首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As an odorless, nontoxic, and inert compound, sulfur hexafluoride (SF6) is one of the most widely used tracer gases in indoor air quality studies in both controlled and uncontrolled environments. This compound may be subject to reactions with water vapor under elevated temperature to form acidic inorganic compounds such as HF and H2SO4. Thus, in the presence of unvented combustion sources such as kerosene heaters, natural gas heaters, gas log fireplaces, candles, and lamps, the SF6 dissociation may interfere with measurements of the emissions from these sources. Tests were conducted in a research house with a vent-free natural gas heater to investigate these potential interferences. It was observed that the heater operation caused about a 5% reduction of SF6 concentration, which can be an error source for the ventilation rate measurement and consequently the estimated pollutant emission rates. Further analysis indicates that this error can be much greater than the observed 5% under certain test conditions because it is a function of the ventilation flow rate. Reducing the tracer gas concentration has no effect on this error. A simple theoretical model is proposed to estimate the magnitude of this error. The second type of interference comes from the primary and secondary products of the SF6 dissociation, mainly H2SO4, SO2, HF, and fine particulate matter (PM). In the presence of approximately 5 ppm SF6, the total airborne concentrations of these species increased by a factor of 4-10. The tests were performed at relatively high SF6 concentrations, which is necessary to determine the interferences quantitatively. The second type of interference can be significantly reduced if the SF6 concentration is kept at a low ppb level.  相似文献   

2.
Abstract

Sulfur hexafluoride (SF6) is an important gas for plasma etching processes in the semiconductor industry. SF6 intensely absorbs infrared radiation and, consequently, aggravates global warming. This study investigates SF6 abatement by nonthermal plasma technologies under atmospheric pressure. Two kinds of nonthermal plasma processes—dielectric barrier discharge (DBD) and combined plasma catalysis (CPC)—were employed and evaluated. Experimental results indicated that as much as 91% of SF6 was removed with DBDs at 20 kV of applied voltage and 150 Hz of discharge frequency for the gas stream containing 300 ppm SF6, 12% oxygen (O2), and 40% argon (Ar), with nitrogen (N2) as the carrier gas. Four additives, including Ar, O2, ethylene (C2H4), and H2O(g), are effective in enhancing SF6 abatement in the range of conditions studied. DBD achieves a higher SF6 removal efficiency than does CPC at the same operation condition. But CPC achieves a higher electrical energy utilization compared with DBD. However, poisoning of catalysts by sulfur (S)-containing species needs further investigation. SF6 is mainly converted to SOF2,SO2F4, sulfur dioxide (SO2), oxygen difluoride (OF2), and fluoride (F2). They do not cause global warming and can be captured by either wet scrubbing or adsorption. This study indicates that DBD and CPC are feasible control technologies for reducing SF6 emissions.  相似文献   

3.
Abstract

Sulfur hexafluoride (SF6)-contained gas is a common pollutant emitted during the etching process used in the semiconductor industry. This study demonstrated the application of radio-frequency (RF) plasma in the decomposition of SF6. The decomposition fraction of SF6SF6 (Cin–Cout)/Cin x 100%] and the mole fraction profile of the products were investigated as functions of input power and feed O2/SF6 ratio in an SiO2 reactor. The species detected in both SF6/Ar and SF6/O2/Ar RF plasmas were SiF4, SO2, F2, SO2F2, SOF2, SOF4, S2F10, S2OF10, S2O2F10, and SF4. The results revealed that at 40 W, ηSF6 exceeded 99%, and the reaction products were almost all converted into stable compounds such as SiF4, SO2, and F2 with or without the addition of oxygen. Sulfur oxyfluorides such as SO2F2, SOF2, SOF4, S2OF10, and S2O2F10 were produced only below 40 W. The results of this work can be used to design a plasma/chemical system for online use in a series of a manufacturing process to treat SF6-containing exhaust gases.  相似文献   

4.
Tracer experiments were carried out to quantify the diffuse leakages of hydrocarbons at two petrochemical complexes in Norway. Single tracer (SF6) and dual tracer (SF6/CBrF3) experiments were performed for different test designs and different meteorological conditions.

A simple proportionality model was applied to estimate leakage rates of ethylene, propylene, ethane, propane and isobutane from different parts of the plants. A discussion of uncertainties in the release rate estimates is also included.

