首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The Southeastern Aerosol Research and Characterization Study (SEARCH) was implemented in 1998-1999 to provide data and analyses for the investigation of the sources, chemical speciation, and long-term trends of fine particulate matter (PM2.5) and coarse particulate matter (PM10-2.5) in the Southeastern United States. This work is an initial analysis of 5 years (1999-2003) of filter-based PM2.5 and PM10-2.5 data from SEARCH. We find that annual PM2.5 design values were consistently above the National Ambient Air Quality Standards (NAAQS) 15 microg/m3 annual standard only at monitoring sites in the two largest urban areas (Atlanta, GA, and North Birmingham, AL). Other sites in the network had annual design values below the standard, and no site had daily design values above the NAAQS 65 microg/m3 daily standard. Using a particle composition monitor designed specifically for SEARCH, we found that volatilization losses of nitrate, ammonium, and organic carbon must be accounted for to accurately characterize atmospheric particulate matter. In particular, the federal reference method for PM2.5 underestimates mass by 3-7% as a result of these volatilization losses. Organic matter (OM) and sulfate account for approximately 60% of PM2.5 mass at SEARCH sites, whereas major metal oxides (MMO) and unidentified components ("other") account for > or = 80% of PM10-2.5 mass. Limited data suggest that much of the unidentified mass in PM10-2.5 may be OM. For paired comparisons of urban-rural sites, differences in PM2.5 mass are explained, in large part, by higher OM and black carbon at the urban site. For PM10, higher urban concentrations are explained by higher MMO and "other." Annual means for PM2.5 and PM10-2.5 mass and major components demonstrate substantial declines at all of the SEARCH sites over the 1999-2003 period (10-20% in the case of PM2.5, dominated by 14-20% declines in sulfate and 11-26% declines in OM, and 14-25% in the case of PM10-2.5, dominated by 17-30% declines in MMO and 14-31% declines in "other"). Although declining national emissions of sulfur dioxide and anthropogenic carbon may account for a portion of the observed declines, additional investigation will be necessary to establish a quantitative assessment, especially regarding trends in local and regional emissions, primary carbon emissions, and meteorology.  相似文献   

2.
Abstract

Chemical tracer methods for determining contributions to primary organic aerosol (POA) are fairly well established, whereas similar techniques for secondary organic aerosol (SOA), inherently complicated by time-dependent atmospheric processes, are only beginning to be studied. Laboratory chamber experiments provide insights into the precursors of SOA, but field data must be used to test the approaches. This study investigates primary and secondary sources of organic carbon (OC) and determines their mass contribution to particulate matter 2.5 µm or less in aerodynamic diameter (PM2.5) in Southeastern Aerosol Research and Characterization (SEARCH) network samples. Filter samples were taken during 20 24-hr periods between May and August 2005 at SEARCH sites in Atlanta, GA (JST); Birmingham, AL (BHM); Centerville, AL (CTR); and Pensacola, FL (PNS) and analyzed for organic tracers by gas chromatography-mass spectrometry. Contribution to primary OC was made using a chemical mass balance method and to secondary OC using a mass fraction method. Aerosol masses were reconstructed from the contributions of POA, SOA, elemental carbon, inorganic ions (sulfate [SO4 2?], nitrate [NO3 ?], ammonium [NH4 +]), metals, and metal oxides and compared with the measured PM2.5. From the analysis, OC contributions from seven primary sources and four secondary sources were determined. The major primary sources of carbon were from wood combustion, diesel and gasoline exhaust, and meat cooking; major secondary sources were from isoprene and monoterpenes with minor contributions from toluene and β-caryophyllene SOA. Mass concentrations at the four sites were determined using source-specific organic mass (OM)-to-OC ratios and gave values in the range of 12–42 µg m?3. Reconstructed masses at three of the sites (JST, CTR, PNS) ranged from 87 to 91% of the measured PM2.5 mass. The reconstructed mass at the BHM site exceeded the measured mass by approximately 25%. The difference between the reconstructed and measured PM2.5 mass for nonindustrial areas is consistent with not including aerosol liquid water or other sources of organic aerosol.  相似文献   

3.
A year-long study was conducted in Pinal County, AZ, to characterize coarse (2.5 – 10 μm aerodynamic diameter, AD) and fine (< 2.5 μm AD) particulate matter (PMc and PMf, respectively) to further understand spatial and temporal variations in ambient PM concentrations and composition in rural, arid environments. Measurements of PMc and PMf mass, ions, elements, and carbon concentrations at one-in-six day resolution were obtained at three sites within the region. Results from the summer of 2009 and specifically the local monsoon period are presented.

