首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Multivariate statistical techniques are applied to particulate matter (PM) and meteorological data to identify the sources responsible for evening PM spikes at Sunland Park, NM (USA). The statistical techniques applied are principal components analysis (PCA), redundancy analysis (RDA), and absolute principal components scores analysis (APCSA), and the data evaluated are 3-h average (6–9 p.m.) PM2.5 mass and chemical composition and 1-h average PM2.5 and PM10 mass and environmental data collected in the winter of 2002. Although the interpretation of the data was complicated by the presence of sources which are likely changing in time (e.g. brick kilns), the multivariate analyses indicate that the evening high PM2.5 is associated with burning-activities occurring to the south of Sunland Park, and these emissions are characterized by elevated Sb, Cl, and elemental carbon; 68% of the PM2.5 mass can be attributed to this source. The PM10 evening peaks, on the other hand, are mainly caused by resuspended dust generated by vehicular movements south of the site and transported by the local terrain-induced drainage flow.  相似文献   

2.
This work presents an LC–MS–MS-based method for the quantitation of nonylphenol ethoxylates (NPEOs) and octylphenol ethoxylates (OPEOs) in water, sediment, and suspended particulate matter, and three of their carboxylated derivatives in water. The alkylphenol ethoxylates (APEOs) were analyzed using isotope dilution mass spectrometry with [13C6]-labeled analogues, whereas the carboxylated derivatives were determined by external standard quantitation followed by confirmation using standard additions. The method was used to study APEO’s behavior in a wastewater treatment plant (WWTP), where total dissolved NP0-16EO concentration was reduced by approximately 99% from influent (390 μg l−1) to final effluent (4 μg l−1), and total OP0-5EO concentration decreased by 94% from 3.1 to 0.2 μg l−1. In contrast, the carboxylated derivatives were formed during the process with NP0-1EC concentrations increasing from 1.4 to 24 μg l−1. Short-chain APEOs were present in higher proportions in particulate matter, presumably due to greater affinity for solids compared to the long-chain homologues. NP (0.49 μg l−1) and NP0-1EC (4.8 μg l−1) were the only APEO-related compounds detected in a surface water sample from a WWTP-impacted estuary; implying that 90% of the mass was in the form of carboxylated derivatives. Sediment analysis showed nonylphenol to be the single most abundant compound in sediments from the Baltimore Harbor area, where differences in homologue distribution suggested the presence of treated effluent in some of the sites and non-treated sources in the rest.  相似文献   

3.
To elucidate mechanisms of Cr3+ sorption onto the unaltered solid natural organic matter, the comparative studies of this ion binding from a solution at pH 4.0 onto three selected particle size fractions: 2000–1000 μm, 630–200 μm and 63–20 μm of markedly different HS content and structure, separated by a wet sieving from an overall sample of peat (Brushwood Peat Humus) were carried out. Comparable patterns of COOH groups and CECt confirmed that for cation exchange capacity were responsible mainly cations connected with COO functional groups. It was though found that aliphatic acids in the solid state did not take part in Cr3+ binding, thus the finest studied fraction 63–20 μm of the highest contents of functional groups showed the lowest sorption capacity for Cr3+, while similar patterns of sorbed Cr3+, soluble HS content and base CEC0 indicated that these parameters were directly interrelated. The base ion exchange processes determined by CEC0 (with Ca2+ as a predominant exchangeable cation) appeared to be not the major mechanisms responsible for Cr3+ sorption. For this metal, strong binding to insoluble large molecular weight organic pool two- to threefold prevailed over the ion exchange processes. Very low acid desorption indicated generally low mobility of Cr3+-organic compounds.  相似文献   

