首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 327 毫秒
1.
This investigation numerically examined the cutoff aerodynamic diameter (da50) and the sharpness (GSD) of the particle collection efficiency curve of impactors with a finite impaction plate diameter. Results revealed that the inertial impactors have a limited cutoff aerodynamic diameter at different air velocities. The extreme value of the cutoff aerodynamic diameter increases with the nozzle diameter (W)/the plate diameter (Dc). The computed da50/Dc values of the impactors increase with W/Dc at various Reynolds numbers (Re) and with the nozzle-toplate distance (S)/Dc when Re is 100. The value of GSD slightly increases with W/Dc for Re of 10 and 100, although the effect of S/Dc on GSD is not evident at various Res. The particle collection efficiency curve of the impactor with a lower Re is less sharp than that with a high Re at various W/Dc and S/Dc values. Statistical equations closely fitted the obtained numerical results for Res of 10-3000. The equations are useful for directly calculating the cutoff aerodynamic diameter and the sharpness of the particle collection efficiency curve for single round-nozzle impactors with a finite impaction Dc.  相似文献   

2.
This paper presents an experimental investigation of the effects of impaction substrate designs and material in reducing particle bounce and reentrainment. Particle collection without coating by using combinations of different impaction substrate designs and surface materials was conducted using a personal particle sampler (PPS) developed by the University of Southern California. The PPS operates at flow rate of 4 l min-1 with a 50% cutpoint of approximately 0.9 μm in aerodynamic diameter. The laboratory results showed that the PPS collection efficiency for particles larger than 50% cutpoint is strikingly low (e.g., less than 50%) when an uncoated open cavity made of aluminum was used as an impaction substrate. The collection efficiency gradually increased when Teflon tape, Nuclepore, and glass fiber filters were used as impaction surfaces, respectively. Conical or partially enclosed cavity substrate designs increased collection efficiency of particles of 9 μm up to 80–90%. A conical cavity with glass fiber filter used as impaction surface was identified as the optimum configuration, resulting in a collection efficiency of 92% at Stokes numbers as high as 15.4 (corresponding to 9 μm in aerodynamic diameter). Particle losses were low (less than 10%) and relatively independent of particle size in any design with glass fiber filter. Losses seemed to increase slightly with particle size in all other configurations. Finally, outdoor PM1 concentrations obtained with the PPS (in its optimum configuration) and a modified micro-orifice uniform deposit impactor (MOUDI) with coated impaction stages were in excellent agreement. The mean ratio of the PPS-to-MOUDI concentration was 1.13(±0.17) with a correlation coefficient R2=0.95. Results from this investigation can be readily applied to design particle bounce-free impaction substrates without the use of coating. This is a very important feature of impactors, especially when chemical analysis of the collected particulate matter is desirable.  相似文献   

3.
A cyclone with a 47 mm after-filter has been developed for ambient air size-selective monitoring. It has been extensively evaluated with laboratory-generated aerosol. Variation of the pressure drop and 50% cut point with flow rate show that the cyclone operates in a single flow regime with a vortex in the outlet flow. The particle size cutoff curve is comparable in sharpness to a cascade impactor and is the same for solid or liquid particles. At 21.7 L/min, D 50 is 2.5μm and at 15.4 L/min, D 50 is 3.5 μm. Collection efficiency data for flow rates from 8 to 27 L/min fit a universal curve when plotted vs. the normalized particle diameter, (D-D 50)/D 50 Reentrainment of previously deposited particles is less than 1 % of the loading per day. In field tests the cyclone has proved to be a very satisfactory size-selective sampler.  相似文献   

4.
ABSTRACT

A low-flow rate, sharp cut point inertial impaction sampler was developed in 1986 that has been widely used in PM exposure studies in the United States and several other countries. Although sold commercially as the MS&T Area Sampler, this sampler is widely referred to as the Harvard Impactor, since the initial use was at the Harvard School of Public Health. Impactor nozzles for this sampler have been designed and characterized for flows of 4,10, 20, and 23 L/min and cut points of 1, 2, 5, and 10 |im. An improved method for determining the actual collecting efficiency curve was developed and used for the recent impactor calibrations reported here. It consists of placing a multiplet reduction impactor inline just downstream of the vibrating orifice aerosol generator to remove the multiplets, thus allowing only the singlet particle s to penetrate through to the impactor being calibrated.