Dispersion models were applied to verify concentration profiles and to identify leakage areas. A model using Kz for estimating vertical spread and σθ for estimating horizontal spread, including building size parameters as initial dilution factors, was best correlated to measured tracer concentrations.  相似文献   

5.
Atmospheric tracer techniques were used in 21 tests to determine infiltration rates of roof exhaust gases in downwind potrooms at an aluminum reduction plant during two summer months. During each tracer test SF6 and, in some cases, CBrF3 were released to simulate the exhaust gases, and tracer concentrations were measured along the ventilation doors of downwind rooms. Maximum infiltration rates were less than 5 % of the tracer release rate. The location of the maximum infiltration occurred along the upwind side of the first downwind room in two thirds of the cases and along the downwind edge of the same room where tracer was released in one third of the tests. For rooms further downwind the infiltration rate was less than 1%.  相似文献   

6.
As a convenient method, the closed chamber method has been applied to determine gaseous emission fluxes from fully open animal feeding operations despite the measured fluxes being theoretically affected by deployment time, wind speed over the emitting surface and detected gas mass. This laboratory study evaluated the effects of deployment time (0 to 120 min) and external surface wind speed (ESWS) (0.00, 0.25, 0.50, 0.75, 1.00, 1.50 and 2.00 m sec-1) on the measurement accuracy of a 300 mm (diameter) × 400 mm (height) (D300×H400) closed chamber using methane (CH4), nitrous oxide (N2O) and sulfur hexafluoride (SF6) as reference gases. The results showed that the overall deviation ratio between the measured and reference CH4 fluxes ranged from 9.99 % to -37.32 % and the flux was overestimated in the first 20 min. The measured N2O and SF6 emissions were smaller than the reference fluxes using the chamber. N2O measurement accuracy decreased from -14.47 to -35.09% with deployment time extended to 120 min, while SF6 accuracy sharply increased in the first 40 min, with the deviation stabilizing at approximately -5.00%. CH4, N2O and SF6 measurements were significantly affected by deployment time and ESWS (P<0.05), and the interaction of those two factors greatly influenced CH4 and SF6 measurements (P<0.05). With the D300×H400 closed chamber, deployment times of 20 to 30 min and 10 to 20 min are recommended to measure CH4 and N2O, respectively, from the open operations of dairy farms under wind speeds lower than 2 m sec-1.

Implications: This study recommended the suitable deployment times and wind speeds for using a D300 × H400 closed chamber to measure CH4, N2O, and SF6 in an open system, such as a dairy open lot and manure stockpile, to help researchers and other related industry workers get accurate data for gas emission rate. Deployment times of 20 to 30 min and 10 to 20 min were recommended to measure CH4 and N2O emissions using the D300 × H400 closed chamber, respectively, from the open operations of dairy farms under wind speeds lower than 2 m sec?1. For the measurement of SF6, a typical tracer gas, a deployment of 70 to 90 min was suggested.  相似文献   


7.
Concentration profiles for hydrogen fluoride(HF), sulfur dioxide(SO2), ozone (O3), nitrogen dioxide(NO2), and nitric oxide(NO) generated in a standardized alfalfa canopy are presented. Wind, light, temperature, and carbon dioxide(CO2) profiles, canopy pollutant uptake rates, and canopy structural data are also given. Canopy pollutant concentration profile characteristics were studied to evaluate the relative potentials for major air pollutants to penetrate into canopies. The study was conducted in an environmental growth chamber equipped to control automatically environmental conditions and monitor continuously gas exchange rates. HF, SO2, and NO2 profiles suggested that these gases were removed efficiently by the upper portion of the canopy as well as by the immediate subsurface vegetation. The steady state HF profile showed the greatest displacement within the canopy. The NO profile was displaced the least. The uptake rate of NO by plants was apparently too slow in comparison with gas transport and mixing within the canopy to affect the internal profile substantially. O3 appeared to be readily deposited on the surface tissues, but the deeper tissues in the canopy had less effect on the concentration profile. Data are also presented to show the relationship between NO2 concentration within the canopy and changes in the air concentration above the vegetation. The results indicated that gas transport between the atmosphere and canopy interior was rapid. The data presented should be of current interest to agriculturists, researchers, administrators, and environmental planners concerned with effects of air pollutants on plants and on the fate of pollutants in the microenvironment.  相似文献   

