首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
根据滑动弧放电等离子体适于降解高浓度有机物废气的特性,结合活性炭吸附法,提出了吸附器的吸附浓缩和热脱附-等离子体氧化净化有机废气的方法。在活性炭吸附过程中,最初2 h内甲苯净化率达到100%,随着时间的增加净化率下降;在热脱附滑动弧放电等离子体净化过程中,甲苯降解效率最高为97.3%。将滑动弧放电等离子体反应器出口气相产物收集进行FT-IR检测,发现放电后有CO2、CO、H2O和NO2产生,并分析了甲苯的降解机理。  相似文献   

2.
设计了正交实验对5种材料吸附模拟废水中苯系混合物(苯、甲苯、二甲苯)的条件进行优化,CD02硅藻土与X型纳米分子筛以2∶1(质量比)进行复合后,对苯系混合物去除效果最好.采用顶空气相色谱法测定8种不同材料对水中苯系混合物的去除情况,结果表明复合材料对苯系混合物具有良好的去除效果,仅次于活性炭.复合材料在pH为7、搅拌时间为25 min、用量为1.8g/L时,对苯系混合物质量浓度为4.0 mg/L模拟废水的平均去除率为87.56%.经过4次再生后,复合材料的再生率仍高达84.90%,对苯系混合物的平均去除率为91.49%.  相似文献   

3.
污泥含炭吸附剂对挥发性有机废气吸附实验研究   总被引:1,自引:0,他引:1  
研究了污泥含炭吸附剂对挥发性有机污染物的吸附特性。结果表明,污泥含炭吸附剂对苯系物的吸附为典型的物理吸附,其吸附甲苯等温线的类型系优惠型吸附等温线,表明具有良好的吸附能力;在吸附反应温度为20℃,气体流量为500 mL/m in(停留时间为0.424 s),甲苯浓度为2 700 mg/m3时,甲苯的饱和吸附容量为150.0 mg/g;同时,研究表明污泥含炭吸附剂对苯系物的饱和吸附容量和吸附强弱次序为二甲苯甲苯苯。结果表明污泥含炭吸附剂适合对中低浓度有机废气的吸附净化。  相似文献   

4.
The effects of water vapor on binary vapor adsorption of toluene and methylene chloride by activated carbon were investigated on a bench-scale experimental system. Three levels of relative humidity (15, 65 and 90 percent) in conjunction with different concentrations of individual adsorbates (from 400 to 1200 ppmv) were tested by tracing the breakthrough curves of each adsorbate eluted from a fixed-bed adsorber. The adsorption capacities of the activated carbon tested for each adsorbate under the various conditions were obtained from calculations based on area integration of the breakthrough curves. It was found that with increasing relative humidity, the shape of breakthrough curves was asymmetrically distorted and the width of the breakthrough curves was broadened for toluene and steepened for methylene chloride. The adsorption capacities for both toluene and methylene chloride were decreased with the increase of relative humidity. The magnitude of the effect of water vapor is greater at the lower toluene concentration and at the higher concentration of methylene chloride. The mechanisms of water vapor influence on the process of multicomponent vapor adsorption are discussed.  相似文献   

5.
A comparison of biodegradation efficiencies was done for volatile benzene, toluene, ethylbenzene, m-xylene, p-xylene, and o-xylene elimination in a compost biofilter. The column was first exposed to a synthetic mixture and then a free phase product mixture containing these compounds at increasing pollutant loads. The optimal moisture content of the system was determined, and this was used in the biodegradation experiments. An acclimated culture was used as an inoculum for the biofilter, the matrix of which consisted of composted forestry products, composted sewage sludge, lime, and perlite. Inlet and outlet concentrations were measured, and pollutant loads, elimination capacities, and removal efficiencies were determined for each of the compounds. Optimal moisture content for this system was found to be 40%, and the short lag times (one to five days) in acclimating to the compounds was ascribed to the presence of the well-acclimated inoculum. The compounds in the synthetic mixture had higher removal efficiencies (80-99%) even at the higher pollutant loads experienced, with the exception of o-xylene. Dynamic removal efficiencies and acclimation periods were seen in the free phase product mixture, with a removal efficiency range from 70 to 95%. This was attributed to the presence of chlorinated aliphatics in the free phase product.  相似文献   