This paper documents the techniques and results of recent nozzle calibrations for this sampler and compares it with other size-selective inertial impactors. In general, the impactors were found to have sharp cutoff characteristics. Particle interstage losses for all of the impactors were very low, with the exception of the 10-|im cut size 20 L/ min impactor, which had greater losses due to the higher flow rate. All of the cut nozzle laboratory calibrations compare favorably to the U.S. Environmental Protection Agency (EPA) WINS-96 fine particle mass (PM2 5) impactor calibration data.  相似文献   

5.
The body of information presented in this paper is directed to investigators using inertial samplers for precise and accurate studies of respirable aerosols. The conventions commonly used for aerodynamic size for aerosol particles are discussed including the definition popularized by the "Task Group on Lung Dynamics" of the ICRP, and the "Lovelace" definition. To emphasize the distinction, the Task Group definition (unit density sphere equivalent) is called the aerodynamic equivalent diameter, Dae, and the Lovelace definition (characteristic expression based upon viscous resistance) is called the aerodynamic resistance diameter, Dar. The implications and efficacy of these conventions are related to procedures for calibration of cascade impactors, cyclones, and spiral centrifuges. The calibration of a spiral centrifuge at different altitudes is used as an example of the potential problems associated with the use of the different conventions for describing aerodynamic size. The aerodynamic resistance diameter is recommended for calibration of inertial samplers to be used to collect aerosols in the respirable size range.  相似文献   

6.
A low-flow rate, sharp cut point inertial impaction sampler was developed in 1986 that has been widely used in PM exposure studies in the United States and several other countries. Although sold commercially as the MS&T Area Sampler, this sampler is widely referred to as the Harvard Impactor, since the initial use was at the Harvard School of Public Health. Impactor nozzles for this sampler have been designed and characterized for flows of 4, 10, 20, and 23 L/min and cut points of 1, 2, 5, and 10 microns. An improved method for determining the actual collecting efficiency curve was developed and used for the recent impactor calibrations reported here. It consists of placing a multiplet reduction impactor inline just downstream of the vibrating orifice aerosol generator to remove the multiplets, thus allowing only the singlet particle s to penetrate through to the impactor being calibrated This paper documents the techniques and results of recent nozzle calibrations for this sampler and compares it with other size-selective inertial impactors. In general, the impactors were found to have sharp cutoff characteristics. Particle interstage losses for all of the impactors were very low, with the exception of the 10-micron cut size 20 L/min impactor, which had greater losses due to the higher flow rate. All of the 2.5-micron cut nozzle laboratory calibrations compare favorably to the U.S. Environmental Protection Agency (EPA) WINS-96 fine particle mass (PM2.5) impactor calibration data.  相似文献   

7.
Factors which help minimize pressure drop at a given level of collection efficiency for a bed packed with roughly spherical collectors are studied here by using the quality factor, the ratio of the single collector collection efficiency to the force per unit area on the single collector. This analysis indicates that energy-efficient designs can be obtained as follows: choose a representative particle size; if impaction predominates, design for an impaction parameter near one; if interception predominates, design for the smallest packing diameters feasible; if gravitational settling predominates, design for the largest packing diameters possible; if diffusion predominates, design for collector Reynolds numbers near 102. Some more general cases are also discussed.  相似文献   

8.
Two single round nozzle impactors have been developed for use in Harvard’s indoor air pollution health study. Both impactors operate at flow rates of 4 L/m and are nearly identical, differing only in their cut sizes of 2.5 μm and 10 μm aerodynamic diameters. Two identical cascaded stages of the same cut size are used to obtain sharp cut-off characteristics. The particles are deposited on impaction plates made of oil impregnated, porous material to reduce particle bounce and are discarded. Only the particles collected on the afterfilter are analyzed. Special care has been taken to collect the particles uniformly on the afterfilter to aid in particle analysis.

