首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The extent of mass loss on Teflon filters caused by ammonium nitrate volatilization can be a substantial fraction of the measured particulate matter with an aerodynamic diameter less than 2.5 microm (PM2.5) or 10 microm (PM10) mass and depends on where and when it was collected. There is no straightforward method to correct for the mass loss using routine monitoring data. In southern California during the California Acid Deposition Monitoring Program, 30-40% of the gravimetric PM2.5 mass was lost during summer daytime. Lower mass losses occurred at more remote locations. The estimated potential mass loss in the Interagency Monitoring of Protected Visual Environments network was consistent with the measured loss observed in California. The biased mass measurement implies that use of Federal Reference Method data for fine particles may lead to control strategies that are biased toward sources of fugitive dust, other primary particle emission sources, and stable secondary particles (e.g., sulfates). This analysis clearly supports the need for speciated analysis of samples collected in a manner that preserves volatile species. Finally, although there is loss of volatile nitrate (NO3-) from Teflon filters during sampling, the NO3- remaining after collection is quite stable. We found little loss of NO3- from Teflon filters after 2 hr under vacuum and 1 min of heating by a cyclotron proton beam.  相似文献   

2.
Abstract

Particle infiltration is a key determinant of the indoor concentrations of ambient particles. Few studies have examined the influence of particle composition on infiltration, particularly in areas with high concentrations of volatile particles, such as ammonium nitrate (NH4NO3). A comprehensive indoor monitoring study was conducted in 17 Los Angeles–area homes. As part of this study, indoor/outdoor concentration ratios during overnight (nonindoor source) periods were used to estimate the fraction of ambient particles remaining airborne indoors, or the particle infiltration factor (FINF), for fine particles (PM2.5), its nonvolatile (i.e., black carbon [BC]) and volatile (i.e., nitrate [NO3 ?]) components, and particle sizes ranging between 0.02 and 10 μm. FINF was highest for BC (median = 0.84) and lowest for NO3 ? (median = 0.18). The low FINF for NO3 ? was likely because of volatilization of NO3 ? particles once indoors, in addition to depositional losses upon building entry. The FINF for PM2.5 (median = 0.48) fell between those for BC and NO3 ?, reflecting the contributions of both particle components to PM2.5. FINF varied with particle size, air-exchange rate, and outdoor NO3 ? concentrations. The FINF for particles between 0.7 and 2 μm in size was considerably lower during periods of high as compared with low outdoor NO3 ? concentrations, suggesting that outdoor NO3 ? particles were of this size. This study demonstrates that infiltration of PM2.5 varies by particle component and is lowest for volatile species, such as NH4NO3. Our results suggest that volatile particle components may influence the ability for outdoor PM concentrations to represent indoor and, thus, personal exposures to particles of ambient origin, because volatilization of these particles causes the composition of PM2.5 to differ indoors and outdoors. Consequently, particle composition likely influences observed epidemiologic relationships based on outdoor PM concentrations, especially in areas with high concentrations of NH4NO3 and other volatile particles.  相似文献   

3.
Abstract

Evaporative loss of particulate matter (with aerodynamic diameter <2.5 μm, [PM2.5]) ammonium nitrate from quartz-fiber filters during aerosol sampling was evaluated from December 3, 1999, through February 3, 2001, at two urban (Fresno and Bakersfield) and three nonurban (Bethel Island, Sierra Nevada Foothills, and Angiola) sites in central California. Compared with total particulate nitrate, evaporative nitrate losses ranged from <10% during cold months to >80% during warm months. In agreement with theory, evaporative loss from quartz-fiber filters in nitric acid denuded samplers is controlled by the ambient nitric acid-to-particulate nitrate ratio, which is determined mainly by ambient temperature. Accurate estimation of nitrate volatilization requires a detailed thermodynamic model and comprehensive chemical measurements. For the 14-month average of PM2.5 acquired on Teflon-membrane filters, measured PM2.5 mass was 8–16% lower than actual PM2.5 mass owing to nitrate volatilization. For 24-hr samples, measured PM2.5 was as much as 32–44% lower than actual PM2.5 at three California Central Valley locations.  相似文献   

