首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 187 毫秒
1.
北京2011年10月连续灰霾过程的特征与成因初探   总被引:17,自引:5,他引:12       下载免费PDF全文
选择2011年北京地区灰霾典型发生月——10月,利用在中国环境科学研究院监测的φ(SO2)、φ(O3)、φ(NO2)、φ(CO)、ρ(PM10)、ρ(PM2.5)、ρ(BC)等数据,对该地区秋季典型灰霾过程特征及成因进行了研究. 在观测期间51.5%的时间内出现了灰霾,其中13.6%属于重度灰霾. 对灰霾期间污染物时间分布特征的分析表明:在灰霾过程中ρ(PM1)、ρ(PM2.5)、ρ(PM10)及ρ(BC)较各自月均值的升幅均大于20%,ρ(PM1)/ρ(PM2.5)(78.7%)也明显增大.大气能见度的降低与细颗粒物及亚微米颗粒物有直接关系. 对观测期间的气象因素、气体污染物时间序列和颗粒物浓度累积特征的研究表明,10月连续灰霾过程的成因可能是该月频繁出现的鞍型场静稳天气及北京周边地区存在的基数较大的细颗粒物排放源所致.   相似文献   

2.
广州灰霾现象特征分析   总被引:6,自引:3,他引:3  
刘永红  冯婷  蔡铭 《环境科学研究》2011,24(10):1081-1087
依据灰霾的发布和判定依据,对中山大学大气环境自动监测站的能见度、风速、相对湿度和ρ(PM2.5)等观测数据进行分析,分析其随时间变化的规律和相关性,得出近年来广州灰霾变化规律和多类特征. 结果表明:近年来广州整体灰霾现象有所改善,且主要呈现非夏季和夏季2种典型季节性特征. 非夏季灰霾具有持续时间长、状态稳定和风力突破性强等特点;夏季灰霾具有持续期短、状态变化快,ρ(PM2.5)与能见度的曲线图镜像对称明显等规律;灰霾现象与城市空气质量有密切的关系,且API大于100的时间与较严重灰霾日的分布相似.   相似文献   

3.
天津市环境空气中细粒子的污染特征与来源   总被引:24,自引:6,他引:18  
于2006年8─12月,在天津市中心城区采集细粒子(PM2.5)并测定其中水溶性无机离子和元素的质量浓度,应用因子分析与多元线性回归技术解析PM2.5的来源. 结果表明:ρ(PM2.5)月均值为103.9~217.4 μg/m3,呈冬季最高、夏季最低的特征. 水溶性无机离子质量浓度占ρ(PM2.5)的比例为24.90%~49.76%,其中ρ(SO42-),ρ(NO3-),ρ(NH4+)与ρ(Cl-)之和约占离子总质量浓度的90%. 在夏季,二次粒子质量浓度占ρ(PM2.5)比例最大,这与SO2向SO42-,NO2向NO3-的转化率升高有关. PM2.5中Cl富集主要与燃煤等人为排放有关, 海盐源对Cl-的贡献不足20%. 天津PM2.5中含量最高的元素为Si,约占元素总质量浓度的28.4%. 微量元素中以Zn和Pb的含量最高,二者主要来自燃煤和机动车排放. 源解析结果表明,二次污染、化石燃料燃烧、土壤尘和建筑粉尘是天津市环境空气中PM2.5的主要来源,贡献率分别为53.4%,25.8%,12.3%和8.6%.   相似文献   