The jmpactors were calibrated with a vibrating orifice monodisperse aerosol generator. However, due to the sharp cut of the impactors, doublets and triplets in the calibration aerosols, even in small quantities, gave erroneous calibration curves. Therefore, the number of doublets and triplets in the challenging aerosols were measured and appropriate corrections made to the calibration curves.  相似文献   

9.
Abstract

Aerosol size distributions from ferrous foundry cupola furnaces vary depending on semicontinuous process dynamics, time along the tap-to-tap cycle, dilution ratio, and the physical and chemical nature of the charge and fuel. All of these factors result in a highly time-dependent emission of particulate matter (PM) 2.5 µm or less in aerodynamic diameter (PM2.5)—even on a mass concentration basis. Control measures are frequently taken on the basis of low-reliability parameters such as emission factors and loosely established mass ratios of PM2.5 to PM 10 µm or less in aerodynamic diameter (PM10). The new environmental requirements could entail unexpected and undesired drawbacks and uncertainties in the meaning and effectiveness of process improvement measures. The development of process-integrated and flue-gas cleaning measures for reduction of particle emissions requires a better knowledge of generation mechanisms during melting. Available aerosol analyzers expand the range of control issues to be tackled and contribute to greatly reduce the uncertainty of engineering decisions on trace pollutant control. This approach combines real-time size distribution monitoring and cascade impactors as preseparators for chemical or morphological analysis. The results allow for establishing a design rationale and performance requirement for control devices. A number size distribution below 10 µm in aerodynamic equivalent diameter was chosen as the main indicator of charge influence and filter performance. Size distribution is trimodal, with a coarse mode more than 12 µm that contributes up to 30% of the total mass. A temporal series for these data leads to identification of the most relevant size ranges for a specific furnace (e.g., the most penetrating size range). In this cupola, this size range is between 0.32 and 0.77 µm of aerodynamic equivalent diameter and defines the pollution control strategy for metals concentrating within this size range. Scrap quality effect is best monitored at less than 0.2 µm in aerodynamic equivalent diameter and has been confirmed as strongly dependent on the physical state of the charge.  相似文献   

10.
Abstract

Size-resolved particulate matter (PM) emitted from light-duty gasoline vehicles (LDGVs) was characterized using filter-based samplers, cascade impactors, and scanning mobility particle size measurements in the summer 2002. Thirty LDGVs, with different engine and emissions control technologies (model years 1965–2003; odometer readings 1264–207,104 mi), were tested on a chassis dynamometer using the federal test procedure (FTP), the unified cycle (UC), and the correction cycle (CC). LDGV PM emissions were strongly correlated with vehicle age and emissions control technology. The oldest models had average ultrafine PM0.1 (0.056- to 0.1-μm aerodynamic diameter) and fine PM1.8 (≤1.8-μm aerodynamic diame ter) emission rates of 9.6 mg/km and 213 mg/km, respectively. The newest vehicles had PM0.1 and PM1.8 emis sions of 51 μg/km and 371 μg/km, respectively. Light duty trucks and sport utility vehicles had PM0.1 and PM1.8 emissions nearly double the corresponding emission rates from passenger cars. Higher PM emissions were associated with cold starts and hard accelerations. The FTP driving cycle produced the lowest emissions, followed by the UC and the CC. PM mass distributions peaked between 0.1-and 0.18-μm particle diameter for all vehicles except those emitting visible smoke, which peaked between 0.18 and 0.32 μm. The majority of the PM was composed of carbonaceous material, with only trace amounts of water-soluble ions. Elemental carbon (EC) and organic matter (OM) had similar size distributions, but the EC/OM ratio in LDGV exhaust particles was a strong function of the adopted emissions control technology and of vehicle maintenance. Exhaust from LDGV classes with lower PM emissions generally had higher EC/OM ratios. LDGVs adopting newer technologies were characterized by the highest EC/OM ratios, whereas OM dominated PM emissions from older vehicles. Driving cycles with cold starts and hard accelerations produced higher EC/OM ratios in ultrafine particles.  相似文献   

