首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
A photochemical smog model system, the Variable-Grid Urban Airshed Model/Systems Applications International Mesoscale Model (UAM-V/SAIMM), was used to investigate photochemical pollution in the Bangkok Metropolitan Region (BMR). The model system was first applied to simulate a historical photochemical smog episode of two days (January 13-14, 1997) using the 1997 anthropogenic emission database available at the Pollution Control Department and an estimated biogenic emission. The output 1-hr ozone (O3) for BMR, however, did not meet the U.S. Environmental Protection Agency suggested performance criteria. The simulated minimum and maximum O3 values in the domain were much higher than the observations. Multiple model runs with different precursor emission reduction scenarios showed that the best model performance with the simulated 1-hr O3 meeting all the criteria was obtained when the volatile organic compound (VOC) and oxides of nitrogen (NOx) emission from mobile source reduced by 50% and carbon monoxide by 20% from the original database. Various combinations of anthropogenic and biogenic emissions in Bangkok and surrounding provinces were simulated to assess the contribution of different sources to O3 pollution in the city. O3 formation in Bangkok was found to be more VOC-sensitive than NOx-sensitive. To attain the Thailand ambient air quality standard for 1-hr O3 of 100 ppb, VOC emission in BMR should be reduced by 50-60%. Management strategies considered in the scenario study consist of Stage I, Stage II vapor control, replacement of two-stroke by four-stroke motorcycles, 100% compressed natural gas bus, 100% natural gas-fired power plants, and replacement of methyltertiarybutylether by ethanol as an additive for gasoline.  相似文献   

2.
Air quality impacts of volatile organic compound (VOC) and nitrogen oxide (NOx) emissions from major sources over the northwestern United States are simulated. The comprehensive nested modeling system comprises three models: Community Multiscale Air Quality (CMAQ), Weather Research and Forecasting (WRF), and Sparse Matrix Operator Kernel Emissions (SMOKE). In addition, the decoupled direct method in three dimensions (DDM-3D) is used to determine the sensitivities of pollutant concentrations to changes in precursor emissions during a severe smog episode in July of 2006. The average simulated 8-hr daily maximum O3 concentration is 48.9 ppb, with 1-hr O3 maxima up to 106 ppb (40 km southeast of Seattle). The average simulated PM2.5 (particulate matter with an aerodynamic diameter <2.5 μm) concentration at the measurement sites is 9.06 μg m?3, which is in good agreement with the observed concentration (8.06 μg m?3). In urban areas (i.e., Seattle, Vancouver, etc.), the model predicts that, on average, a reduction of NOx emissions is simulated to lead to an increase in average 8-hr daily maximum O3 concentrations, and will be most prominent in Seattle (where the greatest sensitivity is??0.2 ppb per % change of mobile sources). On the other hand, decreasing NOx emissions is simulated to decrease the 8-hr maximum O3 concentrations in remote and forested areas. Decreased NOx emissions are simulated to slightly increase PM2.5 in major urban areas. In urban areas, a decrease in VOC emissions will result in a decrease of 8-hr maximum O3 concentrations. The impact of decreased VOC emissions from biogenic, mobile, nonroad, and area sources on average 8-hr daily maximum O3 concentrations is up to 0.05 ppb decrease per % of emission change, each. Decreased emissions of VOCs decrease average PM2.5 concentrations in the entire modeling domain. In major cities, PM2.5 concentrations are more sensitive to emissions of VOCs from biogenic sources than other sources of VOCs. These results can be used to interpret the effectiveness of VOC or NOx controls over pollutant concentrations, especially for localities that may exceed National Ambient Air Quality Standards (NAAQS).

Implications: The effect of NOx and VOC controls on ozone and PM2.5 concentrations in the northwestern United States is examined using the decoupled direct method in three dimensions (DDM-3D) in a state-of-the-art three-dimensional chemical transport model (CMAQ). NOx controls are predicted to increase PM2.5 and ozone in major urban areas and decrease ozone in more remote and forested areas. VOC reductions are helpful in reducing ozone and PM2.5 concentrations in urban areas. Biogenic VOC sources have the largest impact on O3 and PM2.5 concentrations.  相似文献   