8.
Ammonia emission rates from livestock buildings are required to construct an accurate emission inventory for the UK. Ventilation and ammonia emission rates from a fattening pig unit and a broiler house, both mechanically ventilated, were estimated using fan wheel anemometers and thermal converters with a chemiluminescence NOx-analyser to measure the ventilation rate and the ammonia concentration, respectively. The estimated ammonia emission factors were 46.9 and 16.6 kg lu-1 a-1 for the fattening pig unit and the broiler house, respectively. Both emission factors were within the range reported in the literature. A tracer gas (CO) method, based on a constant tracer release rate, was validated for measuring ventilation rates from naturally ventilated livestock buildings. Air inlets and outlets were identified using the air temperature or tracer concentration in the opening. Tracer concentration was found to be a more suitable criterion than temperature. In both houses, a significant correlation between the estimated ventilation rate using the tracer method and the measured ventilation rate using fan wheel anemometers was found. The ventilation rate was underestimated by 12 and 6% for the piggery and broiler house, respectively. The instantaneous ammonia emission derived from the tracer gas method was lower than the ammonia emission derived from the fan wheel anemometer method by 14 and 16% for the piggery and broiler house, respectively. The ventilation and ammonia emission estimates using the tracer method were within acceptable range from the ventilation and emission rates measured using measuring fans, but because of its accuracy and simplicity the fan wheel anemometer method is preferred for long-term measurements of ventilation rate in mechanically ventilated buildings.  相似文献   

9.
Abstract

The impact of outdoor and indoor pollution sources on indoor air quality in Santiago, Chile was investigated. Toward this end, 16 homes were sampled in four sessions. Each session included an outdoor site and four homes using different unvented space heaters (electric or central heating, compressed natural gas, liquefied petroleum gas, and kerosene). Average outdoor fine particulate matter (PM2.5) concentrations were very high (55.9 μg·m-3), and a large fraction of these particles penetrated indoors. PM2.5 and several PM2.5 components (including sulfate, elemental carbon, organic carbon, metals, and polycyclic aromatic hydrocarbons) were elevated in homes using kerosene heaters. Nitrogen dioxide (NO2) and ultrafine particles (UFPs) were higher in homes with combustion heaters as compared with those with electric heaters or central heating. A regression model was used to assess the effect of heater use on continuous indoor PM2.5 concentrations when windows were closed. The model found an impact only for kerosene heaters (45.8 μg m-3).  相似文献   

10.
ABSTRACT

This work provides information concerning possible global environmental implications and personnel safety aspects that should be considered during the commercial uses of sulfur hexafluoride (SF6). SF6 is an anthropogenically produced compound, mainly used as a gaseous dielectric in gas insulated switchgear power installations. It is a potent greenhouse gas with a high global warming potential, and its concentration in the earth atmosphere is rapidly increasing. During its working cycle, SF6 decomposes under electrical stress, forming toxic byproducts that are a health threat for working personnel in the event of exposure. Several precautions are recommended to avoid personnel exposure to toxic byproducts: oxyfluoride levels or other byproduct concentrations in the operating gas matrix should be traced to predetermine the overall gas toxicity; contaminants should be systematically considered during maintenance, chamber evacuation and system opening process; small SF6 quantities leaking into air or stagnated pollutant concentrations in the operating field should be analyzed and compared to the threshold limit values and permissible exposure levels. New system design rules (i.e., hermetically sealed gas compartments, gas recycling or disposal in the field area) and different handling policies—both during maintenance and final disposal—now should be considered globally to provide for environmental and personnel safety.  相似文献   

11.
Two field experiments, one at Kincaid, IL, in flat terrain, the other at Bull Run, TN, in rolling terrain, were conducted under the auspices of the Electric Power Research Institute's (EPRI) Plume Model Validation and Development program. Simultaneous observations were made of ground-level SF6 concentrations; plume cross-sections using light detection and ranging (lidar); turbulence; and routine meteorology at the surface and aloft. Due to terrain influences, surface wind-speeds at the Bull Run site were significantly lower than those at the Kincaid site, whereas thermal winds at Kincaid were generally larger than at Bull Run. At both sites, a reduction in turbulent intensity and an increase in atmospheric stability with height correlate with a substantial decrease in the rate of vertical plume dispersion. SF6 ground-level concentration (GLC) patterns over distances of 1–50 km from the source were categorized by shape. The GLC patterns at Bull Run were frequently ‘blobby’, when significant GLCs occurred over an azimuth angle exceeding 90°, whereas patterns at Kincaid were generally coherent and nearly elliptical. Plume behavior was examined for 154 h during which both GLCs of SF6 tracer and lidar cross-sections of the plume were of good quality. Results show that plume looping was rare at Kincaid, but occurred substantially more often at Bull Run (3%: 14%), with the reverse true for meandering (11%: 14%). Inversions that trapped plume material occurred much more often at Kincaid that at Bull Run (11%: <1%). Correlation of cross-wind concentration distributions of the plume aloft with those cross-wind SF6 concentrations distributions at the ground were poor at both sites.  相似文献   