11.
In the industrial city of Hamilton, Ontario, Canada, we recently carried out an epidemiological study of the effect of environmental factors on respiratory health in 3500 elementary, schoolchildren. The level and size distribution of suspended particles in ambient air was measured from 24-h samples taken at 6-day intervals from a network of 29 hivol TSP samplers, and nine Andersen 2000 4-stage cascade impactors. Exposure was computed by generating a 3-dimensional response surface (in TSP and in easting and northing geographical coordinates) using a linear regression model of the form: TSP = (1 + E + N)2, based on monthly geometrical mean data for all sites. From the response surface generated for a given month, TSP levels were predicted by the model for all schools by specifying their geographical coordinates. The yearly exposure for a given child was determined from the arithmetic mean of the predicted values for 12 monthly TSP levels. A similar procedure was employed for calculation of the exposure to the "fine" (≤3.3 μm) and "coarse" (>3.3 μm) size fraction, as well as the aerodynamic mass median diameter of particles from the network of cascade impactors. Results of the measurements showed that gradients for TSP up to approximately 10 μg/m3/km exist over the city covering distances from 5 to 10 km. The range of 1 yr mean exposure values calculated for each child was from 30.5 μg/m3 to 74.5 μg/m3. Comparable figures for particle size were up to 0.3 μm AMMD (aerodynamic mass median diameter)/km and annual mean particle size exposure from 2.69 to 3.53 μm AMMD.  相似文献   

12.
Inhalable particulate matter (IP) samples have been collected in six U.S. cities in conjunction with an air pollution health study. The IP were collected using dichotomous virtual impactors in two size ranges: fine particles (FP) having aerodynamic diameter (da) <2.5 μm, and coarse particles (CP) with 2.5 μm < da < 15 μm. The mass measurements were determined by beta-gauge attenuation. The elemental composition of the FP and CP were determined by X-ray fluorescence. The means and distributions for FP and CP and selected elemental data highlight the similarities and differences that exist among these cities in the health study. Examining the temporal variations gives additional information on the meteorology and sources influencing the FP and CP fractions of Inhalable particle mass.

Differences in the concentration (and ratios) of selected elements have indicated the varying presence of crustal, steel industry, automotive, oceanic and fuel combustion sources in these cities. The noted variation in the concentrations and character of ambient aerosols in these cities are pertinent to interpreting differences in population exposures.  相似文献   

13.
ABSTRACT

The issue of fine particle (PM25) exposures and their potential health effects is a focus of scientific research because of the recently promulgated National Ambient Air Quality Standard for PM2 5. Before final implementation, the health and exposure basis for the standard will be reviewed by the U.S. Environmental Protection Agency within the next five years. As part of this process, it is necessary to understand total particle exposure issues and to determine the relative importance of the origin of PM2 5 exposure in various micro-environments. The results presented in this study examine emissions of fine particles from a previously uncharacterized indoor source: the residential vacuum cleaner. Eleven standard vacuum cleaners were tested for the emission rate of fine particles by their individual motors and for their efficiency in collecting laboratory-generated fine particles. An aerosol generator was used to introduce fine potassium chloride (KC1) particles into the vacuum cleaner inlet for the collection efficiency tests. Measurements of the motor emissions, which include carbon, and the KCl aerosol were made using a continuous HIAC/Royco 5130A light-scattering particle detector. All tests were conducted in a metal chamber specifically designed to completely contain the vacuum cleaner and operate it in a stationary position. For the tested vacuum cleaners, fine particle motor emissions ranged from 9.6 x 104 to 3.34 x 108 particles/min, which were estimated to be 0.028 to 176 mg/min for mass emissions, respectively. The vast majority of particles released were in the range of 0.3-0.5 mm in diameter. The lowest particle emission rate was obtained for a vacuum cleaner that had a high efficiency (HEPA) filter placed after the vacuum cleaner bag and the motor within a sealed exhaust system. This vacuum cleaner removed the KC1particles that escaped the vacuum cleaner bag and the particles emitted by the motor. Results obtained for the KC1 collection efficiency tests show >99% of the fine particles were captured by the two vacuum cleaners that used a HEPA filter. A series of tests conducted on two vacuum cleaners found that the motors also emitted ultra-fine particles above 0.01 mm in diameter at rates of greater than 108 ultra-fine particles/CF of air. The model that had the best collection efficiency for fine particles also reduced the ultra-fine particle emissions by a factor of 1 x 103.  相似文献   