3.
Research over the past ten years has created a more detailed and coherent view of the relation between O3 and its major anthropogenic precursors, volatile organic compounds (VOC) and oxides of nitrogen (NOx). This article presents a review of insights derived from photochemical models and field measurements. The ozone–precursor relationship can be understood in terms of a fundamental split into a NOx-senstive and VOC-sensitive (or NOx-saturated) chemical regimes. These regimes are associated with the chemistry of odd hydrogen radicals and appear in different forms in studies of urbanized regions, power plant plumes and the remote troposphere. Factors that affect the split into NOx-sensitive and VOC-sensitive chemistry include: VOC/NOx ratios, VOC reactivity, biogenic hydrocarbons, photochemical aging, and rates of meteorological dispersion. Analyses of ozone–NOx–VOC sensitivity from 3D photochemical models show a consistent pattern, but predictions for the impact of reduced NOx and VOC in indivdual locations are often very uncertain. This uncertainty can be identified by comparing predictions from different model scenarios that reflect uncertainties in meteorology, anthropogenic and biogenic emissions. Several observation-based approaches have been proposed that seek to evaluate ozone–NOx–VOC sensitivity directly from ambient measurements (including ambient VOC, reactive nitrogen, and peroxides). Observation-based approaches have also been used to evaluate emission rates, ozone production efficiency, and removal rates of chemically active species. Use of these methods in combination with models can significantly reduce the uncertainty associated with model predictions.  相似文献   

4.
Abstract

Analyses of ozone (O3) measurements in conjunction with photochemical modeling were used to assess the feasibility of attaining the federal 8-hr O3 standard in the eastern United States. Various combinations of volatile organic compound (VOC) and oxides of nitrogen (NOx) emission reductions were effective in lowering modeled peak 1-hr O3 concentrations. VOC emissions reductions alone had only a modest impact on modeled peak 8-hr O3 concentrations. Anthropogenic NOx emissions reductions of 46–86% of 1996 base case values were needed to reach the level of the 8-hr standard in some areas. As NOx emissions are reduced, O3 production efficiency increases, which accounts for the less than proportional response of calculated 8-hr O3 levels. Such increases in O3 production efficiency also were noted in previous modeling work for central California. O3 production in some urban core areas, such as New York City and Chicago, IL, was found to be VOC-limited. In these areas, moderate NOx emissions reductions may be accompanied by increases in peak 8-hr O3 levels. The findings help to explain differences in historical trends in 1- and 8-hr O3 levels and have serious implications for the feasibility of attaining the 8-hr O3 standard in several areas of the eastern United States.  相似文献   

5.
6.
7.
Numerous papers analyze ground-level ozone (O3) trends since the 1980s, but few have linked O3 trends with observed changes in nitrogen oxide (NOx) and volatile organic compound (VOC) emissions and ambient concentrations. This analysis of emissions and ambient measurements examines this linkage across the United States on multiple spatial scales from continental to urban. O3 concentrations follow the general decreases in both NOx and VOC emissions and ambient concentrations of precursors (nitrogen dioxide, NO2; nonmethane organic compounds, NMOCs). Annual fourth-highest daily peak 8-hr average ozone and annual average or 98th percentile daily maximum hourly NO2 concentrations show a statistically significant (p < 0.05) linear fit whose slope is less than 1:1 and intercept is in the 30 to >50 ppbv range. This empirical relationship is consistent with current understanding of O3 photochemistry. The linear O3–NO2 relationships found from our multispatial scale analysis can be used to extrapolate the rate of change of O3 with projected NOx emission reductions, which suggests that future declines in annual fourth-highest daily average 8-hr maximum O3 concentrations are unlikely to reach 65 ppbv or lower everywhere in the next decade. Measurements do not indicate increased annual reduction rates in (high) O3 concentrations beyond the multidecadal precursor proportionality, since aggressive measures for NOx and VOC reduction are in place and have not produced an accelerated O3 reduction rate beyond that prior to the mid-2000s. Empirically estimated changes in O3 with emissions suggest that O3 is less sensitive to precursor reductions than is found by the CAMx (v. 6.1) photochemical model. Options for increasing the rate of O3 change are limited by photochemical factors, including the increase in NOx sensitivity with time (NMOC/NOx ratio increase), increase in O3 production efficiency at lower NOx concentrations (higher O3/NOy ratio), and the presence of natural NOx and NMOC precursors and background O3.

