首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 141 毫秒
1.
The 1990 Clean Air Act amendments require the U.S. Environmental Protection Agency (EPA) to set guidelines for states to follow in designing and running vehicle inspection and maintenance (I/M) programs. Included in this charge was a requirement to implement an on-board diagnostic (OBD) test for both basic and enhanced I/M programs. This paper provides the results to date of an ongoing EPA study undertaken to assess the durability of the OBD system as vehicles age and as mileage is accrued. The primary results of this effort indicate the points described below. First, the majority of high-mileage vehicles tested had emission levels within their certification limits, and their malfunction indicator light (MIL) was not illuminated, indicating that the systems are capable of working throughout the life of a vehicle. Second, OBD provides better air quality benefits than an IM240 test (using the federal test procedure [FTP] as the benchmark comparison). This statement is based on greater emissions reductions from OBD-directed repairs than reductions associated with IM240-identified repairs. In general, the benefits of repairing the OBD fails were smaller, but the aggregate benefits were greater, indicating that OBD tests find both the high-emitting and a number of marginally high-emitting vehicles without false failures that can occur with any tailpipe test. Third, vehicles that truly had high-tailpipe emissions as confirmed by laboratory IM240 and FTP testing also had illuminated MILs at a statistically significant level. Last, field data from state programs have demonstrated MIL illumination rates comparable with those seen in this work, suggesting that the vehicles sampled in this study were representative of the larger fleet. Nonetheless, it is important to continue the testing of high-mileage OBD vehicles into the foreseeable future to ensure that the systems are operating correctly as the fleet ages and as changes in emission certification levels take effect.  相似文献   

2.
A total of 77 On-Board Diagnostics II (OBDII)-equipped vehicles with illuminated malfunction indicator lights (MILs) and non-evaporative codes were tested before and after repair. The test cycles included the Federal Test Procedure (FTP), IM240, and steady-state cycles. A total of 17 vehicles were found with emissions greater than 1.5 times their respective FTP emissions standards. Repair of these vehicles resulted in dramatic reductions in overall emissions for all the cycles. A majority of the remaining vehicles were found to have emissions below the certification standard for the FTP both before and after repair. Repairs for the vehicles with emissions <1.5 times the standard resulted in some smaller but quantifiable emission reductions over the FTP and IM240 but larger reductions over the steady-state driving tests. Misfires, bad oxygen sensors, and exhaust gas recirculation (EGR) problems were the most common non-evaporative causes for triggering the MIL. The results show some fundamental differences between identifying malfunctioning vehicles using OBDII as opposed to more traditional dynamometer tests. In particular, for many systems, OBDII identifies components that are operating outside their design specification rather than for a specific emissions threshold.  相似文献   

3.
Abstract

A total of 77 On-Board Diagnostics II (OBDII)-equipped vehicles with illuminated malfunction indicator lights (MILs) and non-evaporative codes were tested before and after repair. The test cycles included the Federal Test Procedure (FTP), IM240, and steady-state cycles. A total of 17 vehicles were found with emissions greater than 1.5 times their respective FTP emissions standards. Repair of these vehicles resulted in dramatic reductions in overall emissions for all the cycles. A majority of the remaining vehicles were found to have emissions below the certification standard for the FTP both before and after repair. Repairs for the vehicles with emissions <1.5 times the standard resulted in some smaller but quantifiable emission reductions over the FTP and IM240 but larger reductions over the steady-state driving tests. Misfires, bad oxygen sensors, and exhaust gas recirculation (EGR) problems were the most common non-evaporative causes for triggering the MIL. The results show some fundamental differences between identifying malfunctioning vehicles using OBDII as opposed to more traditional dynamometer tests. In particular, for many systems, OBDII identifies components that are operating outside their design specification rather than for a specific emissions threshold.  相似文献   

4.
Based on requirements under the Clean Air Act Amendments of 1990, most state vehicle inspection and maintenance (I/M) programs have, since 2002, replaced the tailpipe emission testing with the on-board diagnostic (OBD) II testing for 1996 model and newer vehicles. This test relies on the OBD II system to give the pass or fail result, depending on certain conditions that might cause the vehicle to emit pollution 1.5 times higher than the regulated standard. The OBD II system is a computer and sensors installed in the vehicle to monitor the emission control units and signal if there is any malfunction. As a vehicle ages, its engine, pollution control units, and OBD II system deteriorate. Because the OBD II system's durability directly influences the test outcome, it is important to examine the fleetwide trend in the OBD II test results in comparison with an alternative measure of identifying high emitting vehicles. This study investigates whether the validity and reliability of the OBD II test is related to the age of the OBD II system installed in the fleet. Using Atlanta's I/M testing records and remote sensing device (RSD) data collected during 2002-2005, this research establishes the convergent validity and interobserver reliability criteria for the OBD II test based on on-road emissions measured by RSDs. The study results show that older vehicles exhibit significantly lower RSD-OBD II outcome agreement than newer vehicles. This suggests that the validity and reliability of the OBD II test may decline in the older vehicle fleets. Explanations and possible confounding factors for these findings are discussed.  相似文献   