4.
ABSTRACT

Because the Federal Reference Method for PM25 specifies the collection of ambient particles on Teflon filters, we have examined the loss of a known volatile species, particulate nitrate, during sampling. Data are presented from two studies in southern California for which parallel samples were collected by different methods. Differences in collected nitrate are modeled using an evaporation model based on the work of Zhang and McMurry. The average nitrate obtained from sampling with Teflon filters was 28% lower on average than that measured by denuded nylon filters. In contrast, cascade impactor samples were within 5% of the denuded nylon filter on average. A simple model is presented that accounts for the particulate nitrate loss from Teflon filters either by scavenging nitric acid and ammonia in the sampler inlet or by heating the filter substrate during sampling. The observed magnitude of loss is explained by any of the following situations: (1) 100% nitric acid and ammonia vapor loss in the inlet, (2) 5 °C heating of the filter substrate above ambient temperature during sampling, or (3) a combination of these factors, such as 50% vapor loss in the inlet and 3 °C heating of the filter.  相似文献   

5.
Abstract

Air quality data collected in the California Regional PM10/PM2.5 Air Quality Study (CRPAQS) are analyzed to qualitatively assess the processes affecting secondary aerosol formation in the San Joaquin Valley (SJV). This region experiences some of the highest fine particulate matter (PM2.5) mass concentrations in California (≤188 μg/m3 24-hr average), and secondary aerosol components (as a group) frequently constitute over half of the fine aerosol mass in winter. The analyses are based on 15 days of high-frequency filter and canister measurements and several months of wintertime continuous gas and aerosol measurements. The phase-partitioning of nitrogen oxide (NOx)-related nitrogen species and carbonaceous species shows that concentrations of gaseous precursor species are far more abundant than measured secondary aerosol nitrate or estimated secondary organic aerosols. Comparisons of ammonia and nitric acid concentrations indicate that ammonium nitrate formation is limited by the availability of nitric acid rather than ammonia. Time-resolved aerosol nitrate data collected at the surface and on a 90-m tower suggest that both the daytime and nighttime nitric acid formation pathways are active, and entrainment of aerosol nitrate formed aloft at night may explain the spatial homogeneity of nitrate in the SJV. NOx and volatile organic compound (VOC) emissions plus background O3 levels are expected to determine NOx oxidation and nitric acid production rates, which currently control the ammonium nitrate levels in the SJV. Secondary organic aerosol formation is significant in winter, especially in the Fresno urban area. Formation of secondary organic aerosol is more likely limited by the rate of VOC oxidation than the availability of VOC precursors in winter.  相似文献   

6.
Atmospheric particles are a major problem that could lead to harmful effects on human health, especially in densely populated urban areas. Chiayi is a typical city with very high population and traffic density, as well as being located at the downwind side of several pollution sources. Multiple contributors for PM2.5 (particulate matter with an aerodynamic diameter ≥2.5 μm) and ultrafine particles cause complicated air quality problems. This study focused on the inhibition of local emission sources by restricting the idling vehicles around a school area and evaluating the changes in surrounding atmospheric PM conditions. Two stationary sites were monitored, including a background site on the upwind side of the school and a campus site inside the school, to monitor the exposure level, before and after the idling prohibition. In the base condition, the PM2.5 mass concentrations were found to increase 15% from the background, whereas the nitrate (NO3?) content had a significant increase at the campus site. The anthropogenic metal contents in PM2.5 were higher at the campus site than the background site. Mobile emissions were found to be the most likely contributor to the school hot spot area by chemical mass balance modeling (CMB8.2). On the other hand, the PM2.5 in the school campus fell to only 2% after idling vehicle control, when the mobile source contribution reduced from 42.8% to 36.7%. The mobile monitoring also showed significant reductions in atmospheric PM2.5, PM0.1, polycyclic aromatic hydrocarbons (PAHs), and black carbon (BC) levels by 16.5%, 33.3%, 48.0%, and 11.5%, respectively. Consequently, the restriction of local idling emission was proven to significantly reduce PM and harmful pollutants in the hot spots around the school environment.

