首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Since the Bhopal incident, the public has placed pressure on regulatory agencies to set community exposure limits for the dozens of chemicals that may be released by manufacturing facilities. More or less objective limits can be established for the vast majority of these chemicals through the use of risk assessment. However, each step of the risk assessment process (i.e., hazard identification, dose-response assessment, exposure assessment, and risk characterization) contains a number of pitfalls that scientists need to avoid to ensure that valid limits are established. For example, in the hazard identification step there has been little discrimination among animal carcinogens with respect to mechanism of action or the epidemiology experience. In the dose-response portion, rarely is the range of "plausible" estimated risks presented. Physiologically based pharmacokinetic (PB-PK) models should be used to understand the difference between the tissue doses and the administered dose, as well as the difference in target tissue concentrations of the toxicant between rodents and humans. Biologically-based models like the Moolgavkar-Knudson-Venzon (MKV) should be developed and used, when appropriate. The exposure assessment step can be significantly improved by using more sensitive and specific sampling and analytical methods, more accurate exposure parameters, and computer models that can account for complex environmental factors. Whenever possible, model predictions of exposure and uptake should be validated by biological monitoring of exposed persons (urine, blood, adipose) or by field measurements of plants, soil, fish, air, or water. In each portion of an assessment, the weight of evidence approach should be used to identify the most defensible value. In the risk characterization, the best estimate of the potential risk as well as the highest plausible risk should be presented. Future assessments would be much improved if quantitative uncertainty analyses were conducted. Procedures are currently available for making future assessments. By correcting some of these shortcomings in how health risk assessments have been conducted, scientists and risk managers should be better able to identify scientifically appropriate ambient air standards and emission limits.  相似文献   

2.
M Younes 《Chemosphere》1999,39(8):1253-1257
Specific issues in health risk assessment of EDCs and correlated international activities thereof are discussed. Risk characterization is a synthesis of all information including hazard assessment, dose-response relationship, and exposure information to identify clearly the strengths and weaknesses of the database, the criteria applied to evaluation and validation of all aspects of methodology, and the conclusions reached from the review of scientific information. In the case of EDCs, new models need to be developed taking into account possible new kinds of information, e.g., effects of EDCs on gene activation in response to hormonal challenge or effects on receptor expression. Such models should also account for homeostatic adaptive responses and consider the possibility of having windows of exposure for given effects. Work to compile and harmonize the definitions and terms appropriate to endocrine disruption will be conducted within the joint IPCS/OECD project on harmonization of risk/hazard assessment terminology reviews. The ICPS is the process of preparing a "State of the Science" report, and is implementing a global inventory of ongoing research on ECDs.  相似文献   

3.
A framework for risk characterization of environmental pollutants.   总被引:1,自引:0,他引:1  
Risk characterization is defined by both the U.S. National Academy of Sciences and the U.S. EPA as the estimation of human health risk due to harmful (i.e., toxic or carcinogenic) substances or organisms. Risk characterization studies are accomplished by integrating quantitative exposure estimates and dose-response relationships with the qualitative results of hazard identification. A Risk Characterization Framework has been developed to encourage a systematic approach for analysis and presentation of risk estimates. This methodology subdivides the four common components of the risk assessment process into ten elements. Each of these elements is based on a term in a predictive risk equation. The equation allows independent computations of exposure, dose, lifetime individual risk, and risk to affected populations. All key assumptions in the predictive risk equation can be explicitly shown. This is important to understand the basis and inherent uncertainties of the risk estimation process. The systematic treatment of each of the ten elements in this framework aids in the difficult job of comparing risk estimates by different researchers using different methodologies. The Risk Characterization Framework has been applied to various indoor and outdoor air pollutants of a carcinogenic nature. With further development, it also promises to be applicable to noncarcinogenic effects.  相似文献   

4.
Risk characterization is defined by both the U.S. National Academy of Sciences and the U.S. EPA as the estimation of human health risk due to harmful (i.e., toxic or carcinogenic) substances or organisms. Risk characterization studies are accomplished by integrating quantitative exposure estimates and dose-response relationships with the qualitative results of hazard identification.