4.
北京市2014年10月重霾污染特征及有机碳来源解析   总被引:3,自引:0,他引:3       下载免费PDF全文
2014年10月北京市出现了多次重霾天气,与此同时,通过全国秸秆燃烧卫星遥感监测发现,北京周边河南、河北等地区恰存在一定规模的秸秆燃烧活动. 对2014年10月4—27日北京市大气PM2.5中的水溶性离子、金属、OC(有机碳)、EC(元素碳)和有机物示踪物等化学成分进行了分析,对霾天和非霾天PM2.5中化学成分进行了比较,并使用CMB(化学质量平衡)模型对PM2.5中有机物的来源进行了解析,采用后向轨迹模拟和卫星遥感图像定量评估生物质燃烧(秸秆燃烧等)对重霾污染的影响. 结果表明:霾天ρ(PM2.5)〔(229.0±96.3)μg/m3〕是非霾天的5.0倍,水溶性离子总质量浓度〔(125.3±59.3)μg/m3〕是非霾天的6.5倍,ρ(SO42-)、ρ(NO3-)和ρ(NH4+)分别是非霾天的6.1、8.6和7.1倍,ρ(OC)〔(81.8±39.5)μg/m3〕是非霾天的7.8倍,ρ(EC)〔(6.7±3.4)μg/m3〕是非霾天的4.2倍;霾天生物质燃烧的示踪物——左旋葡聚糖和K+的质量浓度平均值分别是非霾天的9.1和3.3倍. 生物质燃烧、机动车排放以及二次污染物对有机细颗粒物的贡献率分别为18.9%、36.9%和41.9%;二次细颗粒物质量浓度增加了1倍左右;气象条件同样在很大程度上促进了霾的形成. 常规的源解析方法仅可对生物质燃烧的一次污染贡献进行定量,但对重霾污染贡献的全面评价尚需进一步探讨.   相似文献   

5.
为探究临沂市冬季环境空气PM2.5中水溶性离子污染特征及来源,于2016年12月11日—2017年1月9日在临沂大学、兰山区政府、高新区翠湖嘉园、汤庄办事处、河东区政府、临沂开发区6个采样点开展样品采集.结果表明:①采样期间全市ρ(PM2.5)日均值的平均值为144.86 μg/m3,ρ(PM2.5)日均值在2016年12月20日和2017年1月4日出现峰值,分别为304.46和341.65 μg/m3.②水溶性离子日均质量浓度大小顺序依次为ρ(NO3-)> ρ(SO42-)> ρ(NH4+)> ρ(Cl-)> ρ(K+)> ρ(Ca2+)> ρ(Na+)> ρ(F-)> ρ(Mg2+)> ρ(NO2-),其中,在PM2.5中w(NO3-)、w(SO42-)、w(NH4+)分别为22.33%、16.57%、13.62%,说明NO3-、SO42-和NH4+是临沂市PM2.5的主要组成部分.③临沂市污染天和非污染天ρ(PM2.5)日均值分别为164.00和56.86 μg/m3.随污染水平增加,PM2.5中w(NO3-)明显增高,w(SO42-)和w(NH4+)基本不变,说明w(NO3-)的增加导致ρ(PM2.5)的升高.污染天和非污染天的NOR(氮氧化率)分别为0.28和0.11,SOR(硫氧化率)分别为0.34和0.28,说明污染越重,NOR和SOR越高,并且NOx的气-粒转化速率较SO2慢.污染天ρ(Cl-)和ρ(K+)分别为7.22和1.77 μg/m3,分别是非污染天的2.5和3.0倍.④采样期间非污染天和污染天的N/S〔ρ(NO3-)/ρ(SO42-)〕分别为0.85和1.39,说明非污染天时固定源对PM2.5的贡献相对较大,而污染天时移动源对PM2.5的贡献相对较大.⑤通过PMF模型法解析出3个因子.因子1对PM2.5中水溶性离子的贡献率为56.13%,代表二次源和生物质燃烧源;因子2的贡献率为25.22%,代表工业源和垃圾焚烧源;因子3的贡献率为18.65%,代表扬尘源.研究显示,临沂市冬季PM2.5污染严重,水溶性离子来源复杂,应采取多源控制的污染防治对策.   相似文献   