6.
Adsorption isotherms for a selection of non-ionic surfactants on activated carbons indicated the effectiveness of the latter in the removal of these pollutants from secondary effluents. The removal efficiencies were found to be improved when the secondary effluent was first flocculated with ferric chloride. This effectively removed some 80% of the non-ionic surfactant in the effluent. Batch adsorption experiments with powdered activated carbon removed 97% of the surfactant at low carbon dosage. A granular carbon with the best adsorption capacity was selected for continuous-flow operation in which non-ionic surfactants, COD and anionic surfactant alkyl benzene sulphonate were monitored. The breakthrough capacity for the non-ionic surfactants was in excess of 6000 bed volumes throughput of flocculated, sand-filtered effluent in a laboratory scale carbon column. Such a procedure is suggested for the complete removal of such pollutants from effluents.  相似文献   

7.
研究了废弃物基活性炭对挥发性有机污染物中的典型组分--甲苯的吸附特性.结果表明,废弃物基活性炭吸附甲苯等温线的类型系优惠型吸附等温线,表明具有良好的吸附能力;同时其吸附甲苯时穿透时间的对数与甲苯入口浓度的对数之间具有良好的线性相关性,即可由吸附高浓度甲苯时的穿透时间估算低浓度时的穿透时间;动态吸附时废弃物基活性炭的中孔对甲苯亦具有一定的吸附性能.  相似文献   

8.
活性炭孔隙结构在其甲苯吸附中的作用   总被引:4,自引:0,他引:4  
选用4种商用活性炭(AC),利用氮气绝热吸附、扫描电子显微镜(SEM)和傅立叶变换红外光谱(FTIR)测试了活性炭的物化性质。以甲苯为吸附质,在温度为298.15 K下进行了静态和动态吸附实验,研究了活性炭孔结构对其吸附性能、吸附行为、表面覆盖率和吸附能的影响。结果表明:活性炭的比表面积和孔容是其吸附性能主要影响因素,孔径在0.8~2.4 nm之间的孔容和甲苯吸附量之间存在较好的线性关系,且线性斜率随甲苯浓度增加而变大。甲苯吸附行为符合Langmuir吸附等温模型和准一阶动力学方程式。活性炭孔结构是甲苯吸附速率的主要制约因素。在甲苯快速吸附阶段,微孔为吸附速率主要制约因素,在甲苯颗粒内扩散阶段,微孔和表面孔为吸附速率的主要制约因素,在吸附末尾阶段,中孔和大孔为吸附速率的主要制约因素。4种活性积炭对甲苯的吸附能随其比表面变大而变大。  相似文献   

9.
Wan-Kuen Jo  Chang-Hee Yang   《Chemosphere》2009,77(2):236-241
Unlike previous photocatalytic oxidation (PCO) studies incorporated with adsorption, this study investigates the feasibility of applying a tandem PCO-adsorption hybrid technique regarding low-level monoaromatic compound removal. The PCO efficiencies decreased as the hydraulic diameter (HD) increased. A PCO reactor of a medium HD size was selected for further experiments. Under conditions relevant to the use of the PCO system, the CO level measured during the PCO process was minimal in comparison to indoor CO levels. Trace level formations of formaldehyde and acetaldehyde were observed during the photocatalytic process, but these compounds were undetectable at the activated carbon unit outlet. The degradation efficiencies, obtained from the PCO unit, exhibited a dependence on both the inlet concentration (IC) and relative humidity (RH), whereas those from the PCO-adsorption hybrid system did not. Under specific conditions, the PCO unit presented a high degradation efficiency of close to, or exceeding 90%, in regards to ethyl benzene, o-xylene, and m,p-xylene. However, the benzene air concentrations, after being treated by the PCO unit, substantially exceeded the USEPA inhalation reference concentration guideline of 30 μg m−3 (corresponding to 0.01 ppm). In contrast, the PCO-adsorption hybrid system presented a high removal efficiency of close to 100% regarding all compounds, regardless of the IC or RH range. Consequently, it is suggested that the PCO-adsorption hybrid system has a synergistic advantage of photocatalysis and adsorption in regards to the BTEX elimination process.  相似文献   