A Risk Characterization Framework has been developed to encourage a systematic approach for analysis and presentation of risk estimates. This methodology subdivides the four common components of the risk assessment process into ten elements. Each of these elements is based on a term in a predictive risk equation. The equation allows independent computations of exposure, dose, lifetime individual risk, and risk to affected populations. All key assumptions in the predictive risk equation can be explicitly shown. This is important to understand the basis and inherent uncertainties of the risk estimation process.

The systematic treatment of each of the ten elements in this framework aids in the difficult job of comparing risk estimates by different researchers using different methodologies. The Risk Characterization Framework has been applied to various indoor and outdoor air pollutants of a carcinogenic nature. With further development, it also promises to be applicable to noncarcinogenic effects.  相似文献   

5.
Endocrine disrupting chemicals (EDCs) may affect mammalian development either indirectly (by impairing implantation, placental development, lactation, etc.) or directly, altering the maturation of target tissues. Current regulatory tests for reproductive/developmental toxicity should be carefully evaluated with regard to risk assessment of EDCs, considering hazard identification (are relevant endpoints being assessed?) and dose-response assessment (are sensitive NOEL/dose-response curves being provided?). Many in vitro and in vivo assays for sex steroid disruption are available; provided that the metabolic capacities of the assays are defined, they could be integrated in a sensitive battery for early detection of steroid-disrupting potentials. The screening battery should address further regulatory in vivo tests (e.g. what specific parameters have to be investigated). As regards dose-response, qualitative differences may be observed between lower and higher exposures, showing primary hormone-related effects and frank embryotoxicity, respectively. Other problems concern (a) the identification of critical developmental windows, according to hormone concentrations and/or receptor levels in the developing target tissues; (b) the potential for interactions between chemicals with common mechanism/target (e.g. xenoestrogens); (c) most important, besides sex steroids more attention should be given to other mechanisms of endocrine disruption, e.g., thyroid effects, which can be highly relevant to prenatal and postnatal development.  相似文献   

6.
Bruce K. Hope 《Chemosphere》1995,30(12):2267-2287
In instances where empirical measurements are not practicable, ecological risk assessments may rely on site-specific exposure models for estimating uptake of chemical contaminants. This paper presents, based on a review of the literature, a compilation of relatively simple quantitative models that can be combined to produce site- and species-specific first-order estimates of uptake of chemicals from abiotic media. These models have proved useful in providing order-of-magnitude estimates for screening and sample program design purposes. This paper intended as both a practical guide for choosing models to estimate terrestrial wildlife exposures and as a step toward development of a more comprehensive and standard approach to exposure assessment in terrestrial ecological receptors.  相似文献   

7.
GOAL, SCOPE AND BACKGROUND: Global multi-media box models are used to calculate the fate of persistent organic chemicals in a global environment and assess long-range transport or arctic contamination. Currently, such models assume substances to degrade in one single step. In reality, however, intermediate degradation products are formed. If those degradation products have a high persistence, bioaccumulation potential and / or toxicity, they should be included in environmental fate models. The goal of this project was to gain an overview of the general importance of degradation products for environmental fate models, and to expand existing, exposure-based hazard indicators to take degradation products into account. METHODS: The environmental fate model CliMoChem was modified to simultaneously calculate a parent compound and several degradation products. The three established hazard indicators of persistence, spatial range and arctic contamination potential were extended to include degradation products. Five well-known pesticides were selected as example chemicals. For those substances, degradation pathways were calculated with CATABOL, and partition coefficients and half-lives were compiled from literature. RESULTS: Including degradation products yields a joint persistence value that is significantly higher than the persistence of the parent compound alone: in the case of heptachlor an increase of the persistence by a factor of 58 can be observed. For other substances, the increase is much smaller (4% for alpha-HCH). The spatial range and the arctic contamination potential (ACP) can increase significantly, too: for 2,4-D and heptachlor, an increase by a factor of 2.4 and 3.5 is seen for the spatial range. However, an important increase of the persistence does not always lead to a corresponding increase in the spatial range: the spatial range of aldrin increases by less than 50%, although the persistence increases by a factor of 20 if the degradation products are included in the assessment. Finally, the arctic contamination potential can increase by a factor of more than 100 in some cases. DISCUSSION: Influences of parent compounds and degradation products on persistence, spatial range and ACP are discussed. Joint persistence and joint ACP reflect similar characteristics of the total environmental exposure of a substance family (i.e., parent compound and all its degradation products). CONCLUSIONS: The present work emphasizes the importance of degradation products for exposure-based hazard indicators. It shows that the hazard of some substances is underestimated if the degradation products of these substances are not included in the assessment. The selected hazard indicators are useful to assess the importance of degradation products. RECOMMENDATIONS AND PERSPECTIVES: It is suggested that degradation products be included in hazard assessments to gain a more accurate insight into the environmental hazard of chemicals. The findings of this project could also be combined with information on the toxicity of degradation products. This would provide further insight into the importance of degradation products for environmental risk assessments.  相似文献   