6.
菏泽市秋冬季PM2.5水溶性离子化学特征分析   总被引:2,自引:0,他引:2       下载免费PDF全文
为深入研究菏泽市秋冬季PM2.5中水溶性离子污染特征,于2017年10月15日-2018年1月31日对菏泽市3个监测点同步进行PM2.5的采集和分析,分析探讨了不同污染程度下ρ(PM2.5)及水溶性离子化学特征.结果表明:①菏泽市秋冬季PM2.5呈区域污染特征.②整个观测期间,ρ(PM2.5)范围为26.72~284.10 μg/m3,平均值为103.27 μg/m3,其中水溶性离子对ρ(PM2.5)贡献率较大,为44.65%~49.87%;SNA(NO3-、NH4+、SO42-的统称)的占比较高,SNA占总水溶性离子质量浓度的86.88%,说明二次气溶胶为菏泽市大气PM2.5中的重要组成部分.③SNA三角图解和水溶性离子相关性结果表明,采样期间大气中NO3-、SO42-可能以NH4NO3、(NH42SO4形式存在;ρ(Cl-)与ρ(K+)相关性较高(清洁天和污染天的相关系数分别为0.79和0.81),由此推测Cl-与K+具有同源性,二者主要源于生物质燃烧.④重度及以上污染天的SOR(硫氧化率)和NOR(氮氧化率)分别为0.54和0.37,分别是清洁天的2.08和2.06倍;轻/中污染天的SOR和NOR分别为0.37和0.29,分别是清洁天的1.42和1.61倍.随着污染程度的加重,SO2和NO2向SO42-和NO3-的二次转化增强.重污染日SOR、NOR和相对湿度均大于清洁天和轻/中度污染天,而温度则未表现出相似的变化趋势,说明非均相反应是菏泽市秋冬季SO42-和NO3-形成的重要原因.研究显示,菏泽市污染呈区域性污染特征,二次气溶胶是菏泽市大气PM2.5的重要组成部分,污染天ρ(NO3-)、ρ(SO42-)、ρ(NH4+)均与相对湿度呈显著正相关(P < 0.05),均与温度呈负相关,表明在污染天高湿低温对SO2、NO2转化为SO42-、NO3-有推动作用.   相似文献   

7.
苏州市气溶胶消光特性及其对灰霾特征的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
为研究气溶胶消光特性对城市灰霾特征及形成的影响机制,采用2010年1月─2013年12月4 a的苏州市逐时散射系数、能见度、颗粒物质量浓度以及风速、风向、气温、气压、相对湿度等数据,对该市气溶胶散射系数、消光特性及影响因子进行了研究. 结果表明:苏州市气溶胶散射系数为(301.1±251.3)Mm-1,日变化呈双峰型,早高峰出现在07:00─08:00,晚高峰出现在20:00─21:00;其年内变化呈夏季低、冬季高. 气溶胶散射系数与ρ(PM2.5)的相关系数为0.77,高于与ρ(PM1)和ρ(PM10)的相关性,PM2.5散射效率为6.08 m2/g. 气溶胶散射系数受风速、风向等气象要素的影响:风速<4 m/s时,气溶胶散射系数下降迅速;风速在4~6 m/s时,气溶胶散射系数随风速下降缓慢. 苏州市气溶胶单次散射反照率平均值为0.84,散射消光比平均值为0.79,说明该地区气溶胶消光以散射性气溶胶为主. 气溶胶散射消光、气溶胶吸收消光、空气分子散射消光、NO2吸收消光分别占大气消光的82.33%、13.63%、2.72%和1.32%. 研究表明,对气溶胶散射消光贡献最大的非吸收性PM2.5是苏州市能见度下降、灰霾增加的最重要原因.   相似文献   