The summer monsoon season (July – September) and associated rain and/or high wind events, has historically had the largest number of PM10 NAAQS exceedances within a year. Rain events served to clean the atmosphere, decreasing PMc concentrations resulting in a more uniform spatial gradient among the sites. The monsoon period also is characterized by high wind events, increasing PMc mass concentrations, possibly due to increased local wind-driven soil erosion or transport. Two PM10 NAAQS exceedances at the urban monitoring site were explained by high wind events and can likely be excluded from PM10 compliance calculations as exceptional events. At the more rural Cowtown site, PM10 NAAQS exceedances were more frequent, likely due to the impact from local dust sources.

PM mass concentrations at the Cowtown site were typically higher than at the Pinal County Housing and Casa Grande sites. Crustal material was equal to 52-63% of the PMc mass concentration on average. High concentrations of phosphate and organic carbon found at the rural Cowtown were associated with local cattle feeding operations. A relatively high correlation between PMc and PMf (R2?=?0.63) indicated that the lower tail of the coarse particle fraction often impacts the fine particle fraction, increasing the PMf concentrations. Therefore, reductions in PMc sources will likely also reduce PMf concentrations, which also are near the value of the 24-hr PM2.5 NAAQS.

Implications: In the desert southwest, summer monsoons are often associated with above average PM10 (<10 μm AD) mass concentrations. Competing influences of monsoon rain and wind events showed that rain suppresses ambient concentrations while high wind increase them. In this region, the PMc fraction dominates PM10 and crustal sources contribute 52-63% to local PMc mass concentrations on average. Cattle feedlot emissions are also an important source and a unique chemical signature was identified for this source. Observations suggest monsoon wind events alone cannot explain PM10 NAAQS exceedances, thus requiring these values to remain in compliance calculations rather than being removed as exceptional wind events.  相似文献   

4.
Abstract

In 1997, Maryland had no available ambient Federal Reference Method data on particulate matter less than 2.5 μm in aerodynamic diameter (PM2.5), but did have annual ambient data for PM smaller than 10 μm (PM10) at 24 sites. The PM10 data were analyzed in conjunction with local annual and seasonal zip-code-level emission inventories and with speciated PM2.5 data from four nearby monitors in the IMPROVE network (located in the national parks, wildlife refuges, and wilderness areas) in an effort to estimate annual average and seasonal high PM2.5 concentrations at the 24 PM10 monitor sites operating from 1992 to 1996. All seasonal high concentrations were estimated to be below the 24-hr PM2.5 National Ambient Air Quality Standards (NAAQS) at the sites operating in Maryland between 1992 and 1996. The estimates also indicated that 12 monitor sites might exceed the 3-year annual average PM2.5 NAAQS of 15 ug/m3, but Maryland’s air quality shows signs that it has been improving since 1992. The estimates also were compared with actual measurements after the PM2.5 monitor network was installed. The estimates were adequate for describing the chemical composition of the PM2.5, forecasting compliance status with the 24-hr and annual standards, and determining the spatial variations in PM2.5 across central Maryland.  相似文献   

5.
Abstract

Deployment of continuous analyzers in the Southeastern Aerosol Research and Characterization Study (SEARCH) network began in 1998 and continues today as new technologies are developed. Measurement of fine particulate matter (PM2.5) mass is performed using a dried, 30 °C tapered element oscillating microbalance (TEOM). TEOM measurements are complemented by observations of light scattering by nephelometry. Measurements of major constituents include: (1) SO4 2? via reduction to SO2; (2) NH4 + and NO3 ? via respective catalytic oxidation and reduction to NO, (3) black carbon (BC) by optical absorption, (4) total carbon by combustion to CO2, and (5) organic carbon by difference between the latter two measurements. Several illustrative examples of continuous data from the SEARCH network are presented. A distinctive composite annual average diurnal pattern is observed for PM2.5 mass, nitrate, and BC, likely indicating the influence of traffic-related emissions, growth, and break up of the boundary layer and formation of ammonium nitrate. Examination of PM2.5 components indicates the need to better understand the continuous composition of the unmeasured “other” category, because it contributes a significant fraction to total mass during periods of high PM2.5 loading. Selected episodes are presented to illustrate applications of SEARCH data. An SO2 conversion rate of 0.2%/hr is derived from an observation of a plume from a coal-fired power plant during early spring, and the importance of local, rural sources of NH3 to the formation of ammonium nitrate in particulate matter (PM) is demonstrated.  相似文献   