14.
Theoretical calculations and experimental measurements show that the collection of small aerosol particles (0.05 to 5 micron diameter range) by water droplets in spray scrubbers can be substantially increased by electrostatically charging the droplets and particles to opposite polarity. Measurements with a 140 acfm two chamber spray scrubber (7 seconds gas residence time) showed an increase in the overall particle collection efficiency from 68.8% tit uncharged conditions to 93.6% at charged conditions, with a dioctyl phthalate aerosol (1.05 μm particle mass mean diameter and 2.59 geometric standard deviation). The collection efficiency for 0.3 μm particles increased from 35 to 87% when charged. During 1973–1974 a 1000 acfm pilot plant electrostatic scrubber was constructed inside a 40 ft trailer for evaluation on controlling particu-late emissions from pulp mill operations (funded by Northwest Pulp and Paper Association). Field tests performed on the particle emissions exhausting from SO2 absorption towers treating the gases from a magnesium based sulfite recovery boiler have shown particle collection efficiencies ranging from about 60 to 99% by weight, depending on the electrostatic scrubber operating conditions. Energy requirements for the University of Washington electrostatic scrubber are about 0.5 hp/1000 acfm (350 Watts/1000 acfm) including gas pressure drop, water pressure drop, and electrostatic charging of the water spray droplets and the particles.  相似文献   

15.
Abstract

A microanalytical method suitable for the quantitative determination of the sugar anhydride levoglucosan in low-volume samples of atmospheric fine particulate matter (PM) has been developed and validated. The method incorporates two sugar anhydrides as quality control standards. The recovery standard sedoheptulosan (2,7-anhydro-β-D-altro-heptulopyranose) in 20 μL solvent is added onto samples of the atmospheric fine PM and aged for 1 hr before ultrasonic extraction with ethylacetate/ triethylamine. The extract is reduced in volume, an internal standard is added (1,5-anhydro-D-mannitol), and a portion of the extract is derivatized with 10% by volume N-trimethylsilylimidazole. The derivatized extract is analyzed by gas chromatography/mass spectrometry (GC/MS). The recovery of levoglucosan using this procedure was 69 ± 6% from five filters amended with 2 μg levoglu-cosan, and the reproducibility of the assay is 9%. The limit of detection is ~0.1 μg/mL, which is equivalent to ~3.5 ng/m3 for a 10 L/min sampler or ~8.7 ng/m3 for a 4 L/min personal sampler (assuming 24-hr integrated samples). We demonstrated that levoglucosan concentrations in collocated samples (expressed as ng/m3) were identical irrespective of whether samples were collected by PM with aerodynamic diameter ≤2.5 μm or PM with aerodynamic diameter ≤10 μm impactors. It was also demonstrated that X-ray fluorescence analysis of samples of atmospheric PM, before levoglucosan determinations, did not alter the levels of levoglucosan.  相似文献   

16.
Seventeen papers were presented on improved instruments and techniques for measuring the size, number, and composition of particles in process streams. Recent studies on cascade impactors, cyclones, and diffusion batteries were reported. Several papers discussed methods for making in situ particle size or mass determinations through light scattering. Systems that have been developed to determine the collection efficiency of electrostatic precipitators, scrubbers, and bag filters were described.  相似文献   

17.
We developed and tested a methodology to extract both the size-segregated source apportionment of atmospheric aerosol and the size distribution of each detected element. The experiment is based on the parallel use of a standard low-volume sampler to collect Particulate Matter (PM) and an Optical Particle Counter (OPC). The approach is complementary to size-segregated PM sampling, and it was tested versus a 12-stage cascade impactor. Samples were collected inside the urban area of Genoa (Italy) and their elemental composition was measured by Energy Dispersive-X Ray Fluorescence (ED-XRF). Positive Matrix Factorization (PMF) was applied to time series of elemental concentrations to identify major PM sources, and both PM mass concentration and size-segregated particle number concentration were apportioned. Source profiles and temporal trends extracted by PMF were analyzed together with the OPC data to obtain the size distribution for several elements. The new methodology proved to be reliable for the PM apportionment as well as in providing the elemental concentrations in PM10, PM2.5, and PM1 (PM with aerodynamic diameter, Dae < 10, 2.5, and 1 μm, respectively). The elemental size distributions are in good agreement with those obtained by the cascade impactor for several elements but some discrepancies, in particular for traffic emissions, are stressed and discussed in the text. The new methodology has two main advantages: it only requires standard semi-automatic sampling equipment and compositional analysis and it provides size-segregated information averaged over quite long periods (typically several months). This is particularly important since campaigns with cascade impactors are generally laborious and thus limited to short periods.  相似文献   