Implications: The emission of idling vehicles strongly affects the levels of particles and relative pollutants in near-ground air around a school area. The PM2.5 mass concentration at a campus site increased from the background site by 15%, whereas NO3? and anthropogenic metals also significantly increased. Meanwhile, the PM2.5 contribution from mobile source in the campus increased 6.6% from the upwind site. An idling prohibition took place and showed impressive results. Reductions of PM2.5, ionic component, and non-natural metal contents were found after the idling prohibition. The mobile monitoring also pointed out a significant improvement with the spatial analysis of PM2.5, PM0.1, PAH, and black carbon concentrations. These findings are very useful to effectively improve the local air quality of a densely city during the rush hour.  相似文献   

7.
Abstract

Geographic and temporal variations in the concentration and composition of particulate matter (PM) provide important insights into particle sources, atmospheric processes that influence particle formation, and PM management strategies. In the nonurban areas of California, annual-average PM2.5 and PM10 concentrations range from 3 to 10 [H9262]g/m3 and from 5 to 18 µg/m3, respectively. In the urban areas of California, annual-averages for PM2.5 range from 7 to 30 [H9262]g/m3, with observed 24-hr peaks reaching levels as high as 160 [H9262]g/m3. Within each air basin, exceedances are a mixture of isolated events as well as periods of elevated PM2.5 concentrations that are more prolonged and regional in nature. PM2.5 concentrations are generally highest during the winter months. The exception is the South Coast Air Basin, where fairly high values occur throughout the year. Annual-average PM2.5 mass, as well as the concentrations of major components, declined from 1988 to 2000. The declines are especially pronounced for the sulfate (SO4 2?) and nitrate (NO3 ?) components of PM2.5 and PM10 and correlate with reductions in ambient levels of oxides of sulfur (SOx) and oxides of nitrogen (NOx). Annual averages for PM10–2.5 and PM10 exhibited similar downwind trends from 1994 to 1999, with a slightly less pronounced decrease in the coarse fraction.  相似文献   

8.
Abstract

Nylon filters are a popular medium to collect atmospheric fine particles in different aerosol monitoring networks, including those operated by the U.S. Environmental Protection Agency and the Interagency Monitoring of Protected Visual Environments (IMPROVE) program. Extraction of the filters by deionized water or by a basic aqueous solution (typically a mixture of sodium carbonate and sodium bicarbonate) is often performed to permit measurement of the inorganic ion content of the collected particles. Whereas previous studies have demonstrated the importance of using a basic solution to efficiently extract gaseous nitric acid collected using nylon filters, there has been a recent movement to the use of deionized water for extraction of particles collected on nylon filters to eliminate interference from sodium ion (Na+) during ion chromatographic analysis of inorganic aerosol cations. Results are reported here from a study designed to investigate the efficiency of deionized water extraction of aerosol nitrate (NO3 ?) and sulfate from nylon filters. Data were obtained through the conduct of five field experiments at selected IMPROVE sites. Results indicate that the nylon filters provide superior retention of collected fine particle NO3 ?, relative to Teflon filters, and that deionized water extraction (with ultrasonication) of collected NO3 ? and sulfate is as efficient, for the situations studied, as extraction using a basic solution of 1.7 mM sodium bicarbonate and 1.8 mM sodium carbonate.  相似文献   

9.
Abstract

To determine the sources of particulate matter less than 2.5?μm (PM2.5 in different ambient atmospheres (urban, roadside, industrial, and rural sites), the chemical components of PM2.5 such as ions (Cl-, NO3-, SO42-, NH4+, Na+, K+, Ca2+, and Mg2+), carbonaceous species, and elements (Al, As, Ba, Cd, Cu, Fe, Mn, Ni, Pb, Se, V, and Zn) were measured. The average mass concentrations of PM2.5 at the urban, roadside, industrial, and rural sites were 31.5?±?14.8, 31.6?±?22.3, 31.4?±?16.0, and 25.8?±?12.4?μg/m3, respectively. Except for secondary ammonium sulfate and ammonium nitrate, the model results showed that the traffic source (i.e., the sum of gasoline and diesel vehicle sources) was the most dominant source of PM2.5 (17.1%) followed by biomass burning (13.8%) at the urban site. The major primary sources of PM2.5 were consistent with the site characteristics (diesel vehicle source at the roadside site, coal-fired plants at the industrial site, and biomass burning at the rural site). Seasonal data from the urban site suggested that ammonium sulfate and ammonium nitrate were the most dominant sources of PM2.5 during all seasons. Further, the contribution of road dust source to PM2.5 increased during spring and fall seasons. We conclude that the determination of the major PM2.5 sources is useful for establishing efficient control strategies for PM2.5 in different regions and seasons.  相似文献   