6.
The Big Bend Regional Aerosol and Visibility Observational (BRAVO) Study was conducted in Big Bend National Park, Texas, July through October 1999. Daily PM2.5 organic aerosol samples were collected on pre-fired quartz fiber filters. Daily concentrations were too low for detailed organic analysis by gas chromatography-mass spectrometry (GC-MS) and were grouped based on their air mass trajectories. A total of 12 composites, each containing 3–10 daily samples, were analyzed. Alkane carbon preference indices suggest primary biogenic emissions were small contributors to primary PM2.5 organic matter (OM) during the first 3 months, while in October air masses advecting from the north and south were more strongly influenced by biogenic sources. A series of trace organic compounds previously shown to serve as particle phase tracers for various carbonaceous aerosol source types were examined. Molecular tracer species were generally at or below detection limits, except for the wood smoke tracer levoglucosan in one composite, so maximum possible source influences were calculated using the detection limit as an upper bound to the tracer concentration. Wood smoke was found not to contribute significantly to PM2.5 OM, with contributions for most samples at <1% of the total organic particulate matter. Vehicular exhaust also appeared to make only minor contributions, with maximum possible influences calculated to be 1–4% of PM2.5 OM. Several factors indicate that secondary organic aerosol formation was important throughout the study, and may have significantly altered the molecular composition of the aerosol during transport.  相似文献   

7.
Abstract

Many studies have shown strong associations between particulate matter (PM) levels and a variety of health outcomes, leading to changes in air quality standards in many regions, especially the United States and Europe. Kuwait, a desert country located on the Persian Gulf, has a large petroleum industry with associated industrial and urban land uses. It was marked by environmental destruction from the 1990 Iraqi invasion and subsequent oil fires. A detailed particle characterization study was conducted over 12 months in 2004–2005 at three sites simultaneously with an additional 6 months at one of the sites. Two sites were in urban areas (central and southern) and one in a remote desert location (northern). This paper reports the concentrations of particles less than 10 µm in diameter (PM10) and fine PM (PM2.5), as well as fine particle nitrate, sulfate, elemental carbon (EC), organic carbon (OC), and elements measured at the three sites. Mean annual concentrations for PM10 ranged from 66 to 93 µg/m3 across the three sites, exceeding the World Health Organization (WHO) air quality guidelines for PM10 of 20 µg/m3. The arithmetic mean PM2.5 concentrations varied from 38 and 37 µg/m3 at the central and southern sites, respectively, to 31 µg/m3 at the northern site. All sites had mean PM2.5 concentrations more than double the U.S. National Ambient Air Quality Standard (NAAQS) for PM2.5. Coarse particles comprised 50–60% of PM10. The high levels of PM10 and large fraction of coarse particles comprising PM10 are partially explained by the resuspension of dust and soil from the desert crust. However, EC, OC, and most of the elements were significantly higher at the urbanized sites, compared with the more remote northern site, indicating significant pollutant contributions from local mobile and stationary sources. The particulate levels in this study are high enough to generate substantial health impacts and present opportunities for improving public health by reducing airborne PM.  相似文献   