5.
ABSTRACT

Based on requirements under the Clean Air Act Amendments of 1990, most state vehicle inspection and maintenance (I/M) programs have, since 2002, replaced the tailpipe emission testing with the on-board diagnostic (OBD) II testing for 1996 model and newer vehicles. This test relies on the OBD II system to give the pass or fail result, depending on certain conditions that might cause the vehicle to emit pollution 1.5 times higher than the regulated standard. The OBD II system is a computer and sensors installed in the vehicle to monitor the emission control units and signal if there is any malfunction. As a vehicle ages, its engine, pollution control units, and OBD II system deteriorate. Because the OBD II system's durability directly influences the test outcome, it is important to examine the fleetwide trend in the OBD II test results in comparison with an alternative measure of identifying high emitting vehicles. This study investigates whether the validity and reliability of the OBD II test is related to the age of the OBD II system installed in the fleet. Using Atlanta's I/M testing records and remote sensing device (RSD) data collected during 2002–2005, this research establishes the convergent validity and interobserver reliability criteria for the OBD II test based on on-road emissions measured by RSDs. The study results show that older vehicles exhibit significantly lower RSD–OBD II outcome agreement than newer vehicles. This suggests that the validity and reliability of the OBD II test may decline in the older vehicle fleets. Explanations and possible confounding factors for these findings are discussed.

IMPLICATIONS This research demonstrates the potential worsening validity and reliability of the on-board diagnostic (OBD) II test in old vehicles. If the main source of low validity and reliability comes from the OBD II system malfunction, we expect this malfunctioning OBD II fleet will continue to grow in the future. If unchecked, the deterioration of OBD II system may impair the effort of the inspection and maintenance (I/M) program to identify high-emitting vehicles and the ultimate objective of reducing the air pollution from automobiles. This result is especially important in a regulatory context where technological and emissions standards dominate environmental policy and yet little attention is paid to the possible degradation of environmental monitors themselves.  相似文献   

6.
Abstract

Inspection and maintenance programs for motor vehicles in the United States increasingly use loaded mode mass emissions testing (IM240). A method was developed to predict mass emission rates and mass emission changes, particularly from repair benefits, using a low-cost, portable four-gas non-dispersive infrared (NDIR) vehicle exhaust gas analyzer. A single vehicle was tested several times with the analyzer while on the dynamometer and undergoing successive repairs. Excellent correlations for CO and HC were observed. Five vehicles were measured using an on-road driving loop before and after emissions-related repairs, while another three vehicles were tested with no repairs performed. The on-road concentration data used to guide the repair process were converted to grams per gallon; when divided by estimated miles per gallon, this gave grams per mile emissions for comparison to IM240. Correlation coefficients (r2) of 0.87 for CO and 0.76 for HC were achieved for the 13 tests. The linear correlations between IM240 and emissions measured by this method would allow repair facilities to perform a relatively inexpensive test for diagnostic purposes and to estimate repair effectiveness without the need for a dynamometer.  相似文献   

7.
ABSTRACT

The expense and inconvenience of enhanced-vehicle-emissions testing using the full 240-second dynamometer test has led states to search for ways to shorten the test process. In fact, all states that currently use the IM240 allow some type of fast-pass, usually as early in the test as second 31, and Arizona has allowed vehicles to fast-fail after second 93. While these shorter tests save states millions of dollars in inspection lanes and driver costs, there is a loss of information since test results are no longer comparable across vehicles. This paper presents a methodology for estimating full 240-second results from partial-test results for three pollutants: HC, CO, and NOx. If states can convert all tests to consistent IM240 readings, they will be able to better characterize fleet emissions and to evaluate the impact of inspection and maintenance and other programs on emissions over time. Using a random sample of vehicles in Arizona which received full 240-second tests, we use regression analysis to estimate the relationship between emissions at second 240 and emissions at earlier seconds in the test. We examine the influence of other variables such as age, model-year group, and the pollution level itself on this relationship. We also use the estimated coefficients in several applications. First, we try to shed light on the frequent assertion that the results of the dynamometer test provide guidance for vehicle repair of failing vehicles. Using a probit analysis, we find that the probability that a failing vehicle will pass the test on the first retest is greater the longer the test has progressed. Second, we test the accuracy of our estimates for forecasting fleet emissions from partial-test emissions results in Arizona. We find forecasted fleet average emissions to be very close to the actual fleet averages for light-duty vehicles, but not quite as good for trucks, particularly when NOx emissions are forecast.  相似文献   

