首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT

Under the Clean Air Act Amendments of 1990, the U.S. Environmental Protection Agency (EPA) determined that regulation of mercury emissions from coal-fired power plants is appropriate and necessary. To aid in this determination, preliminary estimates of the performance and cost of powdered activated carbon (PAC) injection-based mercury control technologies were developed. This paper presents these estimates and develops projections of costs for future applications.

Cost estimates were developed using PAC to achieve a minimum of 80% mercury removal at plants using electrostatic precipitators and a minimum of 90% removal at plants using fabric filters. These estimates ranged from 0.305 to 3.783 mills/kWh. However, the higher costs were associated with a minority of plants using hot-side electrostatic precipitators (HESPs). If these costs are excluded, the estimates range from 0.305 to 1.915 mills/kWh. Cost projections developed using a composite lime-PAC sorbent for mercury removal ranged from 0.183 to 2.270 mills/kWh, with the higher costs being associated with a minority of plants that used HESPs.  相似文献   

2.
Under the Clean Air Act Amendments of 1990, the U.S. Environmental Protection Agency (EPA) determined that regulation of mercury emissions from coal-fired power plants is appropriate and necessary. To aid in this determination, preliminary estimates of the performance and cost of powdered activated carbon (PAC) injection-based mercury control technologies were developed. This paper presents these estimates and develops projections of costs for future applications. Cost estimates were developed using PAC to achieve a minimum of 80% mercury removal at plants using electrostatic precipitators and a minimum of 90% removal at plants using fabric filters. These estimates ranged from 0.305 to 3.783 mills/kWh. However, the higher costs were associated with a minority of plants using hot-side electrostatic precipitators (HESPs). If these costs are excluded, the estimates range from 0.305 to 1.915 mills/kWh. Cost projections developed using a composite lime-PAC sorbent for mercury removal ranged from 0.183 to 2.270 mills/kWh, with the higher costs being associated with a minority of plants that used HESPs.  相似文献   

3.
In the hazardous waste community, the term “thermal destruction” is a catchallphrase that broadly refers to high temperature destruction of hazardous contaminants. Included in the thermal destruction category are treatment technologies such as rotary kiln incineration, fiuidized bed incineration, infrared thermal treatment, wet air oxidation, pyrolytic incineration, and vitrification. Among them, conventional rotary kiln incineration, a disposal method for many years, is the most well established, and often serves as a barometer to gauge the relative success of similar technologies. Public sentiment on environmental issues and increasingly stringent environmental regulations has, over time, spurred design and development of innovative thermal treatment processes directed toward reducing harmful emissions and residuals that may require further treatment or disposal. In situ vitrification (ISV), a technology that combines heat and immobiliztion, is one such innovative and relatively new technology.

This paper presents a comparison of ISV and rotary kiln incineration for soils treatment in the areas of process performance, process residuals, process limitations, applicable or relevant and appropriate (ARAJRs) regulations, criteria and limitations, and costs.  相似文献   

4.
Biofilter technology has been applied recently to treating rendering odors. Soil beds are one class of biofilter but as yet have not been used for this application. Although wet scrubbers have been a traditional method of odor control, their capital and operating costs are impacting more severely. Soil bed systems are less expensive to install and operate.

A soil bed system was installed at a rendering plant in Arizona and has been in operation since September 1983. The soil bed treats 1100 m3/h (650 cfm) of cooker noncondensables with a surface area of 420 m2(4500 ft2). The pressure drop across the soil bed is 5 cm (2 in.) of water. Odor sensory testing with the MTRI forced-choice triangle dynamic olfactometer indicates an odor removal efficiency of 99.9 percent is obtained with the soil bed. Soil bed odor removal efficiency is equivalent to or superior than that for incineration or scrubbing of high intensity odors from the rendering process. Recent experience during this past winter indicates a soil bed is a viable method for operation in a northern climate with severe winter weather conditions. Also, monitoring of the leachate from a soil bed indicated no contamination.  相似文献   

5.
This paper describes, compares and evaluates selected Oxidant Prediction Relationships {OPRs) in terms of projections of hydrocarbon emission reductions required for attainment of the former 0.08 ppm standard and the new 0.12 ppm standard in the San Francisco Bay Area in 1985. The OPRs analyzed are the LIRAQ physicochemical model, EPA’s Empirical Kinetic Modeling Approach (EKMA), linear and Appendix J rollback, and an empirical OPR based on local observations.