4.
Total suspended particle (TSP) concentrations were determined in the Eordea basin (western Macedonia, Greece), an area with intensive lignite burning for power generation. The study was conducted over a one-year period (November 2000–November 2001) at 10 sites located at variable distances from the power plants. Ambient TSP samples were analyzed for 27 major, minor and trace elements. Annual means of TSP concentrations ranged between 47 ± 33 μg m−3 and 110 ± 50 μg m−3 at 9 out of the 10 sites. Only the site closest to the power stations and the lignite conveyor belts exhibited annual TSP levels (210 ± 97 μg m−3) exceeding the European standard (150 μg m−3, 80/779/EEC). Concentrations of TSP and almost all elemental components exhibited significant spatial variations; however, the elemental profiles of TSP were quite similar among all sites suggesting that they are affected by similar source types. At all sites, statistical analysis indicated insignificant (P < 0.05) seasonal variation for TSP concentrations. Some elements (Cl, As, Pb, Br, Se, S, Cd) exhibited significantly higher concentrations at certain sites during the cold period suggesting more intense emissions from traffic, domestic heating and other combustion sources. On the contrary, concentrations significantly higher in the warm period were found at other sites mainly for crustal elements (Ti, Mn, K, P, Cr, etc.) suggesting stronger influence from soil resuspension and/or fly ash in the warm months. The most enriched elements against local soil or road dust were S, Cl, Cu, As, Se, Br, Cd and Pb, whereas negligible enrichment was found for Ti, Mn, Mg, Al, Si, P, Cr. At most sites, highest concentrations of TSP and elemental components were associated with low- to moderate-speed winds favoring accumulation of emissions from local sources. Influences from the power generation were likely at those sites located closest to the power plants and mining activities.  相似文献   

5.
The present work focuses on the fate of two cancerostatic platinum compounds (CPC), cisplatin and carboplatin, as well as of two inorganic platinum compounds, [PtCl4]2− and [PtCl6]2− in biological wastewater treatment. Laboratory experiments modelling adsorption of these compounds onto activated sludge showed promising specific adsorption coefficients KD and KOC and Freundlich adsorption isotherms. However, the adsorption properties of the investigated substances were differing significantly. Adsorption decreased following the order cisplatin > [PtCl6]2− > [PtCl4]2− > carboplatin. Log KD-values were ranging from 2.5 to 4.3 , log KOC from 3.0 to 4.7.

A pilot membrane bioreactor system (MBR) was installed in a hospital in Vienna and fed with wastewater from the oncologic in-patient treatment ward to investigate CPC-adsorption in a sewage treatment plant. During three monitoring periods Pt-concentrations were measured in the influent (3–250 μg l−1 Pt) and the effluent (2–150 μg l−1 Pt) of the treatment plant using ICP-MS. The monitoring periods (duration 30 d) revealed elimination efficiencies between 51% and 63% based on averaged weekly input–output budgets. The derived log KD-values and log KOC-values ranged from 2.4 to 4.8 and from 2.8 to 5.3, respectively. Species analysis using HPLC-ICP-MS proofed that mainly carboplatin was present as intact drug in the influent and – due to low log KD – in the effluent of the MBR.  相似文献   


6.
The present study was carried out with the aim of evaluating the performance of six different aerosol samplers in terms of mass concentration, particle size distribution, and mass fraction for the international size-sampling conventions. The international size-sampling criteria were defined as inhalable, thoracic, and respirable mass fractions with 50% cutoff at an aerodynamic equivalent diameter of 100 μm, 10 μm, and 4 μm, respectively. Two Andersen, four total suspended particulate (TSP), two RespiCon, four PM10, two DustTrak, and two SidePak samplers were selected and tested to quantitatively estimate human exposure in a carefully controlled particulate matter (PM) test chamber. The overall results indicate that (1) Andersen samplers underestimate total suspended PM and overestimate thoracic and respirable PM due to particle bounce and carryover between stages, (2) TSP samplers provide total suspended PM as reference samplers, (3) TSP samplers quantified by a coulter counter multisizer provide no information below an equivalent spherical diameter of 2 μm and therefore underestimate respirable PM, (4) RespiCon samplers are free from particle bounce as inhalable samplers but underestimate total suspended PM, (5) PM10 samplers overestimate thoracic PM, and (6) DustTrak and SidePak samplers provide relative PM concentrations instead of absolute PM concentrations.  相似文献   