8.
Most of the existing chemicals of high priority have been released into the environment for many years. Risk assessments for existing chemicals are now conducted within the framework of the German Existing Chemicals Program and by the EC Regulation on Existing Substances. The environmental assessment of a chemical involves:
  1. exposure assessment leading to the derivation of a predicted environmental concentration (PEC) of a chemical from releases due to its production, processing, use, and disposal. The calculation of a PEC takes into account the dispersion of a chemical into different environmental compartments, elimination and dilution processes, as well as degradation. Monitoring data are also considered.
  2. effects assessment. Data obtained from acute or long-term toxicity tests are used for extrapolation on environmental conditions. In order to calculate the concentration with expectedly no adverse effect on organisms (Predicted No Effect Concentration, PNEC) the effect values are divided by an assessment factor. This assessment factor depends on the quantity and quality of toxicity data available.
In the last step of the initial risk assessment, the measured or estimated PEC is compared with the PNEC. This “risk characterization” is conducted for each compartment separately (water, sediment, soil, and atmosphere). In case PEC > PNEC an attempt should be made to revise data of exposure and/or effects to conduct a refined risk characterization. In case PEC is again larger than PNEC risk reduction measures have to be considered.  相似文献   

9.
An evaluation was performed on the first group (41) of completed risk assessments for chemicals of the EU priority lists (Existing Chemicals; EC Regulation 793/93). The evaluation focussed on the conclusions of the risk assessments. The EU risk assessment process detected a high number of substances of concern. Furthermore priority chemicals may pose potential risks to the whole range of protection goals of the risk assessment. The predictability of the risk assessments for priority chemicals was investigated. Our a priori knowledge on possible risks of priority chemicals is found to be poor, especially for consumers. Both for environment and human health the potential risks were linked with a broad spectrum of use patterns. It is concluded that no industry category can in advance be excluded from performing risk assessments. For a great number of chemicals, additional testing was found to be needed to finalize the risk assessment. This evokes questions about the completeness of the current base-set, but also about the suitability of some of the submitted human health tests that should initially fulfil the base-set needs. The results of this evaluation are useful for ongoing discussions on risk assessment processes for chemicals.  相似文献   

10.
Monitoring and laboratory data play integral roles alongside fate and exposure models in comprehensive risk assessments. The principle in the European Union Technical Guidance Documents for risk assessment is that measured data may take precedence over model results but only after they are judged to be of adequate reliability and to be representative of the particular environmental compartments to which they are applied. In practice, laboratory and field data are used to provide parameters for the models, while monitoring data are used to validate the models' predictions. Thus, comprehensive risk assessments require the integration of laboratory and monitoring data with the model predictions. However, this interplay is often overlooked. Discrepancies between the results of models and monitoring should be investigated in terms of the representativeness of both. Certainly, in the context of the EU risk assessment of existing chemicals, the specific requirements for monitoring data have not been adequately addressed. The resources required for environmental monitoring, both in terms of manpower and equipment, can be very significant. The design of monitoring programmes to optimise the use of resources and the use of models as a cost-effective alternative are increasing in importance. Generic considerations and criteria for the design of new monitoring programmes to generate representative quality data for the aquatic compartment are outlined and the criteria for the use of existing data are discussed. In particular, there is a need to improve the accessibility to data sets, to standardise the data sets, to promote communication and harmonisation of programmes and to incorporate the flexibility to change monitoring protocols to amend the chemicals under investigation in line with changing needs and priorities.  相似文献   