LIRAQ simulations indicated that to achieve the 0.12 ppm ozone standard, 1985 hydrocarbon emissions must be reduced by 27% from projected levels. The equivalent reductions derived from simple linear rollback, linear rollback with 0.04 ppm background, and the local empirical OPR were 32%, 45% and 37%, respectively. The LIRAQ simulations also showed that reduction of both hydrocarbon and NOx emissions is less effective than reduction of hydrocarbons only. The attempt to apply EKMA failed because the Bay Area’s low hydrocarbon/NOx ratios and observed ozone levels are not consistent with the standard EKMA isopleth curves.

For planning, proper OPR selection is important because the wide range in the projections of various OPRs translates into a correspondingly wide range in control costs. Physicochemical OPRs are preferred because they are verifiable; they account for complex topography, meteorology, and source distributions; and because they can treat a variety of control strategies. In the future, the uncertainties associated with the projections can be resolved by assessing trends in air quality on a regular basis and by upgrading and reapplying the prediction methodologies as new information becomes available.  相似文献   

6.
In the hazardous waste community, the term "thermal destruction" is a catchall phrase that broadly refers to high temperature destruction of hazardous contaminants. Included in the thermal destruction category are treatment technologies such as rotary kiln incineration, fluidized bed incineration, infrared thermal treatment, wet air oxidation, pyrolytic incineration, and vitrification. Among them, conventional rotary kiln incineration, a disposal method for many years, is the most well established, and often serves as a barometer to gauge the relative success of similar technologies. Public sentiment on environmental issues and increasingly stringent environmental regulations has, over time, spurred design and development of innovative thermal treatment processes directed toward reducing harmful emissions and residuals that may require further treatment or disposal. In situ vitrification (ISV), a technology that combines heat and immobilization, is one such innovative and relatively new technology. This paper presents a comparison of ISV and rotary kiln incineration for soils treatment in the areas of process performance, process residuals, process limitations, applicable or relevant and appropriate (ARARs) regulations, criteria and limitations, and costs.  相似文献   

7.
The emissions from burning the residue following grass-seed harvest were determined by means of a combined laboratory-field study. Samples of the straw and stubble residue were burned in the laboratory burning tower at the University of California at Riverside. Complete analyses were determined for gaseous and particulate emissions for the important grass species from the Willamette Valley of Oregon. Particulate emissions averaged 15.6 lb/ton of fuel burned. Carbon monoxide averaged 101 lb/ton of fuel burned. Hydrocarbon emission averages, in pounds per ton of fuel burned, were 1.74 for saturates plus acetylene, 2.80 for defines, and 1.68 for ethylene. The NOx emission, at the temperature peak during the burn, averaged 29.3 ppm. Field studies, conducted by personnel from Oregon State University, measured only particulate emissions, carbon dioxide, and temperature over the burn. The carbon dioxide values were found to be similar to those obtained on the burning table at UCR and it was therefore concluded that the other gaseous emissions were similar and could be used as reasonably accurate for emission inventories. The temperature values obtained in the laboratory and field were also similar and further justifies extrapolating the burning table data to field situations. The particulate matter collected in the field studies averaged 15.55 lb of particulate per ton of fuel burned. This is the same average obtained for the burning table data which again serves to validate the emissions reported from Riverside. Much more variability was found in the particulate emissions obtained in the field which reflects the wider range of environmental conditions encountered in the field.  相似文献   

8.
研究了城市生活垃圾焚烧厂渗沥液中Ca2+对厌氧颗粒污泥膨胀床反应器(EGSB)处理效果的影响,并采用静态实验方法考察了Ca2+对厌氧颗粒污泥产甲烷活性的影响。实验结果表明,进水COD为17 000 mg/L的条件下,当Ca2+浓度低于6 000 mg/L时,EGSB对COD去除率达93%以上;当Ca2+浓度高于6 000 mg/L时,COD去除率随运行时间明显下降,并在污泥中形成大量沉淀。静态实验结果表明,废水中低浓度Ca2+促进了厌氧颗粒污泥的产甲烷活性,但高浓度Ca2+明显抑制了其产甲烷活性,这是导致高Ca2+浓度条件下EGSB对COD去除率降低的主要原因。研究表明,颗粒污泥产甲烷活性恢复程度随Ca2+浓度增加而减弱。  相似文献   