Implications:?This analysis demonstrates empirical relations between O3 and precursors based on long term trends in U.S. locations. The results indicate that ground-level O3 concentrations have responded predictably to reductions in VOC and NOx since the 1980s. The analysis reveals linear relations between the highest O3 and NO2 concentrations. Extrapolation of the historic trends to the future with expected continued precursor reductions suggest that achieving the 2014 proposed reduction in the U.S. National Ambient Air Quality Standard to a level between 65 and 70 ppbv is unlikely within the next decade. Comparison of measurements with national results from a regulatory photochemical model, CAMx, v. 6.1, suggests that model predictions are more sensitive to emissions changes than the observations would support.  相似文献   

8.
Volatile Organic Compounds (VOCs) emitted from vegetation (particularly isoprenoids) represent an important source of atmospheric hydrocarbons almost double the anthropogenic source. When biogenic VOC mix with NOx in the presence of UV radiation, ozone (O3) is formed. In Italy, optimal conditions for O3 formation in terms of VOC/NOx ratios and abundance of UV radiation occur for long periods of the year. Moreover, Italian vegetation includes several species that are strong and evergreen isoprenoid emitters, and high temperatures for part of the year further stimulate these temperature-dependent emissions. We review emission of isoprenoids from Italian vegetation, current knowledge on the impact of rising O3 levels on isoprenoid emission, and evidence showing that isoprenoids can increase both the O3 flux to the plant and protection against oxidative stress because of their antioxidant functions. This trait not only influences plant tolerance to O3 but also may substantially alter the flux of O3 between atmosphere and biosphere.  相似文献   

9.
Abstract

A national analysis of weekday/weekend ozone (O3) differences demonstrates significant variation across the country. Weekend 1-hr or 8-hr maximum O3 varies from 15% lower than weekday levels to 30% higher. The weekend O3 increases are primarily found in and around large coastal cities in California and large cities in the Midwest and Northeast Corridor. Both the average and the 95th percentile of the daily 1-hr and 8-hr maxima exhibit the same general pattern. Many sites that have elevated O3 also have higher O3 on weekends even though traffic and O3 precursor levels are substantially reduced on weekends. Detailed studies of this phenomenon indicate that the primary cause of the higher O3 on weekends is the reduction in oxides of nitrogen (NOx) emissions on weekends in a volatile organic compound (VOC)-limited chemical regime. In contrast, the lower O3 on weekends in other locations is probably a result of NOx reductions in a NOx-limited regime. The NOx reduction explanation is supported by a wide range of ambient analyses and several photochemical modeling studies. Changes in the timing and location of emissions and meteorological factors play smaller roles in weekend O3 behavior. Weekday/weekend temperature differences do not explain the weekend effect but may modify it.  相似文献   

10.
O3 concentrations were simulated over the Seoul metropolitan area in Korea using a simple semi-empirical reaction (SEGRS) model which consists of generic reaction set (GRS), photochemical reaction set, and the diagnostic wind field generation model. The aggregated VOC emission strength was empirically scaled by the comparison of the simulated slope of (O3–2NO–NO2) concentration as a function of cumulative actinic light flux against measurements on high surface ozone concentration days with the relatively weak easterly geostrophic winds at the 850 hPa level in summer when the effect of horizontal advection was fairly small. The results indicated that the spatial distribution patterns and temporal variations of spatially averaged ground-level ozone concentrations were quite well simulated compared with those of observations with the modified volatile organic compound (VOC) emission strength. The diurnal trend of the surface ozone concentration and the maximum concentration compared observations were also quite reasonably simulated. However, the maximum ozone concentration occurring time at Seoul lagged about 2 h and the ozone concentration in the suburban area was slightly overestimated in the afternoon due to the influx of high ozone concentration from the urban area. It was found that the SEGRS model could be effectively used to simulate or predict the ground-level ozone concentration reasonably well without heavy computational cost provided the emission of ozone precursors are given.  相似文献   

11.
The 1990 Clean Air Act Amendments require states with O3 nonattainment areas to adopt regulations to enforce reasonable available control technologies (RACT) for NOX stationary sources by November 1992. However, if the states can demonstrate that such measures will have an adverse effect on air quality, NOX requirements may be waived. To assist the states in making this decision, the U.S. EPA is attempting to develop guidelines for the states to use in deciding whether NOX reductions will have a positive or negative impact on O3 air quality. Although NOX is a precursor of O3, at low VOC/NOX ratios, the reduction of NOX can result in increased peak O3. EPA is examining existing information on VOC/NOX ratios to develop “rules of thumb” to guide the states in their decision-making process. An examination of 6 a.m. to 9 a.m. VOC/NOX ratios at a number of sites in the eastern U.S. indicates that the ratio is highly variable from day-to-day and there is no apparent relationship between ratios measured at different sites within the same area. In addition, statistical analysis failed to identify significant relationships between the 6 a.m. to 9 a.m. VOC/NOX ratio and the maximum 1-hr. O3 within a given area. Since we know from smog chamber and modeling studies that such a relationship exists, this further invalidates the assumption that a ratio measured at a single site is representative of the ratio for the entire region. Based on this Information, we conclude that having the 6 a.m. to 9 a.m. ambient VOC/NOX ratio for a given area is insufficient information, by itself, to decide whether a VOC-alone, a NOx-alone, or a combined VOC-NOX reduction strategy is a viable or optimum O3-reduction strategy.  相似文献   