10.
To identify the characteristics of air pollutants and factors attributing to the formation of haze in Wuhan, this study analyzed the hourly observations of air pollutants (PM2.5, PM10, NO2, SO2, O3, and CO) from March 1, 2013, to February 28, 2014, and used hybrid receptor models for a case study. The results showed that the annual average concentrations for PM2.5, PM10, NO2, SO2, O3, and CO during the whole period were 89.6 μg m?3, 134.9 μg m?3, 54.9 μg m?3, 32.4 μg m?3, 62.3 μg m?3, and 1.1 mg m?3, respectively. The monthly variations revealed that the peak values of PM2.5, PM10, NO2, SO2, and CO occurred in December because of increased local emissions and severe weather conditions, while the lowest values occurred in July mainly due to larger precipitation. The maximum O3 concentrations occurred in warm seasons from May to August, which may be partly due to the high temperature and solar radiation. Diurnal analysis showed that hourly PM2.5, PM10, NO2, and CO concentrations had two ascending stages accompanying by the two traffic peaks. However, the O3 concentration variations were different with the highest concentration in the afternoon. A case study utilizing hybrid receptor models showed the significant impact of regional transport on the haze formation in Wuhan and revealed that the mainly potential polluted sources were located in the north and south of Wuhan, such as Baoding and Handan in Hebei province, and Changsha in Hunan province. Implications: Wuhan city requires a 5% reduction of the annual mean of PM2.5 concentration by the end of 2017. In order to accomplish this goal, Wuhan has adopted some measures to improve its air quality. This work has determined the main pollution sources that affect the formation of haze in Wuhan by transport. We showed that apart from the local emissions, north and south of Wuhan were the potential sources contributing to the high PM2.5 concentrations in Wuhan, such as Baoding and Handan in Hebei province, Zhumadian and Jiaozuo in Henan province, and Changsha and Zhuzhou in Hunan province.  相似文献   

11.
Air quality impacts of volatile organic compound (VOC) and nitrogen oxide (NOx) emissions from major sources over the northwestern United States are simulated. The comprehensive nested modeling system comprises three models: Community Multiscale Air Quality (CMAQ), Weather Research and Forecasting (WRF), and Sparse Matrix Operator Kernel Emissions (SMOKE). In addition, the decoupled direct method in three dimensions (DDM-3D) is used to determine the sensitivities of pollutant concentrations to changes in precursor emissions during a severe smog episode in July of 2006. The average simulated 8-hr daily maximum O3 concentration is 48.9 ppb, with 1-hr O3 maxima up to 106 ppb (40 km southeast of Seattle). The average simulated PM2.5 (particulate matter with an aerodynamic diameter <2.5 μm) concentration at the measurement sites is 9.06 μg m?3, which is in good agreement with the observed concentration (8.06 μg m?3). In urban areas (i.e., Seattle, Vancouver, etc.), the model predicts that, on average, a reduction of NOx emissions is simulated to lead to an increase in average 8-hr daily maximum O3 concentrations, and will be most prominent in Seattle (where the greatest sensitivity is??0.2 ppb per % change of mobile sources). On the other hand, decreasing NOx emissions is simulated to decrease the 8-hr maximum O3 concentrations in remote and forested areas. Decreased NOx emissions are simulated to slightly increase PM2.5 in major urban areas. In urban areas, a decrease in VOC emissions will result in a decrease of 8-hr maximum O3 concentrations. The impact of decreased VOC emissions from biogenic, mobile, nonroad, and area sources on average 8-hr daily maximum O3 concentrations is up to 0.05 ppb decrease per % of emission change, each. Decreased emissions of VOCs decrease average PM2.5 concentrations in the entire modeling domain. In major cities, PM2.5 concentrations are more sensitive to emissions of VOCs from biogenic sources than other sources of VOCs. These results can be used to interpret the effectiveness of VOC or NOx controls over pollutant concentrations, especially for localities that may exceed National Ambient Air Quality Standards (NAAQS).

Implications: The effect of NOx and VOC controls on ozone and PM2.5 concentrations in the northwestern United States is examined using the decoupled direct method in three dimensions (DDM-3D) in a state-of-the-art three-dimensional chemical transport model (CMAQ). NOx controls are predicted to increase PM2.5 and ozone in major urban areas and decrease ozone in more remote and forested areas. VOC reductions are helpful in reducing ozone and PM2.5 concentrations in urban areas. Biogenic VOC sources have the largest impact on O3 and PM2.5 concentrations.  相似文献   