9.
ABSTRACT

In this study, granular activated carbon (GAC) was used as an adsorbent for biogas desulfurization. Biogas containing 932–2,350 ppm of H2S was collected from an anaerobic digester to treat the wastewater from a dairy farm with about 200 cows. An adsorption test was performed by introducing the biogas to a column that was packed with approximately 50 L of commercial GAC. The operation ceased if the effluent gas had an H2S concentration of over 100 ppm. The GAC was replaced by a given weight of new GAC in a subsequent test. According to the results, for H2S concentrations in the range of 932–1,560 ppm (average±SD = 1,260 ± 256 ppm), 1 kg of the GAC yielded biogas treatment capacities of 568 ± 112 m3 and H2S adsorption capacities of 979 ± 235 g. For the higher influent H2S concentrations of 2,110 ± 219 ppm, the biogas treatment and H2S-adsorption capacities decreased to 229 ± 18 m3 and 668 ± 47 g, respectively. An estimation indicated a requisite cost of US$16.5 for the purification of 1,000 m3 of biogas containing 2,110 ppm of H2S. This cost is approximately 5% of US$330, the value of 1,000 m3 of biogas.  相似文献   

10.
本文对我国垃圾焚烧处理的现状和发展趋势进行了综述。垃圾焚烧处理符合资源化、减量化和无害化的原则,由于经济技术水平的限制,我国城市垃圾的处理主要是以填埋和堆肥为主,焚烧法处理占的比例较少,随着经济技术水平的提高,焚烧处理垃圾将得到迅速的发展。我国垃圾焚烧处理的发展应积极的引进、吸收、消化国外的先进技术,开发生产适合我国国情的垃圾焚烧设备;加强法规建设,实现垃圾焚烧处理的规范化管理;开发废气净化设备及其二次污染控制设备;确保焚烧废气达标排放;有效的对垃圾焚烧排放污染物的监控,保证垃圾焚烧处理设施安全、高效的运行。  相似文献   

11.
Several methods are available for estimating the capital costs of systems and each has its own degree of accuracy. These methods range from presenting overall installed costs on a per unit basis, to detailed cost estimates based on preliminary designs, schematics, and contractor quotes. The least accurate method is the equating of overall capital costs to a basic operating parameter such as tons per hour or cfm since this method only produces accuracies in the "order of magnitude" category, at best. The detailed cost estimate, in turn, can produce accuracies of ±5 % depending on the amount of preliminary engineering involved. These estimates, however, take many months of engineering effort and require process and engineering flow sheets, material and energy balances, plot plans, and equipment arrangement drawings before a cost estimate can be developed. For first-cut estimating purposes, the technique described in this article for developing capital costs for a specific pollution control system is based on the factored method of establishing direct and indirect installations costs as a function of known equipment costs. The cost factors developed are based on both quoted and estimated installation costs of pollution control systems. The annual operating costs for these systems are based on unit costs for utilities and operating and maintenance labor together with fixed percentages of capital costs for the indirect costs.  相似文献   

12.
Abstract

A bacteria additives treatment experiment in assessing the changes in gaseous mass transfer from stored swine manure is presented. The experiment is tested for ammonia, methane, hydrogen sulfide, and carbon dioxide emission data sampled from pilot swine manure columns and analyzed by GC/MS. The result shows that bacteria additives slightly reduce the methane and carbon dioxide releases, while the same additives do not show any effect on the reduction of ammonia. The hydrogen sulfide contents of stored swine manure continued to be low. Gas concentrations emitted from treated and untreated stored swine manure were: 3.76 and 2.2 ppm for methane, 0.35 and 0.11 ppm for ammonia, and 1000 and 470 ppm for carbon dioxide, respectively. A simple model to estimate gas emission rates is also developed from the viewpoint of two‐film resistance theory. The average emission rates calculated from the model for methane, ammonia, and carbon dioxide are respectively: 0.01, 0.0005, and 13.98 g/min from untreated stored manure; while 0.07, 0.096, and 0.55 g/min from treated manure. The emission model also indicates that for most gaseous pollutants of environmental concern, liquid phase transfer coefficient controls the rate of volatile compounds emitted from stored swine manure and gas phase transfer coefficient has insignificant effect in the calculation of overall mass transfer coefficient.  相似文献   