8.
Dhaka, the capital of Bangladesh, is among the most polluted cities in the world. This research evaluates seasonal patterns, day-of-week patterns, spatial gradients, and trends in PM2.5 (<2.5 µm in aerodynamic diameter), PM10 (<10 µm in aerodynamic diameter), and gaseous pollutants concentrations (SO2, NO2, CO, and O3) monitored in Dhaka from 2013 to 2017. It expands on past work by considering multiple monitoring sites and air pollutants. Except for ozone, the average concentrations of these pollutants showed strong seasonal variation, with maximum during winter and minimum during monsoon, with the pollution concentration of PM2.5 and PM10 being roughly five- to sixfold higher during winter versus monsoon. Our comparisons of the pollutant concentrations with Bangladesh NAAQS and U.S. NAAQS limits analysis indicate particulate matter (PM2.5 and PM10) as the air pollutants of greatest concern, as they frequently exceeded the Bangladesh NAAQS and U.S. NAAQS, especially during nonmonsoon time. In contrast, gaseous pollutants reported far fewer exceedances throughout the study period. During the study period, the highest number of exceedances of NAAQS limits in Dhaka City (Darus-Salam site) were found for PM2.5 (72% of total study days), followed by PM10 (40% of total study days), O3 (1.7% of total study days), SO2 (0.38% of total study days), and CO (0.25% of total study days). The trend analyses results showed statistically significant positive slopes over time for SO2 (5.6 ppb yr?1, 95% confidence interval [CI]: 0.7, 10.5) and CO (0.32 ppm yr?1, 95% CI: 0.01, 0.56), which suggest increase in brick kilns operation and high-sulfur diesel use. Though statistically nonsignificant annual decreasing slopes for PM2.5 (?4.6 µg/m3 yr?1, 95% CI: ?12.7, 3.6) and PM10 (?2.7 µg/m3 yr?1, 95% CI: ?7.9, 2.5) were observed during this study period, the PM2.5 concentration is still too high (~ 82.0 µg/m3) and can cause severe impact on human health.

Implications: This study revealed key insights into air quality challenges across Dhaka, Bangladesh, indicating particulate matter (PM) as Dhaka’s most serious air pollutant threat to human health. The results of these analyses indicate that there is a need for immediate further investigations, and action based on those investigations, including the conduct local epidemiological PM exposure-human health effects studies for this city, in order to determine the most public health effective interventions.  相似文献   


9.
A study of carbonaceous particulate matter (PM) was conducted in the Middle East at sites in Israel, Jordan, and Palestine. The sources and seasonal variation of organic carbon, as well as the contribution to fine aerosol (PM2.5) mass, were determined. Of the 11 sites studied, Nablus had the highest contribution of organic carbon (OC), 29%, and elemental carbon (EC), 19%, to total PM2.5 mass. The lowest concentrations of PM2.5 mass, OC, and EC were measured at southern desert sites, located in Aqaba, Eilat, and Rachma. The OC contribution to PM2.5 mass at these sites ranged between 9.4% and 16%, with mean annual PM2.5 mass concentrations ranging from 21 to 25 ug m?3. These sites were also observed to have the highest OC to EC ratios (4.1–5.0), indicative of smaller contributions from primary combustion sources and/or a higher contribution of secondary organic aerosol. Biomass burning and vehicular emissions were found to be important sources of carbonaceous PM in this region at the non-southern desert sites, which together accounted for 30%–55% of the fine particle organic carbon at these sites. The fraction of measured OC unapportioned to primary sources (1.4 μgC m?3 to 4.9 μgC m?3; 30%–74%), which has been shown to be largely from secondary organic aerosol, is relatively constant at the sites examined in this study. This suggests that secondary organic aerosol is important in the Middle East during all seasons of the year.  相似文献   

10.
Abstract

Evaporative loss of particulate matter (with aerodynamic diameter <2.5 μm, [PM2.5]) ammonium nitrate from quartz-fiber filters during aerosol sampling was evaluated from December 3, 1999, through February 3, 2001, at two urban (Fresno and Bakersfield) and three nonurban (Bethel Island, Sierra Nevada Foothills, and Angiola) sites in central California. Compared with total particulate nitrate, evaporative nitrate losses ranged from <10% during cold months to >80% during warm months. In agreement with theory, evaporative loss from quartz-fiber filters in nitric acid denuded samplers is controlled by the ambient nitric acid-to-particulate nitrate ratio, which is determined mainly by ambient temperature. Accurate estimation of nitrate volatilization requires a detailed thermodynamic model and comprehensive chemical measurements. For the 14-month average of PM2.5 acquired on Teflon-membrane filters, measured PM2.5 mass was 8–16% lower than actual PM2.5 mass owing to nitrate volatilization. For 24-hr samples, measured PM2.5 was as much as 32–44% lower than actual PM2.5 at three California Central Valley locations.  相似文献   