10.
以8μm的镍纤维和煤基活性炭为原材料,通过抄制和烧结工艺制备了烧结纤维承载活性炭粉末复合材料。为了减轻床层总重量,将这种材料和通常的颗粒状活性炭进行联合装填形成复合层,并进行了苯蒸气的吸附穿透实验。利用Wheeler方程对床层的饱和吸附容量和吸附速率常数进行了测定。结果表明,在相同的测试条件下,联合装填层比单独的颗粒炭装填层具有更好的苯蒸气脱除性能;对两种床层而言,其各自的饱和吸附容量是一个不随比速而变化的常数,而随着气流比速的增加,两种床层的吸附速度都呈增加的趋势。  相似文献   

11.
活性炭吸附室内空气中挥发性有机化合物   总被引:13,自引:0,他引:13  
活性炭吸附室内空气中挥发性有机化合物的10%穿透时间与气相浓度及挥发性有机化合物的种类有关,通过对苯、甲苯和丙酮的实验研究,得出了由高浓度估算室内低浓度时炭床10%穿透时间的经验公式tb,1=tb,h(C0,1/C0,h)^a,其中a值是与炭床性能及挥发性有机化合物种类有关的参数,可通过实验确定。  相似文献   

12.
汽车内微环境空气污染的初步探究   总被引:1,自引:1,他引:1  
为了研究车内的污染水平,在2004-04-10至2004-06-20对车内空气进行了采样和分析.对车龄在2年内的91种型号轿车的车内微环境进行了静态检测,有效检测车辆共计802辆,同时对比检测20辆2002年以前出厂的旧车.检测项目包括甲醛、苯、甲苯、二甲苯和CO等.参照国家室内空气质量标准,新车中甲苯浓度超标率达82%,苯和甲醛浓度的超标率分别为75%和24%.在被检测车辆中,甲醛、苯、甲苯和二甲苯浓度均是新车比旧车高,只有CO浓度是旧车比新车高.初步分析判断苯系物主要来源于车内的胶粘剂,甲醛来自于车椅座套和座垫等,CO来源于发动机排放残留.  相似文献   

13.
Plasma-driven photocatalysis system was prepared and performed. To overcome the treatment difficulty of volatile organic compounds, non-thermal plasma was used as a light source of photocatalysis. The removal of low-concentration toluene was investigated and secondary products were analyzed by gas chromatograph–mass spectroscopy. The plasma-driven photocatalyst reactor using direct current as a light source and titanium dioxide catalyst loaded on activated carbon fiber (TiO2/ACF) as photocatalyst was studied. It was found that plasma-driven photocatalysis system could significantly increase the removal effect of toluene. The number of secondary products was largely decreased. It means that plasma-driven photocatalysis hybrid system was an effective method for the removal of volatile organic compounds.  相似文献   