18.
Electrostatic precipitation is considered as an effective technology for fine particle removal. A lab-scale wet electrostatic precipitator (ESP) with wire-to-plate configuration was developed to study particle migration and collection. The performance of the wet ESP was evaluated in terms of the corona discharge characteristics, total removal efficiency and fractional removal efficiency. The corona discharge characteristics and particle removal abilities of the wet ESP were investigated and compared with dry ESP. Particle removal efficiency was influenced by discharge electrode type, SO2 concentration, specific collection area (SCA) and particle/droplet interaction. Results showed that the particle removal efficiency of wet ESP was elevated to 97.86% from 93.75% of dry ESP. Three types of discharge electrodes were investigated. Higher particle removal efficiency and larger migration velocity could be obtained with fishbone electrode. Particle removal efficiency decreased by 2.87% when SO2 concentration increased from 0 ppm to 43 ppm as a result of the suppression of corona discharge and particle charging. The removal efficiency increased with higher SCA, but it changed by only 0.71% with the SCA increasing from 25.0 m2/(m3/s) to 32.5 m2/(m3/s). Meanwhile, the increasing of particle and droplet concentration was favorable to the particle aggregation and improved particle removal efficiency.

Implications: This work tends to study the particle migration and collection under spraying condition. The performance of a wet electrostatic precipitator (ESP) is evaluated in terms of the corona discharge characteristics, total particle removal efficiency, and fractional particle removal efficiency. The effects of water droplets on particle removal, especially on removal of particles with different sizes, is investigated. The optimization work was done to determine appropriate water consumption, discharge electrode type, and specific collection area, which can provide a basis for wet ESP design and application.  相似文献   


19.
The present study was carried out with the aim of evaluating the performance of six different aerosol samplers in terms of mass concentration, particle size distribution, and mass fraction for the international size-sampling conventions. The international size-sampling criteria were defined as inhalable, thoracic, and respirable mass fractions with 50% cutoff at an aerodynamic equivalent diameter of 100 μm, 10 μm, and 4 μm, respectively. Two Andersen, four total suspended particulate (TSP), two RespiCon, four PM10, two DustTrak, and two SidePak samplers were selected and tested to quantitatively estimate human exposure in a carefully controlled particulate matter (PM) test chamber. The overall results indicate that (1) Andersen samplers underestimate total suspended PM and overestimate thoracic and respirable PM due to particle bounce and carryover between stages, (2) TSP samplers provide total suspended PM as reference samplers, (3) TSP samplers quantified by a coulter counter multisizer provide no information below an equivalent spherical diameter of 2 μm and therefore underestimate respirable PM, (4) RespiCon samplers are free from particle bounce as inhalable samplers but underestimate total suspended PM, (5) PM10 samplers overestimate thoracic PM, and (6) DustTrak and SidePak samplers provide relative PM concentrations instead of absolute PM concentrations.  相似文献   

20.
A method is described for dynamic calibration of an acid aerosol analyzer based on a commercial modification of the Thomas Autometer and manufactured by the Instrument Development Company. This automated instrument removes acid aerosol from an air stream by sonic impaction, and the sulfuric acid collected is determined conductometrically. An all-glass aerosol generator based on the reaction of water vapor with sulfur trioxide vapor released from fuming sulfuric acid was built for the calibration. Air samples were withdrawn for instrument calibration before and after the concentration of the acid aerosol was determined by titration. The apparent particle size as determined by an Andersen sampler ranged from 2.0 microns to less than 0.68 micron and exhibited a sharp peak with mass median diameter at 1.3 microns in the distribution curve. The size of the aerosol, within certain limits, could be controlled by humidity. Data indicated a linear response with an aerosol collection efficiency of 80 percent in the important respirable size range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号