8.
Abstract

Second-by-second modal emissions data from a 73-vehicle fleet of 1990 and 1991 light duty cars and trucks driven on the Federal Test Procedure (FTP) driving cycle were examined to determine remote sensing errors of commission in identifying high emissions vehicles. Results are combined with a similar analysis of errors of omission based on modal FTP data from high emissions vehicles. Extremely low errors of commission combined with modest errors of omission indicate that remote sensing should be very effective in isolating high CO and HC emitting vehicles in a fleet of late model vehicles on the road.  相似文献   

9.
Abstract

Remote sensing measurements of CO emissions from on-road vehicles were made in California in 1991 and in Michigan in 1992. It was determined that both fleets had a small linear increase in the high emitter frequency (vehicles emitting more than 4% CO) as a function of vehicle age for 1986 and newer model vehicles. Although high emitting vehicles were only a small minority of the fleet, they had a dominant impact on the mean CO and total CO emitted by the fleet. In Michigan, the highest emitting 5% of passenger cars generated 45% of the CO from cars. In California, the highest emitting 5% of passenger cars generated 38% of the CO from cars. There was a high correlation between the mean CO emitted by each model year of vehicle and the frequency of high emitting vehicles within the model year for both the Michigan and California fleets. The frequency of high emitters within any model year had no obvious relation to that model year’s certification standards. The high emitter frequencies for vehicles less than nine years old were very similar for the California and Michigan fleets. An increase in the high emitter frequency in the ten-year-old and older Michigan passenger car fleet (relative to the California passenger car fleet), suggests, but does not conclusively demonstrate, that the rate of high emitters in Michigan and California is reduced by the inspection and maintenance (I/M) programs.  相似文献   

10.
Nitrous oxide (N2O) emissions measurements were made on light duty gasoline and light duty diesel vehicles during chassis dynamometer testing conducted at the Environment Canada and California Air Resources Board vehicle emissions laboratories between 2001 and 2007. Per phase and composite FTP emission rates were measured. A subset of vehicles was also tested using other driving cycles to characterize emissions as a function of different driving conditions. Vehicles were both new (<6500 km) and in-use (6500–160,000 km) and were tested on low sulfur gasoline (<30 ppm) or low sulfur diesel (<300 ppm). Measurements from selected published studies were combined with these new measurements to give a test fleet of 467 vehicles meeting both US EPA and California criteria pollutant emissions standards between Tier 0 and Tier 2 Bin 3 or SULEV. Aggregate distance-based and fuel-based emission factors for N2O are reported for each emission standard and for each of the different test cycles. Results show that the distinction between light duty automobile and light duty truck is not significant for any of the emission standards represented by the test fleet and the distinction between new and aged catalyst is significant for vehicles meeting all emission standards but Tier 2. This is likely due to the relatively low mileage accumulated by the Tier 2 vehicles in this study as compared to the durability requirement of the standard. The FTP composite N2O emission factors for gasoline vehicles meeting emission standards more stringent than Tier 1 are substantially lower than those currently used by both Canada and the US for the 2005 inventories. N2O emission factors from test cycles other than the FTP illustrate the variability of emission factors as a function of driving conditions. N2O emission factors are shown to strongly correlate with NMHC/NMOG emission standards and less strongly with NOX and CO emission standards. A review of several published reports on the effect of gasoline sulfur content on N2O emissions suggests that additional research is needed to adequately quantify the increase in N2O emissions as a function of fuel sulfur.  相似文献   

11.
Abstract

To test the effectiveness of California’s vehicle inspection/ maintenance (I/M) program, exclusive of vehicle-owner intervention, a fleet of more than 1,100 vehicles that previously had failed California’s Smog Check test were sent to randomly selected Smog Check stations in the Los Angeles area for covert inspections and repairs. The two-speed idle test was used for repairs. For those vehicles that were repaired at the first inspection, their FTP emission reductions were 25%, 14%, and 11% for hydrocarbons (HC), carbon monoxide (CO), and nitrogen oxides (NOx), respectively, although emissions testing for NOx was not performed at the Smog Check stations. Idle HC and CO emissions increased for 35% and 43% of the vehicles, respectively, after repairs. This data set shows that most vehicles that fail the Smog Check inspection are only marginal emitters, with 61% and 44% of the total potential for HC and CO emission reductions, respectively, coming from only 10% of the vehicles that currently fail the inspection. When the vehicles were rank-ordered by idle emissions from dirtiest to cleanest, emission reduction costs for the highest-emitting 10% of the fleet averaged $l,100/ton and $250/ton for HC and CO, respectively, attributing all the costs to each pollutant exclusively. For the remaining vehicles, costs increased dramatically.  相似文献   