14.
Abstract

Volatile organic compounds (VOCs) are a major concern for indoor air pollution because of the impacts on human health. In recent years, interest has increased in the development and design of activated carbon filters for removing VOCs from indoor air. Although extensive information is available on sources, concentrations, and types of indoor VOCs, there is little or no information on the performance of indoor air adsorption systems for removing low concentrations of primary VOCs. Filter designs need to consider various factors such as empty bed contact time, humidity effects, competitive adsorption, and feed concentration variations, whereas adsorption capacities of the indoor VOCs at the indoor concentration levels are important parameters for filter design. A preliminary assessment of the feasibility of using adsorption filters to remove low concentrations of primary VOCs can be performed. This work relates the information (including VOC classes in indoor air, the typical indoor concentrations, and the adsorption isotherms) with the design of a particular adsorbent/adsorbates system. As groundwork for filter design and development, this study selects the primary VOCs in indoor air of residences, schools, and offices in different geographical areas (North America, Europe, and Asia) on the basis of occurrence, concentrations, and health effects. Activated carbon fiber cloths (ACFCs) are chosen as the adsorbents of interest. It is demonstrated that the isotherm of a VOC (e.g., toluene on the ACFC) at typical indoor concentrations—parts per billion by volume (ppbv) level—is different than the isotherm at parts per million by volume (ppmv) levels reported in the publications. The isotherms at the typical indoor concentrations for the selected primary VOCs are estimated using the Dubinin–Radushkevitch equation. The maximum specific throughput for an indoor VOC removal system to remove benzene is calculated as a worst-case scenario. It is shown that VOC adsorption capacity is an important indicator of a filter’s lifetime and needs to be studied at the appropriate concentration range. Future work requires better understanding of the realistic VOC concentrations and isotherms in indoor environments to efficiently utilize adsorbents.  相似文献   

15.
The effect of dissolved organic matter (DOM) and oil on the removal of the water-soluble compounds benzene, toluene, ethylbenzene, and xylene isomers (BTEX) by two low-cost biosorbents Macrocystis pyrifera and Ulva expansa) was evaluated. DOM decreased the adsorption capacity of toluene, ethylbenzene, and xylenes of the two biosorbents. In contrast, the removal of benzene increased under the same conditions in single and multi-solute systems: this effect was dominant in U. expansa biomass treatments. In the presence of DOM and oil in solutions, the removal of BTEX notoriously increased, being oil that contributed the most. Solubility and hydrophobicity of pollutants played a key role in the adsorption process. The attractions between BTEX molecules and biosorbents were governed by π–π and hydrophobic interactions. Affinities of biosorbents for BTEX were mainly in the order of X > E > T > B. The Langmuir and Sips equations adjusted the adsorption isotherms for BTEX biosorption in deionized and natural water samples, but in the case of oily systems, the Freundlich equation seemed to have a better fit. The biosorption processes followed a pseudo-second-order rate in all the cases.  相似文献   

16.
低温下膜-生物活性炭工艺深度处理回用水的试验研究   总被引:3,自引:0,他引:3  
开展低温下膜-生物活性炭工艺深度处理回用水的试验研究,探讨该工艺低温运行的可行性及作用机制。结果表明,采用HRT为3h的膜-生物活性炭反应器对回用水中有机物具有良好的去除效果,CODcr,UV254、UV410的去除率分别稳定在33%、35%、40%;对NH3-N的去除效果不明显,其平均去除率在15%左右,主要受原水浓度过高的影响。同时与其他工艺进行对比研究,结果表明,由于该工艺结合了膜分离、活性炭吸附、生物降解三者的综合作用而表现出明显的优势。  相似文献   

17.
Pseudmonas sp. D8 strain, which has the potential to utilize toluene as a sole carbon source, was isolated. At a concentration of 100 mg/l, this strain was found to efficiently degrade toluene and benzene (both individually and in mixture) in culture medium at 30°C and pH7. Following a two-hour lag phase, complete biodegradation of 100 mg/l toluene or benzene occurred within 6 to 8 hours. The addition of nitrate, phosphate, or sulfate at various concentrations were found to have significant influence on both toluene and benzene degradation. In addition, results show that the D8 strain has the ability to degrade monochlorophenols, nitrophenols, and phenol, but not aliphatic compounds. Inoculation of groundwater samples containing 100 mg/1 toluene or benzene with Pseudmonas sp. D8 resulted in rapid degradation within 24 33 hours.  相似文献   

