物毒性传感器以其低成本、实时快速、操作简单和能实现污染物在线自动检测等特点在环境监测方面有着广泛的应用前景。总结了近十年应用MFC型生物毒性传感器对重金属离子进行检测与预警的研究情况。从MFC型生物毒性传感器的原理出发,介绍了评价MFC型生物毒性传感器性能的主要指标。从MFC的构型、膜类型、电极材料、控制模式和接种微生物5个方面分析了其对重金属检测性能的影响。展望了未来MFC型生物毒性传感器可能的研究方向:(1)筛选出具有特异性、灵敏度高和恢复速度快的阳极产电微生物菌种,实现对某一特定重金属离子的检测;(2)结合新型材料工艺实现传感器的微型化和集成化;(3)结合5G技术,实现MFC型生物毒性传感器的远程在线实时监测以及智能化拓展。  相似文献   

14.
陈青  周顺桂  袁勇  徐荣险  胡佩 《生态环境》2011,20(5):946-950
重点考察了不同外阻(10、150和1 000Ω)对污泥微生物燃料电池(sludge microbial fuel cell,SMFC)产电性能及有机物去除速率的影响。结果表明,外阻对电池产电和有机物降解有显著影响,低电阻有利于电流产生及有机物消耗。当外阻为10Ω时,输出电流最高(4.2 mA),且污泥溶解性化学需氧量(SCOD)去除速率最快(53 mg.d-1)。DGGE图谱显示,不同外阻导致阳极微生物菌落结构有明显差异;CV扫描发现外阻对生物膜氧化还原能力有显著影响,低电阻下运行的阳极生物膜氧化还原活性较强。本研究为理解外阻与阳极生物膜间的关系提供一条有益线索,也为MFC性能提高提供一条可操作性的途径。  相似文献   

15.
尿液是市政污水中氮、磷与COD的主要来源,将尿液从污水系统中分离单独处理可以缓解城市污水处理厂有机物、营养素的超负荷难题.以源分离的尿液为底物,研究微生物燃料电池的产电特征及其污染物去除效果,并进一步考察影响系统产电性能的因素.结果显示:在超过6个月的试验过程中,伴随有机物和总氮的减少,系统可保持长期稳定的功率输出.COD和总氮的最高去除率为92.9%和65.6%,系统最大输出功率为388.2 m W/m2,这也是迄今尿液微生物燃料电池所获得的最高功率.阳极碳毡表面菌群分析显示具有电化学活性的Arcobacter和具有发酵功能的Bacteroides为优势菌群.氨氮积累、微生物淤积以及尿液中的物质沉淀等是影响尿液微生物燃料电池性能的主要因素.研究结果表明,尿液微生物燃料电池高效地实现了在污染物去除的同时获得高输出功率,体系中Arcobacter是一种新型的胞外产电菌,其强电化学作用可利用在生物电能的获得过程中.  相似文献   

16.
微生物的胞外多糖是重要的生物资源,为获得新型的具有药用价值的胞外多糖产生菌,从山药、地瓜、马铃薯和胡萝卜的根茎组织中分离、筛选到11株能产胞外多糖的植物内生菌,利用苯酚–硫酸法对这11株菌的多糖产量进行了定量分析.对多糖产量最高的S-1菌株,检测其在发酵过程中菌体生长、胞外多糖生成以及发酵过程的pH变化,绘制其胞外多糖发酵代谢曲线.通过形态观察、培养特性观察、生理生化实验和16S rDNA序列分析对该菌株进行了鉴定.结果显示,S-1菌株在产糖培养基中可以产生1.50 g/L的胞外多糖,在11株菌中产量最高.16S rDNA序列分析显示该菌属于赖氨酸芽孢杆菌(Lysinibacillus),且与纺锤形赖氨酸芽孢杆菌(L.fusiformis)亲缘最近.综合其形态特征、培养特性和生理生化实验结果,将S-1菌株鉴定为纺锤形赖氨酸芽孢杆菌.该菌在胞外多糖产生菌中少有报道,为胞外多糖的进一步研究提供了菌种资源.  相似文献   

17.
微生物燃料电池产电研究及微生物多样性分析   总被引:1,自引:0,他引:1  
以乙酸钠为阳极底物,碳毡材料为阴阳电极,构建了无介体双室微生物燃料电池(Microbial fuel cell,MFC),研究不同阴极受体、外接电阻、乙酸钠浓度和不同接种方式等因素对电池产电性能的影响.根据不同接种方式下微生物燃料电池产电性能差异,利用PCR-DGGE技术对不同接种方式下的微生物多样性进行分析.研究结果表明:在500 mL的阴阳极反应体系中,当接入500 Ω外电阻,阴极电子受体为高锰酸钾,阳极乙酸钠质量浓度为6.46 g/L,只接入附着有大量微生物的电极时,微生物燃料电池产电性能最好,最大电功率密度可达353.57 mW/m2,库伦效率为39.35%;微生物多样性分析显示.δ-变形菌纲、β-变形菌纲和拟杆菌门的菌种更适应微生物燃料电池的运行环境,能在电极上大量富集.提高电池的产电性能.是电极上的优势菌群.图8表1参21  相似文献   

18.
微生物燃料电池是一种利用微生物将生物质转化为电能的装置.阳极是微生物燃料电池的重要组成部分,通过对阳极的修饰可有效提升微生物燃料电池的产电效率.本文在简要介绍微生物燃料电池工作原理的基础上,详细归纳了不同金属及其化合物修饰阳极时微生物燃料电池的产电性能,分析了其促进产电的原因,并对未来的发展趋势进行了展望.  相似文献   

19.
米粉废水是一种含有高浓度有机质的工农业产物.本文以氧化石墨烯(GO)修饰石墨刷作为微生物燃料电池(microbial fuel cell,MFC)阳极实现米粉废水的产电以及能量回收.当米粉废水的COD浓度为1200 mg·L~(-1)时,MFC的最大功率密度可达1273.89 m W·m~(-2),此时从废水中回收的能量高达0.97 k Wh·kg~(-1)-COD,其远高于目前文献报道值,例如,MFC体系下市政废水中回收的能量仅为0.18 k Wh·kg~(-1)-COD.利用扫描电子显微镜(scanning electron microscopy,SEM)和激光共聚焦(confocal laser scanning microscopy,CLSM)观测电极表面形貌,傅里叶变换红外光谱仪(fourier transform infrared,FTIR)以及拉曼光谱(raman)测定阳极电极的化学结构,循环伏安曲线(cyclic voltammetry,CV)以及电化学阻抗图谱(electrochemical impedance spectra,EIS)测定反映电极电化学性能,结果表明:阳极表面GO负载量随GO修饰浓度的增加而增加;当混合产电菌驯化6个月后,石墨刷表面GO被还原为r GO;与以空白石墨刷为阳极构建的MFC相比,GO修饰石墨刷构建的MFC具有更好的电容特性且传质电阻更低,从而可回收更高的能量.  相似文献   

20.
对从土壤中分离出的321株菌株进行了筛选,得到1株高产胞外黑色素的菌株,比较了其在不同培养基上产黑色素的能力.初步确定该菌株为链霉菌属.该菌黑色素产量高,约为0.70g/L,在产黑色素的微生物中,链霉菌可以作为一类新的菌种资源.图2表1参15  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号