12.
Abstract

Test-to-test variability has been observed by many current testing methods, including the Federal Test Procedure, the IM240 dynamometer test, the idle test common to many Inspection and Maintenance programs, and on-road remote sensing. The variability is attributable to the vehicle, not to the testing procedure. Because the vehicles are the dominant source of variability, the only way such vehicles can be reliably identified is through the use of multiple tests. The emissions variability increases with increasing average emissions, and it appears to be prevalent among the few newer technology vehicles with defective, but untampered, closed-loop emissions control systems (1981 and newer models). In one fleet the variable emitters constitute 2.2% to 4.8% of the vehicles and contribute 8.5% to 22% of the total carbon monoxide emissions. Scheduled I/M programs that fail to ensure repair of these vehicles allow a significant portion of vehicles with excess emissions to escape reduction measures.  相似文献   

13.
Abstract

The U.S. Environmental Protection Agency (EPA) implemented a program to identify tailpipe emissions of criteria and air-toxic contaminants from in-use, light-duty low-emission vehicles (LEVs). EPA recruited 25 LEVs in 2002 and measured emissions on a chassis dynamometer using the cold-start urban dynamometer driving schedule of the Federal Test Procedure. The emissions measured included regulated pollutants, particulate matter, speciated hydrocarbon compounds, and carbonyl compounds. The results provided a comparison of emissions from real-world LEVs with emission standards for criteria and air-toxic compounds. Emission measurements indicated that a portion of the in-use fleet tested exceeded standards for the criteria gases. Real-time regulated and speciated hydrocarbon measurements demonstrated that the majority of emissions occurred during the initial phases of the cold-start portion of the urban dynamometer driving schedule. Overall, the study provided updated emission factor data for real-world, in-use operation of LEVs for improved emissions modeling and mobile source inventory development.  相似文献   

14.
The U.S. Environmental Protection Agency (EPA) implemented a program to identify tailpipe emissions of criteria and air-toxic contaminants from in-use, light-duty low-emission vehicles (LEVs). EPA recruited 25 LEVs in 2002 and measured emissions on a chassis dynamometer using the cold-start urban dynamometer driving schedule of the Federal Test Procedure. The emissions measured included regulated pollutants, particulate matter, speciated hydrocarbon compounds, and carbonyl compounds. The results provided a comparison of emissions from real-world LEVs with emission standards for criteria and air-toxic compounds. Emission measurements indicated that a portion of the in-use fleet tested exceeded standards for the criteria gases. Real-time regulated and speciated hydrocarbon measurements demonstrated that the majority of emissions occurred during the initial phases of the cold-start portion of the urban dynamometer driving schedule. Overall, the study provided updated emission factor data for real-world, in-use operation of LEVs for improved emissions modeling and mobile source inventory development.  相似文献   

15.
Different ways for modeling the impact of vehicle emission inspection and maintenance programs on fleet hydrocarbon emissions are examined. A dynamic model is developed for forecasting fleet emissions in which individual vehicle performance is modeled as a stochastic process and vehicle emissions are tracked over time. Emissions inspection and repair are incorporated into the model, allowing for the stochastic aspects of both testing and repair. This model is compared to EPA’s model for evaluating the impact of vehicle emissions inspection and maintenance. We find that the way vehicle emission equipment deterioration overtime is modeled is important for forecasting emissions from the fleet and for assessing the success of inspection and maintenance programs. For inspection programs, we find that factors such as the proportion of vehicles tested, and repair effectiveness and duration have the greatest impact on emission reductions. The ability of different emission testing regimes to identify polluting vehicles has less impact on a program’s overall potential for emissions reduction. Policy recommendations for I&M testing and predictions of emission reduction credits from these tests will depend in important ways on the methods used in the underlying emissions models.  相似文献   