7.
This study characterized the dry deposition flux and dry deposition velocity (Vd) of metallic elements attached on particulate matter. Specifically, large particles (>10 μm), coarse particles (10 μm~2.5 μm), and fine particles (<2.5 μm) were studied at the Gong Ming Junior High School (Taichung Airport) and Taichung Harbor sampling sites in central Taiwan. Ambient air samples were collected to determine total suspended particulate matter (TSP), dry deposition plate (DDP), Vd, coarse particulate matter (PM2.5–10) and fine particulate matter (PM2.5), and metallic elements concentrations at the Airport and Taichung Harbor sites between June 17, 2013, and November 14, 2013. The results revealed that the average TSP, DDP, Vd, PM2.5–10, and PM2.5 particulate at the Airport were 54.55 (μg/m3), 902.25 (μg/m2-min), 17.11 (m/sec), 0.003 (μg/m3), and 0.010 (μg/m3), respectively; while these values at Taichung Harbor were 63.66 (μg/m3), 539.69 (μg/m2-min), 9.94 (m/sec), 0.003 (μg/m3), and 0.014 (μg/m3), respectively. In addition, the results showed that the average Cu and Pb concentrations were higher than Cr, Ni, and Cd for both the airport and harbor sampling sites. Furthermore, Cr, N, Cu, Cd, and Pb had the highest average concentrations versus those reported for other study areas, with one exception: The results obtained in Kacanik, Kosovo, during 2005. The average metallic elements concentrations order was Cu > Pb > Cr > Ni > Cd.  相似文献   

8.
The air pollution is the one of the most important environmental problems in Erzurum, situated in the eastern of Turkey, during winter periods. The unfavorable climate as well as the city’s topography, and inappropriate urbanization cause serious air pollution problems. The air pollutant concentrations in a city have a close relationship with its meteorological parameters. In the present study, the relationship between daily average total suspended particulate (TSP) and sulphur dioxide (SO2) concentrations with meteorological factors, such as wind speed, temperature, relative humidity, pressure and precipitation, in 1995–2002 winter seasons was statistically analyzed using the stepwise multiple linear regression analysis. According to the results obtained through analysis, higher TSP and SO2 concentrations are strongly related to colder temperatures, lower wind speed, higher pressure system and weakly lower precipitation and higher relative humidity. The statistical models of SO2 and TSP including meteorological parameters gave R2 of 0.74 and 0.88, respectively. Furthermore, the correlation between the previous day’s SO2, TSP concentrations and actual concentrations of these pollutants on that day was investigated and found as 0.84 and 0.53, respectively. In order to develop this model, previous day’s SO2 and TSP concentrations were added to the equations. The new model for SO2 enhanced considerably (R2 = 0.92), but for TSP new model was not enhanced (R2 = 0.89).  相似文献   

9.
Sampling and analysis of ambient dioxins in northern Taiwan   总被引:2,自引:0,他引:2  
Chang MB  Weng YM  Lee TY  Chen YW  Chang SH  Chi KH 《Chemosphere》2003,51(10):1103-1110
In this study, ambient air samples were taken concurrently in the vicinity area of a large-scale municipal waste incinerator (MWI) and the background area for measuring polychlorinated dibenzo-p-dioxins and furans (PCDD/Fs) concentrations from November 1999 through July 2000 in northern Taiwan. The results obtained from eighteen ambient air samples indicate that the mean PCDD/F concentration of seventeen 2,3,7,8-substituted congeners in wintertime (188–348 fg-I-TEQ/m3) is significantly higher than that measured in summertime (56–166 fg-I-TEQ/m3). In addition, the seasonal PCDD/F concentrations are compared with the ambient air quality data including CO, NO2, PM10 and TSP sampled from Taipei area to gain better insights. It indicates that the variation of ambient air PCDD/F concentrations is closely correlated with that of PM10 concentrations. Besides, the results indicate that the I-TEQ concentration of ambient air in sampling site B (directly downwind of the MWI) is of the highest while the sampling site A (upwind of MWI) is of the lowest among all sampling sites. This implies that existing MWI can be a significant emitter of PCDD/Fs in this area. Furthermore, the patterns of the PCDD/F congener distribution at all sampling sites (including the background site in Taoyuan) are quite similar. OCDD concentration is of the highest among seventeen PCDD/F congeners investigated and accounts for about 35% of the total concentration. As for the I-TEQ concentrations, 2,3,4,7,8-PeCDF is the most significant contributor, generally being responsible for 30–45% of the total I-TEQ values depending on the sampling sites and seasons.  相似文献   