11.
This paper describes a risk assessment approach that integrates predicted tissue concentrations of zinc (Zn) with a concentration-response relationship and leads to predictions of survival risk for pond abalone Haliotis diversicolor supertexta as well as to the uncertainties associated with these predictions. The models implemented include a probabilistic bioaccumulation model, which linking biokinetic and consumer-resource models, accounts for Zn exposure profile and a modified Hill model for reconstructing a dose-response profile for abalone exposed to waterborne Zn. The growth risk is assessed by hazard quotients characterized by measured water level and chronic no-observed effect concentration. Our risk analyses for H. diversicolor supertexta reared near Toucheng, Kouhu, and Anping, respectively, in north, central, and south Taiwan region indicate a relatively low likelihood that survival is being affected by waterborne Zn. Expected risks of mortality for abalone were estimated as 0.46 (Toucheng), 0.36 (Kouhu), and 0.29 (Anping). The predicted 90th-percentiles of hazard quotient for potential growth risk were estimated as 1.94 (Toucheng), 0.47 (Kouhu), and 0.51 (Anping). These findings indicate that waterborne Zn exposure poses no significant risk to pond abalone in Kouhu and Anping, yet a relative high growth risk in Toucheng is alarming. Because of a scarcity of toxicity and exposure data, the probabilistic risk assessment was based on very conservative assumptions.  相似文献   

12.
With the implementation of the new EU environmental framework directives, high tier risk assessments of chemicals will be increasingly needed. For high production chemicals, additional tests will complement the standard battery for aquatic toxicity assessments (daphnids, algae, and fish). In the context of a new chemical notification at the European Union level, we have developed a seed germination and root elongation toxicity test with the freshwater aquatic plant Rorippa nasturtium-aquaticum (water cress) to confirm the low environmental risk of the chelant [S,S]-EDDS. A 14 day semi-static growth inhibition test was conducted with daily renewal of the test solution. No concentration related inhibition was found on the basis of any of the criteria investigated, i.e., time and extent of germination, biomass, number of leaves, stalk and root lengths. The no-observed effect concentration was considered to be >or=387 mg SS-EDDS/l. Although germination was selected as an appropriate endpoint to assess the effect of a chelant on an aquatic plant (other endpoints would have been dependant on essential metals that are chelated in standard culture tests), the absence of dose related effects requires further tests with higher exposure concentrations and/or other toxicant(s) to assess the validity of the test as a general tool for aquatic risk assessment.  相似文献   

13.
Chen YC  Ma HW 《Chemosphere》2006,63(5):751-761
Many environmental multimedia risk assessment models have been developed and widely used along with increasing sophistication of the risk assessment method. Despite of the considerable improvement, uncertainty remains a primary threat to the credibility of and users' confidence in the model-based risk assessments. In particular, it has been indicated that scenario and model uncertainty may affect significantly the assessment outcome. Furthermore, the uncertainty resulting from choosing different models has been shown more important than that caused by parameter uncertainty. Based on the relationship between exposure pathways and estimated risk results, this study develops a screening procedure to compare the relative suitability between potential multimedia models, which would facilitate the reduction of uncertainty due to model selection. MEPAS, MMSOILS, and CalTOX models, combined with Monte Carlo simulation, are applied to a realistic groundwater-contaminated site to demonstrate the process. It is also shown that the identification of important parameters and exposure pathways, and implicitly, the subsequent design of uncertainty reduction and risk management measures, would be better-formed.  相似文献   

14.
Quantitative assessment of human exposures and health effects due to air pollution involve detailed characterization of impacts of air quality on exposure and dose. A key challenge is to integrate these three components on a consistent spatial and temporal basis taking into account linkages and feedbacks. The current state-of-practice for such assessments is to exercise emission, meteorology, air quality, exposure, and dose models separately, and to link them together by using the output of one model as input to the subsequent downstream model. Quantification of variability and uncertainty has been an important topic in the exposure assessment community for a number of years. Variability refers to differences in the value of a quantity (e.g., exposure) over time, space, or among individuals. Uncertainty refers to lack of knowledge regarding the true value of a quantity. An emerging challenge is how to quantify variability and uncertainty in integrated assessments over the source-to-dose continuum by considering contributions from individual as well as linked components. For a case study of fine particulate matter (PM2.5) in North Carolina during July 2002, we characterize variability and uncertainty associated with each of the individual concentration, exposure and dose models that are linked, and use a conceptual framework to quantify and evaluate the implications of coupled model uncertainties. We find that the resulting overall uncertainties due to combined effects of both variability and uncertainty are smaller (usually by a factor of 3–4) than the crudely multiplied model-specific overall uncertainty ratios. Future research will need to examine the impact of potential dependencies among the model components by conducting a truly coupled modeling analysis.  相似文献   