16.
We used Fourier Transform Infrared Spectroscopy (FTIR) to measure tailpipe ammonia emissions from a representative fleet of 41 light and medium-duty vehicles recruited in the California South Coast Air Basin. A total of 121 chassis dynamometer emissions tests were conducted on these vehicles and the test results were examined to determine the effects of several key variables on ammonia emissions. Variables included vehicle type, driving cycle, emissions technology, ammonia precursor emissions (i.e. CO and NOx) and odometer readings/model year as a proxy for catalyst age. The mean ammonia emissions factor was 46 mg km?1 (σ = 48 mg km?1) for the vehicle fleet. Average emission factors for specific vehicle groups are also reported in this study. Results of this study suggest vehicles with the highest ammonia emission rates possess the following characteristics: medium-duty vehicles, older emissions technologies, mid-range odometer readings, and higher CO emissions. In addition, vehicles subjected to aggressive driving conditions are likely to be higher ammonia emitters. Since the vehicles we studied were representative of recent model year vehicles and technologies in urban airsheds, the results of our study will be useful for developing ammonia emissions inventories in Los Angeles and other urban areas where California-certified vehicles are driven. However, efforts should also be made to continue emissions testing on in-use vehicles to ensure greater confidence in the ammonia emission factors reported here.  相似文献   

17.
A series of studies was performed to develop an alternative to the U.S. Environmental Protection Agency's gold standard IM240 mass-based emission test. The new IM147 test was based on the second phase of the IM240 that consists of 147 sec of transient vehicle operation. Paired IM240/IM147 tests were conducted on vehicles ranging from 1981 to 1996 to determine IM147 cutpoints and excess emissions were identified. Additionally, an optimized test procedure was developed that combined possible triplicate IM147s with improved drive trace quality control, fast-pass, and retest methods. The optimized procedure was found to provide improved vehicle preconditioning with a relatively minor decrease in excess emissions identification. Resulting identification rates ranged from 96 to 100% for hydrocarbons (HC), 93-100% for CO, and 93-100% for NOx, depending on cutpoint selection, while false failures caused by lack of vehicle preconditioning were reduced to essentially zero. Significant vehicle throughput improvements were achieved through the development of software algorithms involving modal fast-pass and retest procedures. Modal drive trace variation limits also were developed to improve test accuracy. The combination of the algorithms reduced average IM147 test times by nearly 60%.  相似文献   

18.
A study was performed at a Gordon-Darby centralized inspection and maintenance (I/M) test lane in Phoenix, AZ, in December 1999 for the purpose of evaluating the accuracy of production Vehicle Mass Analysis System (VMAS) equipment relative to standard IM240 equipment. Simultaneous transient mass measurements were made on random vehicles using VMAS and IM240 systems on two test lanes during regular I/M testing. Cumulative mass emissions for 846 valid tests were correlated using least-squares regression analysis. Correlation indices were > 0.99 for both carbon monoxide (CO) and nitric oxide (NO) and 0.93 for hydrocarbon (HC), and the standard errors of regression were 1.38 g/mi, 0.123 g/mi, and 0.245 g/mi for CO, NO, and HC, respectively. These strong correlation results are reflected by high excess emission identification rates of 99.4% for CO, 99.3% for NO, and 94.5% for HC when applying final IM240 cut points with a < 2% error of commission for all pollutants.  相似文献   

19.
A method has been developed that allows reporting of the fuel consumption and carbon dioxide (CO2) emissions for in-use vehicles from a fast-pass transient (IM240) inspection. The major technical obstacle to reporting CO2 emission rate and fuel consumption is that inspection and maintenance tests do not all use a standardized test duration or test method. The method is able to project full-duration fuel consumption from IM240 tests that actually fast-passed as early as just 30 sec from starting the test. It is based on basic considerations of the work done in driving the inspection cycle, with additional empirical adjustments. The initial application examined the differences between passing and failing inspections, and this did confirm that there are significant differences.  相似文献   

20.
In this work, the primary objective was to assess the impact of oxygenated fuel on the exhaust emissions from an important fraction of vehicles in the Metropolitan Area of Mexico City (MAMC). The results aim to provide information on the actual effect of MTBE on a fleet that represents more than 60% of the in-use vehicles in the MAMC. Ten vehicles were tested with a low-octane base gasoline, and 10 more with a regular-grade unleaded base gasoline. Three MTBE concentrations, 5, 10, and 15 vol %, were tested following the U.S. Federal Test Procedure (FTP). CO, total HC, and NOx from the exhaust gases were quantitatively evaluated and also characterized for FTP speciated organic emissions. From this data, the O3-forming potential of the fuels was calculated. Results show that for the fleet using low-octane gasoline, the addition of 10% MTBE substantially reduced CO emissions, but total HC concentration in the exhaust showed a modest decrease. For the regular gasoline, the 10% MTBE blend seemed to be the best choice, but there was not a significant decrease in emissions. The specific reactivity of each fuel, expressed in grams of O3 per gram of nonmethane organic gases, increased with MTBE concentration in both cases. This result is important to consider, especially for a region like Mexico City, which has high atmospheric O3 concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号