10.
Kraal P  Jansen B  Nierop KG  Verstraten JM 《Chemosphere》2006,65(11):2193-2198
The speciation of titrated copper in a dissolved tannic acid (TA) solution with an initial concentration of 4 mmol organic carbon (OC)/l was investigated in a nine-step titration experiment (Cu/OC molar ratio = 0.0030–0.0567). We differentiated between soluble and insoluble Cu species by 0.45 μm filtration. Measurements with a copper ion selective electrode (ISE) and diffusive gradients in thin films (DGT) were conducted to quantify unbound Cu(II) cations (‘free’ Cu) and labile soluble Cu complexes. For the DGT measurements, we used an APA hydrogel and a Chelex 100 chelating resin (Na form). Insoluble organic Cu complexes (>0.45 μm) was the dominant Cu species for Cu/OC = 0.0030–0.0567 with a maximum fraction of 0.96 of total Cu. At Cu/OC > 0.0100, Cu-catalysed degradation of aggregate structures resulted in a strong increase of free Cu and (labile) soluble Cu complexes with a maximum fraction of 0.28 and 0.32 of total Cu, respectively. Labile (i.e. DGT-detectable) soluble Cu complexes had a relatively high averaged diffusion coefficient (D) in the APA hydrogel (3.50 × 10−6– 5.58 × 10−6 cm2 s−1).  相似文献   

11.
Zhu R  Sun L 《Chemosphere》2005,59(11):1583-1593
Methane fluxes were measured from three exposed tundra sites and four snowpack sites on the Fildes Peninsula in the maritime Antarctic in the summertime of 2002. The average fluxes at two normal tundra sites were −15.3 μg m−2 h−1 and −14.3 μg m−2 h−1, respectively. The fluxes from tundra site with fresh penguin dropping addition showed positive values with the average of 36.1 μg m−2 h−1, suggesting that the deposition of fresh droppings greatly enhanced CH4 emissions from the poor Antarctic tundra during penguin breeding periods. The summertime variation in CH4 flux was correlated with surface ground temperature and the precipitation. The correlation between the flux and PT0, which is the product of the precipitation and surface ground temperature, was quite strong. The diurnal cycle of CH4 flux from the tundra soils was not obtained due to local fluky weather conditions. The fluxes through four snowpack sites were also obtained by the vertical CH4 concentration gradient and their average fluxes were −46.5 μg m−2 h−1, −28.2 μg m−2 h−1, −46.4 μg m−2 h−1 and −17.9 μg m−2 h−1, respectively, indicating that tundra soils under snowpack also consume atmospheric CH4 in the maritime Antarctic; therefore these fluxes could constitute an important part of the annual CH4 budget for Antarctic tundra ecosystem.  相似文献   

12.
Determination of triazines herbicides (atrazine and simazine) by high performance liquid chromatography (HPLC) in samples of trophic chain were worked out. Determination limits of 0.5 μg g−1 for atrazine, 0.8 μg g−1 for simazine with pesticides recovery of 70–77% in trophic chain samples were obtained. The content of simazine in soils was in range 1.72–57.89 μg g−1, in grass 5–88 μg g−1, in milk 2.32–15.29 μg g−1, in cereals 10.98–387 μg g−1, in eggs 30.14–59.48 μg g−1, for fruits: 2.45–6.19 μg g−1. The content of atrazine in soils was in range 0.69–19.59 μg g−1, in grass 7.85–23.85 μg g−1, in cereals 1.88–43.08 μg g−1. Cadmium, lead and zinc were determined by inductively coupled plasma atomic emission spectrometry (ICP-AES) in the same samples as atrazine and simazine. Determination limits for cadmium 5 × 10−3 μg g−1, for lead 1 × 10−2 μg g−1, and for zinc 0.2 × 10−3 μg g−1, were obtained. The content of cadmium in soil was in range 0.13–5.89 μg g−1, in grass 114–627.72 × 10−3 μg g−1, in milk 8.88–61.88 × 10−3 μg g−1, in cereals 0.20–0.31 μg g−1, in eggs 0.11–0.15 μg g−1, in fruits 0.23–0.59 μg g−1. The content of lead in soils was in range 0.57–151.50 μg g−1, in grass 0.16–136.57 μg g−1, in milk 1.16–3.74 μg g−1, in cereals 1.05–5.47 μg g−1, in eggs 5.79–55.87 μg g−1, in fruits 21.00–87.36 μg g−1. Zinc content in soil was in range 9.15–424.5 μg g−1, in grass 35.20–55.87 μg g−1, in milk 20.00–34.38 μg g−1, in cereals 14.94–28.78 μg g−1, in eggs 15.67–32.01 μg g−1, in fruits 14.94–18.88 μg g−1.