12.
Abstract

This paper presents measurements of daily sampling of fine particulate matter (PM2.5) and its major chemical components at three urban and one rural locations in North Carolina during 2002. At both urban and rural sites, the major insoluble component of PM2.5 is organic matter, and the major soluble components are sulfate (SO4 2?), ammonium (NH4 +), and nitrate (NO3 ?). NH4 + is neutralized mainly by SO4 2? rather than by NO3 ?, except in winter when SO4 2? concentration is relatively low, whereas NO3 ? concentration is high. The equivalent ratio of NH4 + to the sum of SO4 2? and NO3 ? is <1, suggesting that SO4 2?and NO3 ?are not completely neutralized by NH4 +. At both rural and urban sites, SO4 2?concentration displays a maximum in summer and a minimum in winter, whereas NO3 ?displays an opposite seasonal trend. Mass ratio of NO3 ? to SO4 2?is consistently <1 at all sites, suggesting that stationary source emissions may play an important role in PM2.5 formation in those areas. Organic carbon and elemental carbon are well correlated at three urban sites although they are poorly correlated at the agriculture site. Other than the daily samples, hourly samples were measured at one urban site. PM2.5 mass concen trations display a peak in early morning, and a second peak in late afternoon. Back trajectory analysis shows that air masses with lower PM2.5 mass content mainly originate from the marine environment or from a continental environment but with a strong subsidence from the upper troposphere. Air masses with high PM2.5 mass concentrations are largely from continental sources. Our study of fine particulate matter and its chemical composition in North Carolina provides crucial information that may be used to determine the efficacy of the new National Ambient Air Quality Standard (NAAQS) for PM fine. Moreover, the gas-to-particle conversion processes provide improved prediction of long-range transport of pollutants and air quality.  相似文献   

13.
Abstract

The U.S. Environmental Protection Agency (EPA) Quality Assurance (QA) Guidance Document 2.12: Monitoring PM2.5 in Ambient Air Using Designated Reference or Class I Equivalent Methods1 (Document 2.12) requires conditioning of PM2.5 filters at 20-23 °C and 30-40% relative humidity (RH) for 24 hr prior to gravimetric analysis. Variability of temperature and humidity may not exceed ±2 °C and ±5% RH during the conditioning period. The quality assurance team at EPA Region 2’s regional laboratory designed a PM2.5 weighing facility that operates well within these strict performance requirements.

The traditional approach to meeting the performance requirements of Document 2.12 for PM2.5 filter analysis is to build a walk-in room, with costs typically exceeding $100,000. The initial one-time capital cost for the laboratory at EPA’s Edison, NJ, facility was approximately $24,000. Annual costs [e.g., National Institute of Standards and Technology (NIST) recertifications and nitrogen replacement cylinders used for humidity control] are approximately $500. The average 24-hr variabilities in temperature and RH in the Region 2 weighing chamber are small, ±0.2 °C and ±0.8% RH, respectively. The mass detection limit for the PM2.5 weighing system of 47-mm stretched Teflon (lab blank) filters is 6.3 μg. This facility demonstrates an effective and economical example for states and other organizations planning PM2.5 weighing facilities.  相似文献   

14.
The Monterrey Metropolitan Area (MMA) has shown a high concentration of PM2.5 in its atmosphere since 2003. The contribution of possible sources of primary PM2.5 and its precursors is not known. In this paper we present the results of analyzing the chemical composition of sixty 24-hr samples of PM2.5 to determine possible sources of PM2.5 in the MMA. The samples were collected at the northeast and southeast of the MMA between November 22 and December 12, 2007, using low-volume devices. Teflon and quartz filters were used to collect the samples. The concentrations of 16 airborne trace elements were determined using x-ray fluorescence (XRF). Anions and cations were determined using ion chromatography. Organic carbon (OC) and elemental carbon (EC) were determined by thermal optical analysis. The results show that Ca had the maximum mean concentration of all elements studied, followed by S. Enrichment factors above 50 were calculated for S, Cl, Cu, Zn, Br, and Pb. This indicates that these elements may come from anthropogenic sources. Overall, the major average components of PM2.5 were OC (41.7%), SO4 2? (22.9%), EC (7.4%), crustal material (11.4%), and NO3 ? (12.6%), which altogether accounted for 96% of the mass. Statistically, we did not find any difference in SO4 2? concentrations between the two sites. The fraction of secondary organic carbon was between 24% and 34%. The results of the factor analysis performed over 10 metals and OC and EC show that there are three main sources of PM2.5: crustal material and vehicle exhaust; industrial activity; and fuel oil burning. The results show that SO4 2?, OC, and crustal material are important components of PM2.5 in MMA. Further work is necessary to evaluate the proportion of secondary inorganic and organic aerosol in order to have a better understanding of the sources and precursors of aerosols in the MMA.