12.
Two photochemical smog modeling systems, UAM-V/ SAIMM (the Variable-Grid UAM/Systems Applications International Mesoscale Model) and CHIMERE/ECMWF (European Center for Medium Range Weather Forecast), are applied to the same tropical domain (Bangkok Metropolitan Region) and the same episode (January 13-14, 1997) to evaluate their relative performance using the same anthropogenic emission database (emission database available at the Pollution Control Department [PCD] 1997). Ozone (O3) produced by both models meets U.S. Environment Protection Agency (EPA) suggested prediction criteria of mean normalized bias error and mean normalized gross error on January 14 but none on January 13. Both models are tested with various modified databases of precursors emissions from the PCD original database. Performance of UAM-V is the best when using the modified emission data with volatile organic compound (VOC), NOx, and CO mobile source emission reduced by 50%, 50%, and 20% from the original database. CHIMERE suggests a similar emission database except for the VOC emission, which is a reduction by 40% from the original PCD mobile source emission. Spatial and temporal variations of O3, CO, NOy (total reactive nitrogen), and Ox (NO2+O3) predicted by both model systems using the modified  相似文献   

13.
With the promulgation of the National Ambient Air Quality Standards (NAAQS or standard) for 8-hr ozone (O3), the U.S. Environmental Protection Agency (EPA) issued modeling guidance that advocated the use of results from photochemical air quality models in a relative sense. In doing so, the EPA provided guidance on how to calculate relative response factors (RRFs) that can project current design value (DV) mixing ratios into the future for the purpose of determining the attainment status with respect to the O3 standard. The RRFs recommended by the EPA represent the average response of the photochemical model over a broad range of O3 mixing ratios above a specified cutoff threshold. However, it is known that O3 response to emission reductions of limiting precursors (i.e., NOx and/or VOC) is greater on days with higher O3 mixing ratios compared to days with lower mixing ratios. In this study, we present a segmented RRF concept termed band-RRF, which takes into account the different model responses at different O3 mixing ratios. The new band-RRF concept is demonstrated in the San Joaquin Valley (SJV) region of California for the 1-hr and 8-hr O3 standards. The 1-hr O3 analysis is relevant to work done in support of the SJV O3 State Implementation Plan (SIP) submitted to the EPA in 2013. The 8-hr example for the future year of 2019 is presented for illustrative purposes only. Further work will be conducted with attainment deadline of 2032 as part of upcoming SIPs for the 0.075 parts per million (ppm) 8-hr O3 standard. The applicability of the band-RRF concept to the particulate matter (PM2.5) standards is also discussed.
Implications:Results of photochemical models are used in regulatory applications in a relative sense using relative response factors (RRFs), which represent the impacts of emissions reductions over a wide range of ozone (O3) values. It is possible to extend the concept of RRFs to account for the fact that higher O3 mixing ratios (both 1-hr and 8-hr) respond more to emissions controls of limiting precursors than do lower O3 mixing ratios. We demonstrate this extended concept, termed band-RRF, for the 1-hr and 8-hr O3 National Ambient Air Quality Standard (NAAQS or standard) in the San Joaquin Valley of California. This extension can also be made applicable to the 24-hr PM2.5 and annual PM2.5 standards.  相似文献   