8.
为了解春节期间烟花爆竹燃放对北京大气污染物和PM2.5中水溶性无机离子贡献的影响,采用浓度特征对比、相关性分析等方法,对2011年2月1日-3月1日期间的PM10、气态污染物、PM2.5中水溶性无机离子浓度等在线数据进行了分析.结果表明:烟花爆竹的燃放会在短时间内加重PM10颗粒物污染,集中燃放期(含除夕、春节、正月初五、元宵节)ρ(PM10)和φ(SO2)(分别为232μg/m3和40.2×10-9)是非集中燃放期(63μg/m3和16.0×10-9)的3.7和2.5倍,燃放烟花爆竹对ρ(PM10)和φ(SO2)的小时贡献率分别达到56.8%和35.6%;但对φ(CO)、φ(NO)、φ(NO2)无显著影响.而观测期间由其他因素导致的污染期ρ(PM10)和各气态污染物小时体积分数有所增加,分别是非集中燃放期的3.0~8.3倍.燃放烟花爆竹对PM2.5中ρ(Mg2+)、ρ(K+)、ρ(Cl-)的影响最大,分别为非集中燃放期的65.0、31.6、6.9倍,贡献率分别为88.6%、87.2%、65.8%. ρ(Mg2+)、ρ(K+)与ρ(Cl-)在集中燃放期表现出较高的相关性(R>0.9).污染期ρ(SO42-)、ρ(NO3-)、ρ(NH4+)明显升高,分别为非集中燃放期的3.8、16.4、8.3倍,同时高于集中燃放期(分别为2.7、2.5、2.1倍).集中燃放期PM2.5中主要以NH4HSO4、NH4NO3、KNO3、KCl、NH4Cl、MgCl2等形式存在.集中燃放期硫氧化物转化率(SOR)高于非集中燃放期和污染期,而氮氧化物转化率(NOR)则是污染期最高.研究显示,燃放烟花爆竹对ρ(PM10)及PM2.5中ρ(Mg2+)、ρ(K+)、ρ(Cl-)影响最大,污染期各离子浓度均有大幅升高,NOR在污染期的高值是导致ρ(NO3-)升高的重要原因.   相似文献   

9.
北京交通环境PM10分布特征及重金属形态分析   总被引:7,自引:1,他引:6  
以北京市西三环航天桥地区为对象,研究了城市交通环境大气可吸入颗粒物浓度及主要化学组成随时间和粒径的分布特征. 结果表明:该地区大气中ρ(PM10)冬季略高于春季,秋季次之,夏季最低;颗粒物中ρ(PM2.5)/ρ(PM10)和ρ(PM1.0)/ρ(PM10)平均值分别为82.6%和70.3%;ρ(PM10)与ρ(PM2.5)和ρ(PM10)与ρ(PM1.0)之间均有显著的相关性. PM10中金属元素浓度冬春季较高,夏秋季较低;Mg,Ca和Fe等地壳元素浓度随粒径的减小而降低,而Pb,Zn和Ni等重金属元素浓度总体上随粒径的减小而增加. 颗粒物中的Cr和Ni主要以有机物结合态存在,Cu,Zn和Cd主要以酸可提取态存在,Pb主要以酸可提取态和氧化物结合态存在;颗粒物中所含Cd和Zn元素的生物有效性最高. PM10中水溶性ρ(SO42-)在夏季和冬季最高,秋季最低,而水溶性ρ(NO3->/sup>)全年变化不大;[0.43~2.1 μm)粒径段颗粒物中的水溶性ρ(SO42-)及ρ(NO3->/sup>)较高,分别占PM10中水溶性ρ(SO42-)及ρ(NO3->/sup>)总量的68.3%及57.6%;ρ(NO3->/sup>)/ρ(SO42-)平均值为0.659.   相似文献   

10.
鞍山大气颗粒物浓度的变化特征   总被引:2,自引:1,他引:1  
利用鞍山大气成分监测站Grimm180观测的2007年颗粒物数浓度,ρ(PM10),ρ(PM2.5)和ρ(PM1.0)以及台站的常规气象观测资料,分析了该地区颗粒物数浓度的谱分布、质量浓度的变化特征及与气象条件的相关性. 结果表明:颗粒物数浓度谱分布符合Junge分布;参数υ与能见度呈负相关,υ值越大且PM0.45占PM10的数浓度比例小于90%,能见度较差;颗粒物质量浓度日变化呈双峰特征,ρ(PM10),ρ(PM2.5)和ρ(PM1.0)之间有很好的相关性,ρ(PM2.5)/ρ(PM10)平均值为0.654,ρ(PM1.0)/ρ(PM2.5)的平均值为0.832,ρ(PM1.0)/ρ(PM10)平均值为0.545;鞍山地区年主导风向为SE,颗粒物质量浓度变化受辽宁沙尘移动路径的影响较小,主要受排放累积型污染影响,其中大雾天气条件下颗粒物质量浓度较高,大雾期间的回归方程截距较年平均回归方程的大,这对研究颗粒物质量浓度的突变特性具有指示作用.   相似文献   