18.
Co-produced water from the oil and gas industry accounts for a significant waste stream in the United States. This "produced water" is characterized by saline water containing a variety of pollutants, including water soluble and immiscible organics and many inorganic species. To reuse produced water, removal of both the inorganic dissolved solids and organic compounds is necessary. In this research, the effectiveness of a pretreatment system consisting of surfactant modified zeolite (SMZ) adsorption followed by a membrane bioreactor (MBR) was evaluated for simultaneous removal of carboxylates and hazardous substances, such as benzene, toluene, ethylbenzene, and xylenes (BTEX) from saline-produced water. A laboratory-scale MBR, operated at a 9.6-hour hydraulic residence time, degraded 92% of the carboxylates present in synthetic produced water. When BTEX was introduced simultaneously to the MBR system with the carboxylates, the system achieved 80 to 95% removal of BTEX via biodegradation. These results suggest that simultaneous biodegradation of both BTEX and carboxylate constituents found in produced water is possible. A field test conducted at a produced water disposal facility in Farmington, New Mexico confirmed the laboratory-scale results for the MBR and demonstrated enhanced removal of BTEX using a treatment train consisting of SMZ columns followed by the MBR. While most of the BTEX constituents of the produced water adsorbed onto the SMZ adsorption system, approximately 95% of the BTEX that penetrated the SMZ and entered the MBR was biodegraded in the MBR. Removal rates of acetate (influent concentrations of 120 to 170 mg/L) ranged from 91 to 100%, and total organic carbon (influent concentrations as high as 580 mg/L) ranged from 74 to 92%, respectively. Organic removal in the MBR was accomplished at a low biomass concentration of 1 g/L throughout the field trial. While the transmembrane pressure during the laboratory-scale tests was well-controlled, it rose substantially during the field test, where no pH control was implemented. The results suggest that pretreatment with an SMZ/MBR system can provide substantial removal of organic compounds present in produced water, a necessary first step for many water-reuse applications.  相似文献   

19.
研究了非甾体抗炎药双氯芬酸的吸附去除过程与机制。对吸附处理效果较好的活性炭与纳米羟基氧化铁(α-FeOOH)进行了比表面积、Zeta电位等表面特性的表征,研究比较了双氯芬酸在活性炭与α—FeOOH2种材料上的吸附去除效果与吸附机制。结果表明,在相同的实验条件下,活性炭与α-FeOOH对双氯芬酸吸附去除率可分别达到97.9%和84.3%;双氯芬酸在活性炭上的吸附主要是由于活性炭较大的比表面积与疏水分配作用,在α-FeOOH上的吸附主要是由于静电引力作用;活性炭与α-FeOOH对双氯芬酸的吸附去除效果均随pH的升高而降低;在pH=6时,活性炭与α-FeOOH对双氯芬酸钠的吸附等温线均符合Langmuir方程,单位饱和吸附量分别为109.98mg/g和58.96mg/g;活性炭对双氯芬酸具有更强的吸附能力。  相似文献   

20.
The use of both oxygenated fuels in carbon monoxide (CO) nonattainment areas and reformulated gasoline in ozone nonattainment areas has been mandated by the 1990 Clean Air Act Amendments. Methanol has been proposed as an alternative fuel for CO nonattainment areas. Its use will potentially increase indoor methanol inhalation exposure resulting from the evaporation of methanol vapor from methanol-fueled vehicles parked in residential garages. Indoor air concentrations of methanol, benzene, and toluene were measured in a residential home with an attached garage. The effects of vehicle emission control devices (charcoal canister hose connection); home heating, ventilation, and air conditioning (HVAC) fans; ambient air, garage, and fuel tank temperatures; and wind speed were examined. The disconnection of the charcoal canister hose, which simulates a spent evaporative emission control device, resulted in elevated benzene, toluene, and methanol concentrations in the garage and attached home. Higher fuel tank temperatures resulted in higher benzene and toluene concentrations in the garage, but not methanol. The concentrations for all compounds in the garage and concentrations of benzene and toluene in the adjacent room were lower when the HVAC fan was on than when it was off, while the concentrations of all three compounds in the rest of the house were higher, although these differences were not statistically significant. Thus, the portion of the population that parks cars in garages attached to homes will experience increased methanol exposures if methanol is used as an automotive fuel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号