14.
Frequent smog episodes occur during spring, summer, and autumn in Insubria, Northern Italy. On a test site in this area the atmospheric concentration of the photo-oxidants ozone and peroxyacetyl nitrate has been monitored over a year (2000) together with ozone precursors listed in the European Union Air Quality Directive 2002/3/EC, such as nitrous oxides (NOX) and volatile organic compounds (VOC) including hydrocarbons and carbonyls. The results of this study revealed a strong impact of biogenic isoprene on the air quality.In winter isoprene was detected at the ppt level and correlated with anthropogenic VOC. However, during the growing season isoprene exhibited a distinct diurnal variation with maximum concentrations late in the afternoon reaching up 70 ppbC attributed to strong emissions from the abundant vegetation of broad-leaf deciduous trees in this area. A new HPLC-MS method was developed for the determination of isoprene's primary atmospheric oxidation products methacrolein as its 2,4-dinitrophenylhydrazone and methyl vinyl ketone as an unusual double derivative with 2,4-dinitrophenylhydrazine. Methacrolein and methyl vinyl ketone followed the same diurnal and annual trends as isoprene. The average monthly concentration of isoprene and these products ranged from around 10 ppbC in June, July and September to 20 ppbC in August, which constitutes 15–30% of C3–C9 VOCs. The contribution from isoprene photo-oxidation to the ambient air formaldehyde concentrations was also found to be high during this period ranging from 30% to 60% in May, June, July and August.From the atmospheric VOC and NOX concentrations the local photochemical ozone formation was estimated by the incremental reactivity approach. The calculations showed that in summer isoprene's contribution to the local ozone formation was as high as 50–75%.  相似文献   

15.
We evaluated the effect of a 20% reduction in the rate constant of the reaction of the hydroxyl radical with nitrogen dioxide to produce nitric acid (OH+NO2→HNO3) on model predictions of ozone mixing ratios ([O3]) and the effectiveness of reductions in emissions of volatile organic compounds (VOC) and nitrogen oxides (NOx) for reducing [O3]. By comparing a model simulation with the new rate constant to a base case scenario, we found that the [O3] increase was between 2 and 6% for typical rural conditions and between 6 and 16% for typical urban conditions. The increases in [O3] were less than proportional to the reduction in the OH+NO2 rate constant because of negative feedbacks in the photochemical mechanism. Next, we used two different approaches to evaluate how the new OH+NO2 rate constant changed the effectiveness of reductions in emissions of VOC and NOx: first, we evaluated the effect on [O3] sensitivity to small changes in emissions of VOC (d[O3]/dEVOC) and NOx (d[O3]/dENOx); and secondly, we used the empirical kinetic modeling approach to evaluate the effect on the level of emissions reduction necessary to reduce [O3] to a specified level. Both methods showed that reducing the OH+NO2 rate constant caused control strategies for VOC to become less effective relative to NOx control strategies. We found, however, that d[O3]/dEVOC and d[O3]/dENOx did not quantitatively predict the magnitude of the change in the control strategy because the [O3] response was nonlinear with respect to the size of the emissions reduction. We conclude that model sensitivity analyses calculated using small emissions changes do not accurately characterize the effect of uncertainty in model inputs (in this case, the OH+NO2 rate constant) on O3 attainment strategies. Instead, the effects of changes in model inputs should be studied using large changes in precursor emissions to approximate realistic attainment scenarios.  相似文献   

16.
The threshold values of indicator species and ratios delineating the transition between NOx and VOC sensitivity of ozone formation are assumed to be universal by various investigators. However, our previous studies suggested that threshold values might vary according to the locations and conditions. In this study, threshold values derived from various model simulations at two different locations (the area of Switzerland by UAM Model and San Joaquin Valley of Central California by SAQM Model) are examined using a new approach for defining NOx and VOC sensitive regimes. Possible definitions for the distinction of NOx and VOC sensitive ozone production regimes are given. The dependence of the threshold values for indicators and indicator ratios such as NOy, O3/NOz, HCHO/NOy, and H2O2/HNO3 on the definition of NOx and VOC sensitivity is discussed. Then the variations of threshold values under low emission conditions and in two different days are examined in both areas to check whether the models respond consistently to changes in environmental conditions. In both cases, threshold values are shifted similarly when emissions are reduced. Changes in the wind fields and aging of the photochemical oxidants seem to cause the day-to-day variation of the threshold values. O3/NOz and HCHO/NOy indicators are predicted to be unsatisfactory to separate the NOx and VOC sensitive regimes. Although NOy and H2O2/HNO3 provide a good separation of the two regimes, threshold values are affected by changes in the environmental conditions studied in this work.  相似文献   