15.
Goal, Scope and Background Fragrance preparations or perfumes are used in an increasing variety of applications, as for example washing, cleansing, personal care products, consumer goods or in applications to modify indoor air. However, up to now, little is known to the general or scientific public about their chemical identity and the use pattern of single substances, not even for high production volume chemicals. Some toxicological data are published for a comparatively small number of substances with a focus on sensitisation and dermal effects, while other effects are neglected. Information on ecotoxicity and environmental fate are rare, especially for long-term exposure. Data for a detailed hazard and risk analysis are available in exceptional cases only. According to the current legal situation, fragrance industry is self-regulated, which means that pre-market risk evaluation is not required for most fragrances. Odour and the ability to smell play a major role for wildlife for all taxonomic groups. Reproductive and social behaviour, defence, communication and orientation depend on volatile compounds which can be identical to those used in fragrance preparations. Our interdisciplinary approach leads to the question of whether and, if so, to what extent anthropogenic fragrances may influence life and reproduction of organisms in the environment. Main Features Information from literature on use, exposure and biological effects was combined to analyse the state of knowledge. Following an overview of the amounts of fragrances used in different consumer products and their release into the environment, the roles of odours in nature are shown for a selection of compounds. Existing regulation was analysed to describe the data basis for environmental risk evaluation. Finally, recommendations for further action are derived from these findings. Results Three main results were elaborated: First, fragrance substances are continuously discharged in large amounts into the environment, especially via the waste water. Second, there are some indications of negative effects on human health or the environment, although the data basis is very thin due to the self regulation of the fragrance industry and the regulatory situation of fragrance substances. Third, many odoriferous substances used by man are identical to those which are signal substances of environmental organisms at very low concentrations, thus giving rise to specific mode of actions in the ecosystem. Recommendations For the adequate risk assessments of fragrances, test results on their unspecific as well as their specific effects as signal substances are needed. This would imply prioritisation methods and development of useful test methods for specific endpoints for appropriate risk assessments. Before a comprehensive testing and evaluation of results has been finished, a minimization of exposure should be envisaged. Eco-labelling of products containing acceptable fragrance ingredients could be a first step and provide consumers with the respective information. Transparency concerning the fragrance ingredients used and their biological potency will help to build up confidence between producers and consumers. Conclusions and Perspectives The interdisciplinary approach, bringing together chemical, biological, toxicological and ecotoxicological data with information provided by manufacturers and with legal and consumer aspects, offers new insights into the field of fragrance substances used in consumer products. The amounts and application fields of fragrance substances increases while fate and effects in the environment are hardly known. The current legal situation is not suited to elucidate the effects of fragrances on human health and the environment sufficiently, especially as it was shown that fragrances may play a considerable role in the ecosystem on the behaviour of organisms. According to the precautionary principle, the lack of knowledge should best be tackled by reducing exposure, especially for compounds such as fragrance substances where no ethical reasons object a substitution by less hazardous chemicals. ESS-Submission Editor: Dr. Thomas Knacker (th-knacker@ect.de)  相似文献   

16.
Abstract

The inclusion of non-detected chemicals in a health risk assessment may lead, in some cases, to estimated risks that exceed regulatory thresholds, because one must use the detection limit or half of the detection limit. This study presents a methodology which will allow one to estimate appropriate detection limits by conducting a health risk assessment prior to the source sampling program. The advantages and shortcomings of various levels of detail in the risk assessment to determine those detection limits are discussed. The application of the methodology is demonstrated with a case study of the potential health effects of power plant stack emissions.  相似文献   