13.
The body of information of this paper is directed to those individuals charged with selecting a process to control atmospheric sulfur emissions from Claus plants serving refineries, gas processing installations, and chemical plants. The TGT process developed by the French Petroleum Institute (IFP) is an extension of the Claus reaction itself in the liquid phase. Mixed H2S and SO2 in tail gas from Claus units is fed to a packed tower in which a solution of proprietary catalyst in a high BP polyglycol circulates countercurrent to the gas flow. The mixed gases react with the catalyst to form a complex, which in turn reacts with more gases to produce elemental sulfur. Reaction temperature keeps the sulfur above its melting point. Product accumulates in the boot of the tower and is drawn off continuously through a seal leg.

The IFP TGT process is simple in design and units have simple construction, characterized by use of low carbon steel and the use of very few pieces of equipment. Of all processes used today to take effluent sulfur values down to 1000 ppm SO2 after incineration, the IFP TGT process requires the least capital investment and the lowest operating costs. Twenty-six full scale plants are operating or under design or construction: nine each in the U.S. and Japan, five in the U.S.S.R. and Poland, two in western Europe and one in Canada. Capacities of the Claus plants served range from 45 to 800 Lt/d sulfur.  相似文献   

14.
The transformability of trihalomethanes, carbon tetrachloride, 1,1,1-trichloroethane, 1,2-dibromoethane, tetrachloroethylene, hexachloroethane, and dibromochloropropane was studied under conditions of denitrification, sulfate respiration, and methanogenesis. These compounds at concentrations commonly found in groundwater were continuously administered to anoxic biofilm columns that resembled groundwater environments. Acetate was the primary substrate to support microbial growth. All of the compounds studied were transformed under methanogenesis. Bromoform, bromodichloromethane, carbon tetrachloride, and hexachloroethane were transformed even under the less reducing conditions of denitrification. Some of the compounds were partially mineralized to CO2. However, reductive dehalogenation appeared to be the predominant mechanism for removal. Characterization of the available electron acceptors in the subsurface is important for assessing organic micropollutant biotransformation. Reaction rates observed in the laboratory biofilms indicate that biotransformation could be responsible for significant removals of these halogenated compounds in the subsurface.  相似文献   

15.
The removal characteristics of trace compounds and moisture in raw landfill gas (LFG) were studied. The LFG from the extraction well was saturated with water and moisture was eliminated by physical methods including cyclone-type dehydrator and compressor. The moisture removal efficiency of dehydrator and compressor was above 80%. As the moisture contents of LFG decreased, the toxic compounds like aromatics and chlorinated compounds were effectively removed by using the granular activated carbon. The breakthrough time and adsorption capacity of benzene, toluene, and ethyl benzene decreased rapidly when the relative humidity is over 60%. The effect of moisture was more pronounced at lower adsorbate concentrations tested than at higher concentrations. The breakthrough curves for multi-component mixtures show displacement effects. In the course of competing adsorption, adsorbates with strong interaction force to displace weakly bounded substances. Adsorption by activated carbon is in descending order of xylene, ethylbenzene, toluene, tri or tetrachloroethylene, benzene, carbon tetrachloride and chloroform in LFG, respectively.  相似文献   

16.
Abstract

Male rats, 60 days old, were treated with chlordane during or after induction of liver cirrhosis with carbon tetrachloride to determine the effect of treatment with chlordane on the response of the rats to the disease. When liver cirrhosis was induced simultaneously with chlordane treatment the disease symptoms were aggravated; the lipid content of the tissue was lowered significantly, growth rate was significantly lower than controls and there was no apparent replacement of damaged liver tissue by liver growth. The cytochrome P450 content of the liver was similar after both treatments. Continuation of the chlordane treatment after termination of the carbon tetrachloride treatment brought about a more rapid recovery from the induced cirrhotic condition. All these responses were to a dose range one tenth the recommended “no effect”; level for healthy animals.  相似文献   