17.
The city of Santiago, Chile experiences frequent high pollution episodes and as a consequence very high ozone concentrations, which are associated with health problems including increasing daily mortality and hospital admissions for respiratory illnesses. The development of ozone abatement strategies requires the determination of the potential of each pollutant to produce ozone, taking into account known mechanisms and chemical kinetics in addition to ambient atmospheric conditions. In this study, the photochemical formation of ozone during a summer campaign carried out from March 8–20, 2005 has been investigated using an urban photochemical box model based on the Master Chemical Mechanism (MCMv3.1). The MCM box model has been constrained with 10 min averages of simultaneous measurements of HONO, HCHO, CO, NO, j(O1D), j(NO2), 31 volatile organic compounds (VOCs) and meteorological parameters. The O3–NOx–VOC sensitivities have been determined by simulating ozone formation at different VOC and NOx concentrations. Ozone sensitivity analyses showed that photochemical ozone formation is VOC-limited under average summertime conditions in Santiago. The results of the model simulations have been compared with a set of potential empirical indicator relationships including H2O2/HNO3, HCHO/NOy and O3/NOz. The ozone forming potential of each measured VOC has been determined using the MCM box model. The impacts of the above study on possible summertime ozone control strategies in Santiago are discussed.  相似文献   

18.
Sensitivity of ozone (O3) concentrations in the Mexico City area to diurnal variations of surface air pollutant emissions is investigated using the WRF/Chem model. Our analysis shows that diurnal variations of nitrogen oxides (NOx = NO + NO2) and volatile organic compound (VOC) emissions play an important role in controlling the O3 concentrations in the Mexico City area. The contributions of NOx and VOC emissions to daytime O3 concentrations are very sensitive to the morning emissions of NOx and VOCs. Increase in morning NOx emissions leads to decrease in daytime O3 concentrations as well as the afternoon O3 maximum, while increase in morning VOC emissions tends to increase in O3 concentrations in late morning and early afternoon, indicating that O3 production in Mexico City is under VOC-limited regime. It is also found that the nighttime O3 is independent of VOCs, but is sensitive to NOx. The emissions of VOCs during other periods (early morning, evening, and night) have only small impacts on O3 concentrations, while the emissions of NOx have important impacts on O3 concentrations in the evening and the early morning.This study suggests that shifting emission pattern, while keeping the total emissions unchanged, has important impacts on air quality. For example, delaying the morning emission peak from 8 am to 10 am significantly reduced the morning peaks of NOx and VOCs, as well as the afternoon O3 maxima. It suggests that without reduction of total emission, the daytime O3 concentrations can be significantly reduced by changing the diurnal variations of the emissions of O3 precursors.  相似文献   

19.
A highly resolved temporal and spatial Pearl River Delta (PRD) regional emission inventory for the year 2006 was developed with the use of best available domestic emission factors and activity data. The inventory covers major emission sources in the region and a bottom–up approach was adopted to compile the inventory for those sources where possible. The results show that the estimates for SO2, NOx, CO, PM10, PM2.5 and VOC emissions in the PRD region for the year 2006 are 711.4 kt, 891.9 kt, 3840.6 kt, 418.4 kt, 204.6 kt, and 1180.1 kt, respectively. About 91.4% of SO2 emissions were from power plant and industrial sources, and 87.2% of NOx emissions were from power plant and mobile sources. The industrial, mobile and power plant sources are major contributors to PM10 and PM2.5 emissions, accounting for 97.7% of the total PM10 and 97.2% of PM2.5 emissions, respectively. Mobile, biogenic and VOC product-related sources are responsible for 90.5% of the total VOC emissions. The emissions are spatially allocated onto grid cells with a resolution of 3 km × 3 km, showing that anthropogenic air pollutant emissions are mainly distributed over PRD central-southern city cluster areas. The preliminary temporal profiles were established for the power plant, industrial and on-road mobile sources. There is relatively low uncertainty in SO2 emission estimates with a range of −16% to +21% from power plant sources, medium to high uncertainty for the NOx emissions, and high uncertainties in the VOC, PM2.5, PM10 and CO emissions.  相似文献   

20.
For the first time, polar and non-polar organic compounds from C4 to C20 have been identified and quantified in one urban and two saharan sites located in Algeria. They were collected on adsorption traps filled with graphitic carbons and analyzed by high-resolution gas chromatography–mass spectrometry after thermal desorption. More than 190 compounds released by man-made and biogenic sources or formed in air by degradation of photochemical smog precursors were identified in the city center of Algiers. Some of them were never reported before. During our determinations, high levels of pollution characterized the city. Transport of anthropogenic pollutants together with some biogenic emission from date palm trees was mainly responsible for the levels of VOCs measured in Melika oasis located at the entrance of the Sahara desert. Background tropospheric levels of VOCs were instead detected in Bouchene sandy site of the Sahara desert where no biogenic sources were present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号