11.
福建沿海城市霾天气特征   总被引:4,自引:1,他引:3       下载免费PDF全文
利用2006年1月—2010年12月福建省沿海6个城市的能见度、相对湿度、降水、天气形势和大气污染物资料,对霾天气时空变化特征、霾与天气形势的关系进行了分析. 结果表明:宁德市每年霾日数最少,为12~26 d;漳州市霾日数最多,为74~118 d;而福州、厦门和泉州三市的霾日数相近.6个城市霾天气主要出现在12月—次年6月,7—11月霾的出现率极低且均以轻微霾为主,所占比例在85.5%以上;持续时间短暂的霾较多,半天和全天的霾较少. 在暖区辐合、高空槽和变性冷高压3种天气形势下霾出现频率均较高,分别达到21.2%~49.5%、9.1%~42.3%、6.1%~47.5%. ρ(PM10)与能见度的相关系数最高,为-0.44~-0.33,并且各城市霾天气下的ρ(PM10)均明显高于非霾天气;ρ(SO2)除莆田市外,ρ(NO2)除漳州市外,其他城市ρ(SO2)和ρ(NO2)均为霾天气高于非霾天气.   相似文献   

12.
为研究沙尘天气下典型大气污染特征,选择呼和浩特市、包头市、鄂尔多斯市(简称"呼包鄂地区")为研究对象,分析了呼包鄂地区2016年春季3月1日-5月31日的PM10与PM2.5数据,利用CMB(化学质量平衡)受体模型、后向轨迹模型研究了呼包鄂地区污染源的特征,通过富集因子法评估了人类活动对沙尘天气的影响,最终通过特征比值法对沙尘天气与非沙尘天气进行了区分.结果表明:①沙尘天气与非沙尘天气时,呼包鄂地区PM10、PM2.5中主要化学组分均为Si、Ca、Al、Fe、OC、SO42-与NO3-.沙尘天气时,ρ(PM10)与ρ(PM2.5)的差值大于非沙尘天气,较高的ρ(Al)、ρ(Si)、ρ(Ca)说明呼包鄂地区受到较大的沙尘天气影响.②CMB受体模型源解析结果表明,沙尘天气时扬尘源对PM10与PM2.5的贡献率分别为59.3%、48.7%,说明PM10和PM2.5的主要污染源均为扬尘源.后向轨迹模式模拟表明,呼包鄂地区的沙尘主要来自其西北部地区.③元素Na、K、Mg的EF(富集因子)在PM10与PM2.5中均大于1.0,Si、Cu的EF在PM2.5中均大于1.0,但在PM10中小于或等于1.0;依据EF表征级别,自然因素对PM2.5和PM10的影响程度均较大,并且PM2.5受人类活动影响的程度大于PM10.通过特征比值发现,ρ(Si)/ρ(Al)大于1.7且ρ(Si)/ρ(Fe)大于2.2可作为呼包鄂地区典型沙尘天气的界定.研究显示,呼包鄂地区春季受到较大程度的沙尘影响,这些沙尘主要来自其西北部地区,通过特征比值法可以对呼包鄂地区沙尘天气进行界定.   相似文献   