Described below extraction and mineralization methods for particular trophic chains allowed to determine of atrazine, simazine, cadmium, lead and zinc with good repeatability and precision. Emphasis was focused on liquid–liquid extraction and solid-phase extraction of atrazine and simazine from analysed materials, as well as, on monitoring the content of herbicides and metals in soil and along trophic chain. Higher concentration of pesticides in samples from west region of Poland in comparison to that of east region is likely related to common applying them in Western Europe in relation to East Europe. The content of metals strongly depends on samples origin (industry area, vicinity of motorways).  相似文献   


13.
The influence of intact (FLT) and photomodified (phFLT) fluoranthene (0.05, 0.5 and 5 μmol l−1) and herbicide Basagran (5, 20, 35 and 50 nmol l−1) on the germination, growth of seedlings and photosynthetic processes in pea plants (Pisum sativum L., cv. Garde) was investigated. The germination was significantly inhibited already by the lowest concentration (0.05 μmol l−1) of FLT and phFLT, while Basagran caused inhibition only in higher concentrations (35 and 50 nmol l−1). The growth of roots was significantly inhibited by higher concentration 5 μmol l−1 of both FLT and phFLT and the shoot of seedlings was significantly influenced only by photomodified form. The length of root and shoot was inhibited already by concentration 5 nmol l−1 of Basagran. Organic compounds applied on chloroplasts suspension influenced primary photochemical processes of photosynthesis. In chlorophyll fluorescence parameters, the significant increase of F0 values and the decrease of FV/FM and ΦII values by application of FLT (0.5 and 5 μmol l−1) and phFLT (0.05, 0.5 and 5 μmol l−1) was recorded. The maximum capacity of PSII (FV/FM) was influenced by the highest (50 nmol l−1) and the effective quantum yield of PSII (ΦII) already by the lowest (5 nmol l−1) concentration of Basagran. Hill reaction activity decreased and was significantly inhibited by higher concentration (0.5 and 5 μmol l−1) of FLT and phFLT and already by the lowest concentration (5 nmol l−1) of Basagran.  相似文献   

14.
The temporal variability and bioaccumulation dynamics of C12–25 n-alkanes, isoprenoids and unresolved aliphatic hydrocarbons (UCM) were studied in a detritivorous fish (Sábalo: Prochilodus lineatus) collected from 1999 to 2005 in the sewage impacted Buenos Aires coastal area. Fish muscles contain huge amounts of n-C12–25 (165 ± 93, 70 ± 48 or 280 ± 134 μg g−1, dry, fresh and lipid weight, respectively) and UCM (931 ± 560, 399 ± 288 and 1567 ± 802 μg g−1) reflecting the chronic bioaccumulation of fossil fuels from sewage particulates. On a temporal basis, lipid normalized aliphatic concentrations peaked by the end of 2001–2002 during the rainiest period over the last four decades (1750 vs. 1083 ± 4.6 mm in 1999, 2004 and 2005), reflecting an enhanced exposition due to massive anthropogenic fluxes from Metropolitan Buenos Aires in wet years. The hydrocarbon composition in fish muscles is enriched in n-C15–17 and isoprenoids relative to a fresh crude oil and settling particulates, with fresher signatures during the 2001–2002 maxima. Fish/settling material bioaccumulation factors (BAFs: 0.4–6.4 dry weight or 0.07–0.94 lipid-organic carbon) plotted against Kow showed a parabolic pattern maximizing at n-C14–18 and isoprenoids. The optimal bioaccumulation window corresponds to highly hydrophobic (log Kow: 7.2–9.9), intermediate-size C14–18 n-alkanes and C15–20 isoprenoids (MW: 198–282; length: 17.9 to 25.4 Å) with melting points ranging from −19.8 to 28 °C. The uptake efficiency is inversely correlated to melting points and increased from 75% for n-C25 to above 90% for n-C14–15 and isoprenoids.  相似文献   

15.
Fugitive dust emission from limestone extraction areas is a significant pollution source. The cracking operation in limestone extraction areas easily causes high total suspended particulate (TSP) concentrations in the atmosphere, occasionally exceeding the 1-hr national emission standard of Taiwan (500 microg/m3). The concentration and size distribution were measured at different distances (0.05-15 km) in the extraction areas. The highest hourly concentrations of TSP, PM10 (suspended particulate matter [PM] smaller than 10 microm), and PM2.5 (suspended PM smaller than 2.5 microm) are 1111, 825, and 236 microg/m3, respectively, during the cracking process. Measurement results obtained from the Micro-Orifice Uniform Deposit Impactor indicated that the mass median aerodynamic diameter is approximately 0.7 microm, with the geometric standard deviation exceeding 7. In addition, the emission factors are 0.143 and 0.211 kg/t for both vertical well and stair extraction operations, respectively. Experimental results demonstrate that the corresponding TSP control efficiencies for spraying water, planting grass, setting short walls, paving gravel roads, and establishing vertical well transportation are approximately 55, 50, 44, 22, and 30%, respectively. Furthermore, the PM10 control efficiencies are approximately 45, 41, 54, 35, and 30%, respectively, whereas the PM2.5 control efficiencies are roughly 23, 31, 15, 11, and 10%, individually.  相似文献   