12.
The influence of exposure to mixtures of SO2 and HF on Koethen sweet orange and mixtures and alternate exposure to these gases on Satsuma mandarin were tested using a rotating fumigation greenhouse. Effects of HF-SO2 mixtures on linear growth and leaf area of Koethen orange were additive, not synergistic. No necrosis was observed on Koethen oranges exposed to HF, SO2, or a mixture of HF and SO2. Effects of the mixture on chlorosis of Satsuma mandarin foliage was also not synergistic. No significant difference in linear growth of Satsuma mandarin was found among all treatments. Alternate exposure to SO2 followed by HF produced no synergistic injury to Satsuma mandarin. Satsuma mandarin appeared more sensitive than Koethen orange to HF, SO2, and mixtures of these two gases using degree of chlorosis and leaf abscission as the criteria of sensitivity. If iinear growth and leaf area were the principal criteria considered, Koethen orange would appear more sensitive.  相似文献   

13.
旋转填料床/柠檬酸盐法吸收-解吸SO2   总被引:1,自引:1,他引:0  
提出采用旋转填料床结合柠檬酸盐法脱除烟气中SO2的方法,考察了旋转填料床转子转速、液气比、初始柠檬酸根浓度和初始pH值等因素对脱硫效率的影响。结果表明,采用超重力法超重机转子转速为1 000 r/min、液气比为7L/m3、初始柠檬酸根浓度为1.5 mol/L、吸收液的初始pH值为5.0,脱硫效率稳定在99%左右。研究了水蒸气汽提法解吸SO2时初始柠檬酸根浓度、初始pH值、SO2浓度、富液流量和水蒸气流量对解吸效率的影响,得出了影响SO2解吸率的基本规律,并进行了分析。通过实验证明该方法在技术上是可行的,具有良好的应用前景。  相似文献   

14.
ABSTRACT

We conducted a multi-pollutant exposure study in Baltimore, MD, in which 15 non-smoking older adult subjects (>64 years old) wore a multi-pollutant sampler for 12 days during the summer of 1998 and the winter of 1999. The sampler measured simultaneous 24-hr integrated personal exposures to PM25, PM10, SO4 2-, O3, NO2, SO2, and exhaust-related VOCs.

Results of this study showed that longitudinal associations between ambient PM2.5 concentrations and corresponding personal exposures tended to be high in the summer (median Spearman's r = 0.74) and low in the winter (median Spearman's r = 0.25). Indoor ventilation was an important determinant of personal PM2.5 exposures and resulting personal-ambient associations. Associations between personal PM25 exposures and corresponding ambient concentrations were strongest for well-ventilated indoor environments and decreased with ventilation. This decrease was attributed to the increasing influence of indoor PM2 5 sources. Evidence for this was provided by SO4 2-measurements, which can be thought of as a tracer for ambient PM25. For SO4 2-, personal-ambient associations were strong even in poorly ventilated indoor environments, suggesting that personal exposures to PM2.5 of ambient origin are strongly associated with corresponding ambient concentrations. The results also indicated that the contribution of indoor PM2.5 sources to personal PM2.5 exposures was lowest when individuals spent the majority of their time in well-ventilated indoor environments.

Results also indicate that the potential for confounding by PM2.5 co-pollutants is limited, despite significant correlations among ambient pollutant concentrations. In contrast to ambient concentrations, PM2.5 exposures were not significantly correlated with personal exposures to PM2.5-10, PM2.5 of non-ambient origin, O3, NO2, and SO2. Since a confounder must be associated with the exposure of interest, these results provide evidence that the effects observed in the PM2.5 epidemiologic studies are unlikely to be due to confounding by the PM2.5 co-pollutants measured in this study.  相似文献   