13.
为研究济南市机动车排气对城市区域空气质量的影响,利用环境空气质量监测站点(简称"1号站点")和路边机动车尾气监测站点(简称"2号站点")的在线数据,以及基于4种模拟情景的CMAQ空气质量模型预测数据,研究了济南市城市区域大气污染物质量浓度变化规律及不同机动车车型对6种常规大气污染物的贡献.结果表明:①在采暖季,1号站点ρ(PM2.5)、ρ(PM10)、ρ(NO2)、ρ(CO)、ρ(O3)和ρ(SO2)月均值分别为435 μg/m3、702 μg/m3、84.2 μg/m3、6.8 mg/m3、4.5 μg/m3和92 μg/m3.②2015年12月24日(灰霾天),1号站点ρ(CO)、ρ(PM2.5)和ρ(PM10)均明显升高,ρ(SO2)、ρ(O3)和ρ(NO2)均变化不明显.2个监测站点中ρ(NO2)和ρ(PM10)均呈双峰趋势,2个峰值出现的时间与上、下班高峰期基本一致.除ρ(O3)和ρ(SO2)达GB 3095-2012《环境空气质量标准》二级标准外,其他污染物均超过GB 3095-2012二级标准限值,采暖季大气污染特征为颗粒物型污染.③机动车对研究区域NO2和PM10贡献率较大,其中,小型车对CO、NO2、PM10和PM2.5贡献率最大,其贡献率分别为85.7%、50.1%、53.4%和52.8%.机动车排放源能降低空气中ρ(O3),其总贡献率为-25.5%,其中大型车、中型车、小型车对O3的贡献率分别为-8.8%、-2.7%和-8.9%.灰霾天下不同机动车车型对空气中污染物质量浓度的总贡献率均比采暖季大.研究显示,济南市采暖季大气污染特征为颗粒物型污染,机动车排放源对空气中NO2和PM2.5有较大贡献.   相似文献   

14.
为研究本溪市大气PM2.5中水溶性离子污染特征,于2016年1—10月在本溪市开展PM2.5样品采集,使用离子色谱法分析了其中8种水溶性离子(Cl-、NO3-、SO42-、NH4+、Ca2+、Na+、Mg2+、K+),并采用PMF(positive matrix factorization,正矩阵因子分解法)模型对水溶性离子的来源进行分析.结果表明:观测期间,本溪市ρ(PM2.5)平均值为(57.6±21.9)μg/m3,ρ(PM2.5)季节性变化特征明显,呈冬季 > 秋季 > 春季 > 夏季趋势;水溶性离子平均质量浓度为19.3 μg/m3,占ρ(PM2.5)的33.6%,各离子质量浓度高低顺序为SO42- > NO3- > NH4+ > Cl- > Ca2+ > K+ > Na+ > Mg2+;SNA(SO42-、NO3-和NH4+)是PM2.5中主要的3种离子,在春季、夏季、秋季和冬季分别占水溶性离子的73.2%、88.2%、82.5%和73.6%,表明夏季的二次污染较为严重.阴、阳离子电荷平衡分析结果显示,阴离子相对亏损,本溪市PM2.5整体呈弱碱性,NO3-、SO42-与NH4+相关性较高,其在PM2.5中主要以NH4NO3和NH4HSO4的形式存在. PMF分析结果表明,本溪市PM2.5中水溶性离子的来源主要包括二次转化源、燃煤源和扬尘源.研究显示,本溪市PM2.5中水溶性离子季节性变化特征明显,二次转化源、燃煤源和扬尘源是其主要来源.   相似文献   

15.
为了明确泰山顶PM2.5及其二次组分的输送路径与潜在来源,基于后向轨迹聚类方法对2015年冬季和春季抵达泰山顶的气团传输轨迹进行聚类分析,并利用PSCF(潜在源贡献因子)和CWT(浓度权重轨迹)方法分析泰山顶冬季和春季PM2.5、SO42-、NO3-和NH4+的潜在源域.结果表明,冬季和春季来自不同方向的气团轨迹对泰山顶PM2.5及其组分的潜在源分布的影响具有明显差异.冬季泰山顶ρ(PM2.5)和ρ(NO3-)平均值的最高值对应的气团轨迹来自湖北、河南、山东济宁等地区,而来自西北方向的轨迹1和轨迹2分别对应的ρ(SO42-)和ρ(NH4+)平均值最高;春季影响ρ(PM2.5)和ρ(NO3-)的气团轨迹主要来自西南方向的河南、安徽北部、山东聊城等地区,而源自蒙古国途经内蒙古、山西、河南北部和山东聊城的气团轨迹对ρ(SO42-)和ρ(NH4+)的贡献最大.泰山顶ρ(PM2.5)、ρ(SO42-)、ρ(NO3-)和ρ(NH4+)的PSCF分布特征与CWT分布特征类似,WPSCF(源区分布概率)和CWT的最高计算值主要集中山东济宁、聊城以及邻近的山西省、河北省和河南省,是泰山顶大气污染物的主要潜在源域.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号