11.
This study provides the first comprehensive report on mass concentrations of particulate matter of various sizes, inorganic and organic gas concentrations monitored at three sampling sites in the city of Palermo (Sicily, Italy). It also provides information on the water-soluble species and trace elements. A total of 2054 PM10 (1333) and PM2.5 (721) daily measurements were collected from November 2006 to February 2008. The highest mass concentrations were observed at the urban stations, average values being about two times higher than those at the suburban (control) site. Time variations in PM10 and also PM10–2.5 were observed at the urban stations, the highest concentrations being measured in autumn and winter. CO, NOx, NO2, benzene, toluene and o-xylene concentrations peaked in autumn and winter, a pattern similar to those recorded for PM10 and PM10–2.5 mass levels, indicating the importance of traffic emissions in urban air pollution. 91% and 51% of the benzene measurements exceeded the limit of 5 μg m?3 at the two urban monitoring sites. Trace elements (As, Ba, Cr, Cu, Mo, Pb, Sb) suspected of being introduced into the atmosphere mainly by anthropogenic activities, were highly enriched with respect to local soil. Results indicate that a large fraction of PM10 (31–47% in weight) and PM2.5 (29% in weight) is made up of water-soluble ions. Ammonium sulphate and nitrate particles accounted for 14–29 wt% of particulate matter mass concentrations. Crustal and marine components, combined, account for 41% and 49% in PM2.5 and PM10, respectively. The calculated deficits in Cl- and NH4+ ions suggest that a proportion of these ions are lost, via the formation of gaseous NH4Cl or HCl and NH3.  相似文献   

12.
ABSTRACT

A source apportionment study was conducted to identify sources within a large elemental phosphorus plant that contribute to exceedances of the National Ambient Air Quality Standards (NAAQS) for 24-hr PM10. Ambient data were collected at three monitoring sites from October 1996 through July 1999, and included the following: 24-hr PM10 mass, 24-hr PM2.5 and PM10–2.5 mass and chemistry, continuous PM10and PM2.5 mass, continuous meteorological data, and wind-direction-resolved PM2.5 and PM10 mass and chemistry. Ambient-based receptor modeling and wind-directional analysis were employed to help identify major sources or source locations and source contributions. Fine-fraction phosphate was the dominant species observed during PM10 exceedances, though in general, re-suspended coarse dusts from raw and processed materials at the plant were also needed to create an exceedance. Major sources that were identified included the calciners, the CO flares, process-related dust, and electric-arc furnace operations.  相似文献   

13.
Abstract

Average concentrations of particulate matter with an aerodynamic diameter less than or equal to 2.5 μm (PM2.5) in Steubenville, OH, have decreased by more than 10 μg/m3 since the landmark Harvard Six Cities Study1 associated the city’s elevated PM2.5 concentrations with adverse health effects in the 1980s. Given the promulgation of a new National Ambient Air Quality Standard (NAAQS) for PM2.5 in 1997, a current assessment of PM2.5 in the Steubenville region is warranted. The Steubenville Comprehensive Air Monitoring Program (SCAMP) was conducted from 2000 through 2002 to provide such an assessment. The program included both an outdoor ambient air monitoring component and an indoor and personal air sampling component. This paper, which is the first in a series of four that will present results from the outdoor portion of SCAMP, provides an overview of the outdoor ambient air monitoring program and addresses statistical issues, most notably autocorrelation, that have been overlooked by many PM2.5 data analyses. The average PM2.5 concentration measured in Steubenville during SCAMP (18.4 μg/m3) was 3.4g/m3 above the annual PM2.5 NAAQS. On average, sulfate and organic material accounted for ~31% and 25%, respectively, of the total PM2.5 mass. Local sources contributed an estimated 4.6 μg/m3 to Steubenville’s mean PM2.5 concentration. PM2.5 and each of its major ionic components were significantly correlated in space across all pairs of monitoring sites in the region, suggesting the influence of meteorology and long-range transport on regional PM2.5 concentrations. Statistically significant autocorrelation was observed among time series of PM2.5 and component data collected at daily and 1-in-4-day frequencies during SCAMP. Results of spatial analyses that accounted for autocorrelation were generally consistent with findings from previous studies that did not consider autocorrelation; however, these analyses also indicated that failure to account for autocorrelation can lead to incorrect conclusions about statistical significance.  相似文献   