15.
ABSTRACT

Open-path Fourier transform infrared (OP-FTIR) technology was used to evaluate the combustion efficiency of a flare for comparison to several combustion models. Most flares have been considered an effective method for destroying organic compounds and anything that burns. As the Btu content of the flare gas is reduced, the combustion efficiency may also be reduced. Recent studies have suggested that lower Btu flares may have efficiencies as low as 65%. In addition, models have been developed to predict the effect of wind speed and stack discharge velocity on the combustion efficiency. This study was conducted on a low-Btu flare gas that is primarily CO. While the models would predict efficiencies as low as 30%, the sampling using OP-FTIR showed most combustion efficiencies well above 90%. Three methods were used to track combustion efficiency: monitoring the ratio of CO to CO2, monitoring the ratio of CO to tracer gas, and dispersion modeling. This study was complicated by the presence of two flare stacks, thus two tracer gases were used—SF6 and CF4. A method was developed for distinguishing between the two stacks and quantifying the efficiency in each stack.  相似文献   

16.
Maximum concentrations of sulfur dioxide vary approximately inversely as the square root of the averaging time for periods up to a year, a much longer time period than those reported in previously published studies. This finding is based on analyses of SO2 and tracer gas concentrations measured in the vicinities of a test stack, a petrochemical complex, and eight power plants. Therefore, for a given set of emission conditions, long-term concentrations of SO2 and other conservative pollutants emitted by well-defined sources can be rapidly estimated from maximum short-term concentrations, and vice versa. The scatter in the data corresponds to an estimation error of about a factor of three for averaging time conversions of one day to one year. This is approximately the same error associated with conventional calculations. Therefore, the use of averaging time conversions is justified as a rapid screening technique to estimate compliance with ambient air quality standards.  相似文献   

17.
18.
The fate of SO2 emitted in the San Joaquin Valley of California under stagnant foggy conditions was determined by the release of an inert tracer and the concurrent monitoring of SO2 and SO42− concentrations. At night, SO2 was found to be trapped in a dense fog layer below a strong and persistent inversion based a few hundred meters above the valley floor. This lack of ventilation led to the accumulation of SO2 and SO42− over a major SO2 source region in the valley. The rate of oxidation of SO2 to SO42− in fog was estimated at 3 ± 2%h−1. Production of acidity from the oxidation of SO2 fully titrated the NH3(g) present before the fog, and led to a progressive drop of the fogwater pH over the course of the night. In the afternoon, the valley was found to be efficiently ventilated by a buoyant upslope flow through the inversion. The tracer data indicated that about 40 % of the air transported upslope in the afternoon was returned to the valley in the night-time drainage flow. The fates of SO2 and SO42− in the valley during extended highinversion episodes appear to depend considerably on the presence of fog or stratus, and on the extent of daytime insolation.  相似文献   

19.
The thermal decomposition of SF6 is known to be oxygen-independent. Nevertheless, because of its high stability, the use of SF6 as a "conservative" surrogate in incinerator performance evaluation has been advocated and researched. This paper shows that refractory decreases markedly the stability of SF6. The resulting increase in SF6 decomposition was from 0 percent to 95 percent at 900°C, and the temperatures at which 90-99 percent decomposition occurred were lowered by 300-150°C. Refractory also decreased the stability of CCl4 and C2Cl4, but to a lesser extent. The difference between the decompositions of C2Cl4 and SF6 was reduced from several orders of magnitude to a factor of 2-4. Such a drastic and adverse change in relative stability could render SF6 unsuitable as a "conservative" surrogate. The requirements for a "conservative" surrogate and the need for caution in its use are discussed, and further research areas are indicated.  相似文献   

20.
Several wet chemical methods have been used or suggested for the determination of SO2 concentrations in air pollution work. These include the iron-O-phenanthroline procedure reported by Stephens and Lindstrom, the Scaringelli-modified West-Gaeke method and the Schulze method. This paper describes a laboratory study to evaluate the usefulness of the iron-o-phenanthroline procedure and is directed to individuals concerned with the analysis of gases from the exhaust of gas turbine engines and other combustion processes, including stationary power plants. The variables considered were: range of usefulness in terms of concentration of SO2, efficiency of collection, effect of contaminants, specifically oxides of nitrogen, olefin and aldehyde and effect of storage prior to spectrophctometric measurement. The Stephens-Lindstrom method was found to be suitable for measuring higher levels of SO2 concentrations. It can accurately measure amounts totalling 6000 µl of SO2 and above whereas the other mentioned methods are generally used for lower levels. Collection efficiency was satisfactory. Contaminants, particularly oxides of nitrogen, are a problem only at low levels of SO2. NO2 interference may be eliminated by absorption of the NO2 on Ultraport S impregnated with ANEDA/H2SO4 solution. Temperature control during SO2 addition is necessary. Storage of exposed reagents prior to measurement produce only small errors if stored at 0°C or at room temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号