Implications: The MMA has become one of the most air polluted areas in Mexico. High levels of PM2.5 have been measured and effective actions need to be taken to reduce air pollution and the associated health risks. Several sources of primary PM2.5 and precursors of secondary particles exist in the MMA. This study provides valuable information for the local environmental authorities to identify possible sources of primary PM2.5 and its precursors. The effectiveness of the actions taken to improve air quality will lead to health benefits for the population, reducing their associated costs.  相似文献   

15.
The concentrations and characteristics of the major components in ambient fine particles in the urban city of Kaohsiung, Taiwan were measured and evaluated. PM2.5 samples were collected using a dichotomous sampler from November 1998 to April 1999 and analyzed for water-soluble ion species using ion chromatography and for carbonaceous species using an elemental analyzer. It was found that SO42−, NO3, and NH4+ dominated the identifiable components, and occupied 42.2% and 90.0% of PM2.5 mass and total dissolved ionic concentrations. Carbonaceous species (organic and elemental carbon) accounted for 20.8% of PM2.5. The secondary aerosol formed through the NO2/SO2 gas-to-particle conversion was estimated based on the sulfur/nitrogen oxidation ratio (SOR/NOR), i.e., sulfate sulfur/nitrate nitrogen to total sulfur/total nitrogen. The average SOR and NOR values were 0.25 and 0.07 for PM2.5. The high SOR and NOR values obtained in this study suggested that there existed a secondary formation of SO42− from SO2 along with NO3 from NO2 in the atmosphere. The secondary organic carbon formed through the volatile organic compound gas-to-particle conversion was estimated from the minimum ratio between organic and elemental carbon obtained in this study, and was found to constitute 40.0% of the total organic carbon for PM2.5 (6.6% of the particle mass). The results obtained in this study suggest that the formation of secondary aerosols due to conversion from gaseous precursors is significant and important in urban locations.  相似文献   

16.
Abstract

The impact of various atmospheric transport directions on ambient fine particle (PM2.5) concentrations at several sites in southeastern Canada was estimated (for May-September) using back-trajectory analysis. Three-day back trajectories (four per day) were paired with 6-hr average PM2.5 mass concentrations measured using tapered element oscillating microbalances (TEOM). PM2.5 concentrations at rural locations in the region were affected by nonlocal sources originating in both Canada and the United States. Comparison of sites revealed that, on average, the local contribution to total PM2.5 in the greater Toronto area (GTA) is approximately 30–35%. At each location, average PM2.5 concentrations under south/southwesterly flow conditions were 2–4 times higher than under the corresponding northerly flow conditions. The chemical composition of both urban and rural PM2.5 was determined during two separate 2-week spring/summer measurement campaigns. Components identified included SO4 2?, NO3 ?, NH4+, black carbon and organic carbon (OC), and trace elements. Higher particle mass at the urban Toronto site was composed of a higher proportion of all components. However, black carbon, NO3 ?, NaCl, and trace elements were found to be the most enriched over the rural/regional background levels.  相似文献   

17.
Under the National Ambient Air Quality Standards (NAAQS), put in place as a result of the Clean Air Amendments of 1990, three regions in the state of Utah are in violation of the NAAQS for PM10 and PM2.5 (Salt Lake County, Ogden City, and Utah County). These regions are susceptible to strong inversions that can persist for days to weeks. This meteorology, coupled with the metropolitan nature of these regions, contributes to its violation of the NAAQS for PM during the winter. During January–February 2009, 1-hr averaged concentrations of PM10-2.5, PM2.5, NOx, NO2, NO, O3, CO, and NH3 were measured. Particulate-phase nitrate, nitrite, and sulfate and gas-phase HONO, HNO3, and SO2 were also measured on a 1-hr average basis. The results indicate that ammonium nitrate averages 40% of the total PM2.5 mass in the absence of inversions and up to 69% during strong inversions. Also, the formation of ammonium nitrate is nitric acid limited. Overall, the lower boundary layer in the Salt Lake Valley appears to be oxidant and volatile organic carbon (VOC) limited with respect to ozone formation. The most effective way to reduce ammonium nitrate secondary particle formation during the inversions period is to reduce NOx emissions. However, a decrease in NOx will increase ozone concentrations. A better definition of the complete ozone isopleths would better inform this decision.