16.
Lee BK  Smith TJ  Garshick E  Natkin J  Reaser P  Lane K  Lee HK 《Chemosphere》2005,61(11):1677-1690
This study analyzed the workplace area concentrations and the personal exposure concentrations to fine particulate (PM2.5), elemental carbon (EC), and organic carbon (OC) measured during the winter period in trucking companies. The averaged personal exposure concentrations at breathing zones of workers are much greater than those of the microenvironment concentrations. The highest difference between the area (microenvironment) and personal exposure concentrations was in the PM2.5 concentrations followed by the OC concentrations. The area concentrations of PM2.5, EC, and OC at a large terminal were higher than those at a small one. The highest area concentrations of PM2.5, EC, and OC were observed in the shop areas followed by pick-up and delivery (P&D) areas. The area concentrations and personal exposure to PM2.5, EC, and OC in the shop and P&D areas which are highly affected by diesel engine exhaust emissions were much higher than those in the docks which are significantly affected by liquefied petroleum gas (LPG) engine exhaust emissions. The highest EC fraction to the total carbon (EC + OC) concentrations was observed in the shops, while the lowest one was identified in the offices. The personal exposure of the smoking workers to PM2.5 and OC was much higher than that of the non-smoking workers. However, the smoking might not significantly contribute to the personal exposure to EC. There were significant correlations between the PM2.5 and OC concentrations in both the area and personal exposure concentrations. However, significant correlations between the PM2.5 and EC concentrations and between the OC and EC concentrations were not identified.  相似文献   

17.
Abstract

Fugitive dust emission from limestone extraction areas is a significant pollution source. The cracking operation in limestone extraction areas easily causes high total suspended particulate (TSP) concentrations in the atmosphere, occasionally exceeding the 1-hr national emission standard of Taiwan (500 μg/m3). The concentration and size distribution were measured at different distances (0.05–15 km) in the extraction areas. The highest hourly concentrations of TSP, PM10 (suspended particulate matter [PM] smaller than 10 μm), and PM2.5 (suspended PM smaller than 2.5 μm) are 1111, 825, and 236 μg/m3, respectively, during the cracking process. Measurement results obtained from the Micro-Orifice Uniform Deposit Impactor indicated that the mass median aerodynamic diameter is ~0.7 μm, with the geometric standard deviation exceeding 7. In addition, the emission factors are 0.143 and 0.211 kg/t for both vertical well and stair extraction operations, respectively. Experimental results demonstrate that the corresponding TSP control efficiencies for spraying water, planting grass, setting short walls, paving gravel roads, and establishing vertical well transportation are ~55, 50, 44, 22, and 30%, respectively. Furthermore, the PM10 control efficiencies are ~45, 41, 54, 35, and 30%, respectively, whereas the PM2.5 control efficiencies are roughly 23, 31, 15, 11, and 10%, individually.  相似文献   

18.
Particles emitted from gravel processing sites are one contributor to worsening air quality in Taiwan. Major pollution sources at gravel processing sites include gravel and sand piles, unpaved roads, material crushers, and bare ground. This study analyzed fugitive dust emission characteristics at each pollution source using several types of particle samplers, including total suspended particulates (TSP), suspended particulate (PM10), fine suspended particulate (PM2.5), particulate sizer, and dust-fall collectors. Furthermore, silt content and moisture in the gravel were measured to develop particulate emission factors. The results showed that TSP (< 100 microm) concentrations at the boundary of gravel sites ranged from 280 to 1290 microg/m3, which clearly exceeds the Taiwan hourly air quality standard of 500 microg/m3. Moreover, PM10 concentrations, ranging from 135 to 550 microg/m3, were also above the daily air quality standard of 125 microg/m3 and approximately 1.2 and 1.5 times the PM2.5 concentrations, ranging from 105 to 470 microg/m3. The size distribution analysis reveals that mass mean diameter and geometric standard deviation ranged from 3.2 to 5.7 microm and from 2.82 to 5.51, respectively. In this study, spraying surfactant was the most effective control strategy to abate windblown dust from unpaved roads, having a control efficiency of approximately 93%, which is significantly higher than using paved road strategies with a control efficiency of approximately 45%. For paved roads, wet suppression provided the best dust control efficiencies ranging from 50 to 83%. Re-vegetation of disturbed ground had dust control efficiencies ranging from 48 to 64%.  相似文献   