14.
This study aims to examine the effect of short-term changes in the concentration of particulate matter of diameter ≤2.5 µm (PM2.5) and ≤10 µm (PM10) on pediatric hospital admissions for pneumonia in Jinan, China. It explores confoundings factors of weather, season, and chemical pollutants. Information on pediatric hospital admissions for pneumonia in 2014 was extracted from the database of Jinan Qilu Hospital. The relative risk of pediatric hospital admissions for pneumonia was assessed using a case-crossover approach, controlling weather variables, day of the week, and seasonality. The single-pollutant model demonstrated that increased risk of pediatric hospital admissions for pneumonia was significantly associated with elevated PM2.5 concentrations the day before hospital admission and elevated PM10 concentrations 2 days before hospital admission. An increment of 10 μg/m3 in PM2.5 and PM10 was correlated with a 6% (95% CI 1.02–-1.10) and 4% (95% CI 1.00–1.08) rise in number of admissions for pneumonia, respectively. In two pollutant models, PM2.5 and PM10 remained significant after inclusion of sulfur dioxide or nitrogen dioxide but not carbon monoxide. This study demonstrated that short-term exposure to atmospheric particulate matter (PM2.5/PM10) may be an important determinant of pediatric hospital admissions for pneumonia in Jinan, China.

Implications: This study demonstrated that short-term exposure to atmospheric particulate matter (PM2.5/PM10) may be an important determinant of pediatric hospital admissions for pneumonia in Jinan, China, and suggested the relevance of pollutant exposure levels and their effects. As a specific group, children are sensitive to airborne particulate matter. This study estimated the short-term effects attribute to other air pollutants to provide references for relevant studies.  相似文献   


15.
This research study provides the characterization of mass percent of protein-based particulate matter in total ambient particulate matter collected in a metropolitan area of NC. The project determined the percentages of protein-based ambient bioaerosols for particles in the 2.5–10 μm range and for particles in the range of 2.5 μm or less in 298 samples taken over a six-month period. The analysis of total protein mass was used as an all-inclusive indicator of biologically based aerosols. These organic bioaerosols may have nucleated with inorganic non-biological aerosols, or they may be combined with inert aerosols. The source of these bioaerosols may be any combination of pollen, mold, bacteria, insect debris, fecal matter, or dander, and they may induce irritational, allergic, infectious, and chemical responses in exposed individuals. Ambient samples of PM2.5 and PM10−2.5 were analyzed for gravimetric mass and total protein mass. The results for 19 of 24 sample periods indicated that between 1% and 4% of PM10−2.5 and between 1% and 2% of PM2.5 mass concentrations were made of ambient protein bioaerosols. (The remaining 5 of 24 sample periods yielded protein results which were below detectable limits.)  相似文献   

16.
This study provides the first comprehensive analysis of the seasonal variations and weekday/weekend differences in fine (aerodynamic diameter <2.5 μm; PM2.5) and coarse (aerodynamic diameter 2.5–10 μm; PM2.5–10) particulate matter mass concentrations, elemental constituents, and potential source origins in Jeddah, Saudi Arabia. Air quality samples were collected over 1 yr, from June 2011 to May 2012 at a frequency of three times per week, and analyzed. The average mass concentrations of PM2.5 (21.9 μg/m3) and PM10 (107.8 μg/m3) during the sampling period exceeded the recommended annual average levels by the World Health Organization (WHO) for PM2.5 (10 μg/m3) and PM10 (20 μg/m3), respectively. Similar to other Middle Eastern locales, PM2.5–10 is the prevailing mass component of atmospheric particulate matter at Jeddah, accounting for approximately 80% of the PM10 mass. Considerations of enrichment factors, absolute principal component analysis (APCA), concentration roses, and backward trajectories identified the following source categories for both PM2.5 and PM2.5–10: (1) soil/road dust, (2) incineration, and (3) traffic; and for PM2.5 only, (4) residual oil burning. Soil/road dust accounted for a major portion of both the PM2.5 (27%) and PM2.5–10 (77%) mass, and the largest source contributor for PM2.5 was from residual oil burning (63%). Temporal variations of PM2.5–10 and PM2.5 were observed, with the elevated concentration levels observed for mass during the spring (due to increased dust storm frequency) and on weekdays (due to increased traffic). The predominant role of windblown soil and road dust in both the PM2.5 and PM2.5–10 masses in this city may have implications regarding the toxicity of these particles versus those in the Western world where most PM health assessments have been made in the past. These results support the need for region-specific epidemiological investigations to be conducted and considered in future PM standard setting.