17.
Consumer products can emit chlorinated volatile organic compounds (CVOCs) that complicate vapor intrusion (VI) assessments. Assessment protocols acknowledge the need to remove these products during VI investigations, but they can be problematic to identify and locate. Predicting if the products cause detectable air concentrations is also difficult since emission rate information is limited and can vary with product use and age. In this study, the emission rates of 1,2-dichloroethane, trichloroethene, tetrachloroethene, and carbon tetrachloride from four consumer products identified as indoor sources during VI field investigations were measured under laboratory conditions using a flow through system. Emissions of PCE from an adhesive container tube ranged from 1.33 ± 1.13 μg/min (unopened) to 23.9 ± 2.93 μg/min (previously opened). The laboratory-measured emission rates were used to estimate indoor air concentrations, which were then compared to concentrations measured after the products placed were into an actual residence. The estimated and measured indoor air concentrations were generally comparable, showing that emission rate information can be used to determine the relative impact of internal CVOC sources.  相似文献   

18.
This paper is concerned with uncertainties involved in projecting ambient air quality. Ambient air quality was projected by assuming a linear dependence on estimated future emissions. Future automotive emissions were estimated by a method recommended by EPA. Projections were made for the locations reported to have the highest ambient air concentrations of each pollutant; Chicago for carbon monoxide and the California South Coast Air Basin for hydrocarbon and oxidant. The sensitivity of the projections to several input parameters was determined.

The uncertainty in projection of air quality due to the use of a maximum, once-per-year concentration is large. For example, the reduction in total CO emissions in Chicago in 1975, necessary to meet the air quality standard, was as high as 68% or as low as 26%, depending on whether the historic high, 8 hr average concentration of 44 ppm or the 1970 maximum of 21 ppm was used. The effects of uncertainties in growth rates and fraction of emissions attributed to the automobile were also sizeable. Differences in automotive growth rate had a large near-term effect on projected concentrations, while differences in nonautomotive growth rate or fraction of emissions attributed to the automobile had a large long-term effect. The effect of 1975 interim automotive emission standards on projected air quality was negligible when compared with projected air quality based on the previous Federal automotive emission standards for 1975.  相似文献   

19.
Skeer J 《Ambio》2002,31(1):28-29
Over the past three decades, with a combination of new technology, rising female literacy rates, and strengthened family planning programs, the world has seen dramatic increases in the use of contraception, with corresponding declines in fertility and population growth rates. At the International Conference on Population and Development, Cairo in 1994, parties pledged a tripling of funding for reproductive health programs in developing countries. Many demographers believe that making such programs more widely available to women would extend the decline in birth rates and shift the world towards the low scenario of United Nations population projections over the next century and a half. By examining the costs and impacts of such programs, in view of the links between population and carbon emissions, this paper shows that extension of voluntary family planning could make a large and cost-effective contribution to the greenhouse gas limitation goals of the Kyoto Protocol that was negotiated in 1997.  相似文献   

20.
Incineration flue gas contains polycyclic aromatic hydrocarbons (PAHs) and sulfur dioxide (SO2). The effects of SO2 concentration (0, 350, 750, and 1000 ppm), reaction temperature (160, 200, and 280 °C), and the type of activated carbon fibers (ACFs) on the removal of SO2 and PAHs by ACFs were examined in this study. A fluidized bed incinerator was used to simulate practical incineration flue gas. It was found that the presence of SO2 in the incineration flue gas could drastically decrease removal of PAHs because of competitive adsorption. The effect of rise in the reaction temperature from 160 to 280 °C on removal of PAHs was greater than that on SO2 removal at an SO2 concentration of 750 ppm. Among the three ACFs studied, ACF-B, with the highest microporous volume, highest O content, and the tightest structure, was the best adsorbent for removing SO2 and PAHs when these gases coexisted in the incineration flue gas.
ImplicationsSimultaneous adsorption of sulfur dioxide (SO2) and polycyclic aromatic hydrocarbons (PAHs) emitted from incineration flue gas onto activated carbon fibers (ACFs) meant to devise a new technique showed that the presence of SO2 in the incineration flue gas leads to a drastic decrease in removal of PAHs because of competitive adsorption. Reaction temperature had a greater influence on PAHs removal than on SO2 removal. ACF-B, with the highest microporous volume, highest O content, and tightest structure among the three studied ACFs, was found to be the best adsorbent for removing SO2 and PAHs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号