19.
Total suspended particulate (TSP) samples were seasonally collected at the air exhaust of 15 commercial concentrated animal feeding operations (CAFOs; including swine finishing, swine farrowing, swine gestation, laying hen, and tom turkey) in the U.S. Midwest. The measured TSP concentrations ranged from 0.38 ± 0.04 mg m?3 (swine gestation in summer) to 10.9 ± 3.9 mg m?3 (tom turkey in winter) and were significantly affected by animal species, housing facility type, feeder type (dry or wet), and season. The average particle size of collected TSP samples in terms of mass median equivalent spherical diameter ranged from 14.8 ± 0.5 µm (swine finishing in winter) to 30.5 ± 2.0 µm (tom turkey in summer) and showed a significant seasonal effect. This finding affirmed that particulate matter (PM) released from CAFOs contains a significant portion of large particles. The measured particle size distribution (PSD) and the density of deposited particles (on average 1.65 ± 0.13 g cm?3) were used to estimate the mass fractions of PM10 and PM2.5 (PM ≤10 and ≤2.5 μm, respectively) in the collected TSP. The results showed that the PM10 fractions ranged from 12.7 ± 5.1% (tom turkey) to 21.1 ± 3.2% (swine finishing), whereas the PM2.5 fractions ranged from 3.4 ± 1.9% (tom turkey) to 5.7 ± 3.2% (swine finishing) and were smaller than 9.0% at all visited CAFOs. This study applied a filter-based method for PSD measurement and deposited particles as a surrogate to estimate the TSP’s particle density. The limitations, along with the assumptions adopted during the calculation of PM mass fractions, must be recognized when comparing the findings to other studies.

Implications: The concentration, size, and density of TSP samples varied greatly with animal species, housing facility type, feeder type, and season, suggesting that PM emission data derived from limited measurements may not be readily applied to estimate the overall emission from concentrated animal feeding operations (CAFOs). This study also affirmed that particles released from CAFOs is of relatively high density (~1.65 g cm?3) and with diameter mostly larger than 10 µm, indicating that regular PM abatement devices, such as cyclones, fabric filters, or even a simple downward-facing exhaust duct, may be employed to mitigate the TSP emission with acceptable efficiency.  相似文献   

20.
Watson JG  Chow JC  Houck JE 《Chemosphere》2001,43(8):1141-1151
PM2.5 (particles with aerodynamic diameters less than 2.5 μm) chemical source profiles applicable to speciated emissions inventories and receptor model source apportionment are reported for geological material, motor vehicle exhaust, residential coal (RCC) and wood combustion (RWC), forest fires, geothermal hot springs; and coal-fired power generation units from northwestern Colorado during 1995. Fuels and combustion conditions are similar to those of other communities of the inland western US. Coal-fired power station profiles differed substantially between different units using similar coals, with the major difference being lack of selenium in emissions from the only unit that was equipped with a dry limestone sulfur dioxide (SO2) scrubber. SO2 abundances relative to fine particle mass emissions in power plant emissions were seven to nine times higher than hydrogen sulfide (H2S) abundances from geothermal springs, and one to two orders of magnitude higher than SO2 abundances in RCC emissions, implying that the SO2 abundance is an important marker for primary particle contributions of non-aged coal-fired power station contributions. The sum of organic and elemental carbon ranged from 1% to 10% of fine particle mass in coal-fired power plant emissions, from 5% to 10% in geological material, >50% in forest fire emissions, >60% in RWC emissions, and >95% in RCC and vehicle exhaust emissions. Water-soluble potassium (K+) was most abundant in vegetative burning profiles. K+/K ratios ranged from 0.1 in geological material profiles to 0.9 in vegetative burning emissions, confirming previous observations that soluble potassium is a good marker for vegetative burning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号