17.
Surrogate species are used in standard toxicity tests for the environmental risk assessment of chemicals. Test results are then extrapolated to the situation in the field, which is often associated with a large degree of uncertainty. Since a vulnerable species in the field is not only characterised by its intrinsic sensitivity to a stressor but also by its potential for exposure and its population resilience, the identification of focal species based on these three components of vulnerability is needed for a more ecologically relevant risk assessment. This study listed European fish species that are susceptible to pesticide exposure in the field and thus achieved the first step towards identifying focal species for the risk assessment of pesticides for fish in Europe. A step-wise filtering approach was applied to list freshwater fish species that are native to Europe and widespread in the European Union, which inhabit streams, ditches or ponds in agricultural landscapes and therefore, are at an elevated risk of being exposed to pesticides. Out of the 579 fish species occurring in European freshwater, 27 species met the filtering criteria. The resulting list was verified based on monitoring studies that were conducted in agricultural landscapes over the past 20 years. Focal fish species that can be used for a more ecologically relevant environmental risk assessment of pesticides in Europe can be identified from the produced list of species by further assessing their ecological (life history and dispersal characteristics) and intrinsic sensitivities.  相似文献   

18.
Climate change is forecast to adversely affect air quality through perturbations in meteorological conditions, photochemical reactions, and precursor emissions. To protect the environment and human health from air pollution, there is an increasing recognition of the necessity of developing effective air quality management strategies under the impacts of climate change. This paper presents a framework for developing risk-based air quality management strategies that can help policy makers improve their decision-making processes in response to current and future climate change about 30-50 years from now. Development of air quality management strategies under the impacts of climate change is fundamentally a risk assessment and risk management process involving four steps: (1) assessment of the impacts of climate change and associated uncertainties; (2) determination of air quality targets; (3) selections of potential air quality management options; and (4) identification of preferred air quality management strategies that minimize control costs, maximize benefits, or limit the adverse effects of climate change on air quality when considering the scarcity of resources. The main challenge relates to the level of uncertainties associated with climate change forecasts and advancements in future control measures, since they will significantly affect the risk assessment results and development of effective air quality management plans. The concept presented in this paper can help decision makers make appropriate responses to climate change, since it provides an integrated approach for climate risk assessment and management when developing air quality management strategies. Implications: Development of climate-responsive air quality management strategies is fundamentally a risk assessment and risk management process. The risk assessment process includes quantification of climate change impacts on air quality and associated uncertainties. Risk management for air quality under the impacts of climate change includes determination of air quality targets, selections of potential management options, and identification of effective air quality management strategies through decision-making models. The risk-based decision-making framework can also be applied to develop climate-responsive management strategies for the other environmental dimensions and assess costs and benefits of future environmental management policies.  相似文献   

19.
Screening-level ecological risk assessments are commonly conducted to identify those contaminants and receptors on which to focus future phases or tiers of the ecological risk assessment process. Most screening assessments are performed using a suite of individual species subjected to intensive evaluation of exposure (endpoint species) and selected for their appropriateness for serving as representatives or 'indicators' for all other species. As site complexity and the number of contaminants of concern increase, it becomes more difficult to assure with confidence that the potential for significant effects has been adequately assessed through an appropriate choice of endpoint species. As an alternative, functional groups demonstrating biological similarity and similar potential for contaminant exposure were developed for INEEL screening-level ecological risk assessments using taxonomic, trophic and habitat parameters. Data for individual species within each group are then integrated to address the potential for risk of adverse effects from contaminant exposure for the group as a whole.  相似文献   

20.
Hoddinott KB  Lee AP 《Chemosphere》2000,41(1-2):77-84
The authors of this paper chose several target compounds that have been found in average US homes, applied the current United States Environmental Protection Agency (USEPA) Superfund risk assessment methodologies to indoor air quality, and produced risk numbers for hazard quotients and predicted increases in incidence of cancer which would be unacceptable at US hazardous waste sites. The calculations were made for the average child and adult with USEPA default exposure values. Calculations were also made for a worst case scenario using maximum concentrations and exposure estimates defined by the USEPA as describing the reasonable exposure (RME). Significant cancer risks and non-cancer hazard quotients were predicted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号