Implications: Temporal variations of fine and coarse PM mass, elemental constituents, and sources were examined in Jeddah, Saudi Arabia, for the first time. The main source of PM2.5–10 is natural windblown soil and road dust, whereas the predominant source of PM2.5 is residual oil burning, generated from the port and oil refinery located west of the air sampler, suggesting that targeted emission controls could significantly improve the air quality in the city. The compositional differences point to a need for health effect studies to be conducted in this region, so as to directly assess the applicability of the existing guidelines to the Middle East air pollution.  相似文献   


17.
Aerosol samples for PM2.5 and PM10 (particulate matter with aerodynamic diameters less than 2.5 and 10 μm, respectively) were collected from 1993 to 1995 at five sites in Brisbane, a subtropical coastal city in Australia. This paper investigates the contributions of emission sources to PM2.5 and PM10 aerosol mass in Brisbane. Source apportionment results derived from the chemical mass balance (CMB), target transformation factor analysis (TTFA) and multiple linear regression (MLR) methods agree well with each other. The contributions from emission sources exhibit large variations in particle size with temporal and spatial differences. On average, the major contributors of PM10 aerosol mass in Brisbane include: soil/road side dusts (25% by mass), motor vehicle exhausts (13%, not including the secondary products), sea salt (12%), Ca-rich and Ti-rich compounds (11%, from cement works and mineral processing industries), biomass burning (7%), and elemental carbon and secondary products contribute to around 15% of the aerosol mass on average. The major sources of PM2.5 aerosols at the Griffith University (GU) site (a suburban site surrounded by forest area) are: elemental carbon (24% by mass), secondary organics (21%), biomass burning (15%) and secondary sulphate (14%). Most of the secondary products are related to motor vehicle exhausts, so, although motor vehicle exhausts contribute directly to only 6% of the PM2.5 aerosol mass, their total contribution (including their secondary products) could be substantial. This pattern of source contribution is similar to the results for Rozelle (Sydney) among the major Australian studies, and is less in contributions from industrial and motor vehicular exhausts than the other cities. An attempt was made to estimate the contribution of rural dust and road side dust. The results show that road side dusts could contribute more than half of the crustal matter. More than 80% of the contribution of vehicle exhausts arises from diesel-fuelled trucks/buses. Biomass burning, large contributions of crustal matter, and/or local contributing sources under calm weather conditions, are often the cause of the high PM10 episodes at the GU site in Brisbane.  相似文献   

18.
Indoor particulate matter samples were collected in 17 homes in an urban area in Alexandria during the summer season. During air measurement in all selected homes, parallel outdoor air samples were taken in the balconies of the domestic residences. It was found that the mean indoor PM2.5 and PM10 (particulate matter with an aerodynamic diameter ≤2.5 and ≤10 μm, respectively) concentrations were 53.5 ± 15.2 and 77.2 ± 15.1 µg/m3, respectively. The corresponding mean outdoor levels were 66.2 ± 16.5 and 123.8 ± 32.1 µg/m3, respectively. PM2.5 concentrations accounted, on average, for 68.8 ± 12.8% of the total PM10 concentrations indoors, whereas PM2.5 contributed to 53.7 ± 4.9% of the total outdoor PM10 concentrations. The median indoor/outdoor mass concentration (I/O) ratios were 0.81 (range: 0.43–1.45) and 0.65 (range: 0.4–1.07) for PM2.5 and PM10, respectively. Only four homes were found with I/O ratios above 1, indicating significant contribution from indoor sources. Poor correlation was seen between the indoor PM10 and PM2.5 levels and the corresponding outdoor concentrations. PM10 levels were significantly correlated with PM2.5 loadings indoors and outdoors and this might be related to PM10 and PM2.5 originating from similar particulate matter emission sources. Smoking, cooking using gas stoves, and cleaning were the major indoor sources contributed to elevated indoor levels of PM10 and PM2.5.