Implications: Monitoring of air pollution constituents in Salt Lake City, UT, during periods in which PM2.5 concentrations exceeded the NAAQS, reveals that secondary aerosol formation for this region is NOx limited. Therefore, NOx emissions should be targeted in order to reduce secondary particle formation and PM2.5. Data also indicate that the highest concentrations of sulfur dioxide are associated with winds from the north-northwest, the location of several small refineries.  相似文献   


18.
PM2.5 sampling was conducted at a curbside location in Delhi city for summer and winter seasons, to evaluate the effect of PM2.5 and its chemical components on the visibility impairment. The PM2.5 concentrations were observed to be higher than the National Ambient Air Quality Standards (NAAQS), indicating poor air quality. The chemical constituents of PM2.5 (the water-soluble ionic species SO42-, NO3?, Cl?, and NH4+, and carbonaceous species: organic carbon, elemental carbon) were analyzed to study their impact on visibility impairment by reconstructing the light extinction coefficient, bext. The visibility was found to be negatively correlated with PM2.5 and its components. The reconstructed bext showed that organic matter was the largest contributor to bext in both the seasons which may be attributed to combustion sources. In summer season, it was followed by elemental carbon and ammonium sulfate; however, in winter, major contributions were from ammonium nitrate and elemental carbon. Higher elemental carbon in both seasons may be attributed to traffic sources, while lower concentrations of nitrate during summer, may be attributed to volatility because of higher atmospheric temperatures.

Implications: The chemical constituents of PM2.5 that majorly effect the visibility impairment are organic matter and elemental carbon, both of which are products of combustion processes. Secondary formations that lead to ammonium sulfate and ammonium nitrate production also impair the visibility.  相似文献   

19.
Abstract

Observations of the mass and chemical composition of particles less than 2.5 μm in aerodynamic diameter (PM2.5), light extinction, and meteorology in the urban Baltimore-Washington corridor during July 1999 and July 2000 are presented and analyzed to study summertime haze formation in the mid-Atlantic region. The mass fraction of ammoniated sulfate (SO4 2-) and carbonaceous material in PM2.5 were each ~50% for cleaner air (PM2.5 < 10 μg/m3) but changed to ~60% and ~20%, respectively, for more polluted air (PM2.5 > 30 μg/m3). This signifies the role of SO4 2- in haze formation. Comparisons of data from this study with the Interagency Monitoring of Protected Visual Environments network suggest that SO4 2? is more regional than carbonaceous material and originates in part from upwind source regions. The light extinction coefficient is well correlated to PM2.5 mass plus water associated with inorganic salt, leading to a mass extinction efficiency of 7.6 ± 1.7 m2/g for hydrated aerosol. The most serious haze episode occurring between July 15 and 19, 1999, was characterized by westerly transport and recirculation slowing removal of pollutants. At the peak of this episode, 1-hr PM2.5 concentration reached ~45 μg/m3, visual range dropped to ~5 km, and aerosol water likely contributed to ~40% of the light extinction coefficient.  相似文献   

20.
Totally nine measurement campaigns for ambient particles and SO2 have been conducted during the period of 1997–2000 in Qingdao in order to understand the characteristics of the particulate matter in coastal areas of China. The mass fractions of PM2.5, PM2.5−10 and PM>10 in TSP are 49%, 25% and 26%, respectively. The size distribution of particles mass concentrations in Qingdao shows bi-modal distribution. Mass fraction percentages of water-soluble ions in PM2.5, PM2.5−10 and PM>10 decreased from 62% to 35% and 21%. In fine particles, sulfate, nitrate and ammonium, secondary formed compounds, are major components, totally accounting for 50% of PM2.5 mass concentration.The ratios of sulfate, chloride, ammonium and potassium in PM2.5 for heating versus non-heating periods are 1.34, 1.80, 1.56 and 1.44, respectively. The ratio of nitrate is 3.02 and this high ratio could be caused by reduced volatilization at lower temperature. Sulfate concentrations are higher than nitrate in PM2.5. The chemical forms of sulfate and nitrate are probably (NH4)2SO4 and NH4NO3 and chloride depletion was observed.Backward trajectory analysis reflected possible influence of air pollutant transport to Qingdao local aerosol pollution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号