Implications: The current study presents results of the first PM2.5 and PM10 study in homes located in the city of Alexandria, Egypt. Scarce data are available on indoor air quality in Egypt. Poor correlation was seen between the indoor and outdoor particulate matter concentrations. Indoor sources such as smoking, cooking, and cleaning were found to be the major contributors to elevated indoor levels of PM10 and PM2.5.  相似文献   

19.
《Chemosphere》2007,66(11):2018-2027
Multivariate statistical techniques are applied to particulate matter (PM) and meteorological data to identify the sources responsible for evening PM spikes at Sunland Park, NM (USA). The statistical techniques applied are principal components analysis (PCA), redundancy analysis (RDA), and absolute principal components scores analysis (APCSA), and the data evaluated are 3-h average (6–9 p.m.) PM2.5 mass and chemical composition and 1-h average PM2.5 and PM10 mass and environmental data collected in the winter of 2002. Although the interpretation of the data was complicated by the presence of sources which are likely changing in time (e.g. brick kilns), the multivariate analyses indicate that the evening high PM2.5 is associated with burning-activities occurring to the south of Sunland Park, and these emissions are characterized by elevated Sb, Cl, and elemental carbon; ∼68% of the PM2.5 mass can be attributed to this source. The PM10 evening peaks, on the other hand, are mainly caused by resuspended dust generated by vehicular movements south of the site and transported by the local terrain-induced drainage flow.  相似文献   

20.
In studies of coarse particulate matter (PM10-2.5), mass concentrations are often estimated through the subtraction of PM2.5 from collocated PM10 tapered element oscillating microbalance (TEOM) measurements. Though all field instruments have yet to be updated, the Filter Dynamic Measurement System (FDMS) was introduced to account for the loss of semivolatile material from heated TEOM filters. To assess errors in PM10-2.5 estimation when using the possible combinations of PM10 and PM2.5 TEOM units with and without FDMS, data from three monitoring sites of the Colorado Coarse Rural–Urban Sources and Health (CCRUSH) study were used to simulate four possible subtraction methods for estimating PM10-2.5 mass concentrations. Assuming all mass is accounted for using collocated TEOMs with FDMS, the three other subtraction methods were assessed for biases in absolute mass concentration, temporal variability, spatial correlation, and homogeneity. Results show collocated units without FDMS closely estimate actual PM10-2.5 mass and spatial characteristics due to the very low semivolatile PM10-2.5 concentrations in Colorado. Estimation using either a PM2.5 or PM10 monitor without FDMS introduced absolute biases of 2.4 µg/m3 (25%) to –2.3 µg/m3 (–24%), respectively. Such errors are directly related to the unmeasured semivolatile mass and alter measures of spatiotemporal variability and homogeneity, all of which have implications for the regulatory and epidemiology communities concerned about PM10-2.5. Two monitoring sites operated by the state of Colorado were considered for inclusion in the CCRUSH acute health effects study, but concentrations were biased due to sampling with an FDMS-equipped PM2.5 TEOM and PM10 TEOM not corrected for semivolatile mass loss. A regression-based model was developed for removing the error in these measurements by estimating the semivolatile concentration of PM2.5 from total PM2.5 concentrations. By estimating nonvolatile PM2.5 concentrations from this relationship, PM10-2.5 was calculated as the difference between nonvolatile PM10 and PM2.5 concentrations.

Implications: Errors in the estimation of PM10-2.5 concentrations using subtraction methods were shown to be related to the unmeasured semivolatile mass when using certain combinations of TEOM instruments. For the northeastern Colorado region, the absolute bias associated with this error significantly affects mean and 95th percentile values, which would affect assessment of compliance if PM10-2.5 is regulated in the future. Estimating PM10-2.5 mass concentrations using nonvolatile mass concentrations from collocated PM10 and PM2.5 TEOM monitors closely estimates the total PM10-2.5 mass concentrations. A corrective model that removes the described error was developed and applied to data from two sites in Denver.

Supplemental Materials: Supplemental materials are available for this paper. Go to the publisher's online edition of the Journal of the Air & Waste Management Association.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号