首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 328 毫秒
1.
2008年1月广州大气污染特征及能见度观测研究   总被引:23,自引:13,他引:10       下载免费PDF全文
利用颗粒物在线观测仪、污染气体在线观测仪、现时天气现象传感器以及自动气象站,于2008年1月对广州大气污染物质量浓度、能见度和气象因子进行了连续观测. 结果发现:ρ(PM2.5)与ρ(NO2)日变化趋势基本相似且均呈双峰现象,分别出现在09:00—10:00和19:00—21:00时段;ρ(SO2)呈单峰现象,出现在08:00—13:00时段. ρ(PM2.5),ρ(SO2),ρ(NO2),ρ(NO)和ρ(O3)日均值分别为(82.8±66.0),(81.6±80.9),(106.5±67.2),(66.1±57.0)和(25.1±17.0) μg/m3,能见度日均值为(6.8±4.4) km. 能见度与ρ(PM2.5)和相对湿度呈负相关关系,相关系数均为-0.47. 研究还表明,低边界层高度、小风天气、高水平的污染物质量浓度和相对湿度是导致广州低能见度天气的主要因素.   相似文献   

2.
毛敏娟  杨续超 《环境科学研究》2015,28(12):1823-1832
利用遥感夜间灯光数据,结合地面观测资料,以浙江省为例,研究了城市发展与气候条件、大气污染物质量浓度及霾天气之间的关系. 结果表明:当前粗放型城市发展引起的干岛、热岛、低湿、低能见度等气候效应,使1980—2010年杭州年均气温的线性增长率达到0.70 ℃/10 a、风速下降率为0.11 m/(s·10 a)、能见度下降率为1.40 km/10 a,分别高于临安的0.41 ℃/10 a、0.06 m/(s·10 a)、0.92 km/10 a. 城市发展改变大气污染物组成,对于城市化水平较高的杭州,大气中ρ(PM2.5)/ρ(PM10)的月均值介于0.52~0.69之间,明显高于临安的0.45~0.59,NO2、SO2等二次气溶胶前体物的质量浓度也明显高于临安. 浙江省大气中ρ(NO2)较ρ(SO2)高,其中临安大气中ρ(NO2)年均值较ρ(SO2)高出5.8 μg/m3,杭州的则高出21.0 μg/m3,同时杭州大气中ρ(NO2)与ρ(SO2)年均值的比值(1.70)也高于临安(1.57). 城市发展引起的气候效应及大气污染物组成变化可以解释浙江省霾日数与夜间灯光在空间分布和年代际长期变化趋势上的高度一致性. 在空间上,城市发展快、夜间灯光密集的浙北、浙江沿海、金衢盆地也是霾天气高发地区,而1960—2010年年霾日数出现的2个大跃变与改革开放及2000年后城市快速发展阶段相吻合,年霾日数与夜间灯光总灰度值之间的相关系数达到0.99. 研究显示,粗放型城市化发展是当前浙江省霾污染加剧的根本原因.   相似文献   

3.
气候变化对浙江省大气污染的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
开展气候变化对大气污染影响的研究有利于加深对大气污染形成机理的认识.利用1996-2015年浙江省大气成分、气象观测资料,分析气候变化对大气污染的影响.结果表明,近20 a来浙江省呈年高压天气日数增多、年均气温升高、降水集中及年均净辐射、日照时数、风速、气温日较差和水汽蒸发量都下降的气候变化事实.气候变化引起大气污染扩散能力下降,1996-2015年杭州市和浙江省年均大气扩散指数分别下降了0.55和0.81,降幅分别达35.71%和42.69%.大气扩散指数与ρ(PM10)、ρ(PM2.5)及年霾日数之间呈显著负相关,当大气扩散指数增大时,大气颗粒物浓度和年霾日数均下降,反之亦然.杭州市大气扩散指数与ρ(PM10)、ρ(PM2.5)之间的相关系数分别为0.73和0.76.杭州市和浙江省大气扩散指数与年霾日数之间的相关系数分别达到0.77和0.78,T检验值则分别为28.88和30.81,说明由气候变化引起的大气扩散能力改变是影响大气污染的重要原因,但不同大气成分受气候变化的影响程度不同.影响ρ(PM10)的关键气候要素是降水量、风速及相对湿度等,影响ρ(PM2.5)的主要是辐射、气温,影响ρ(SO2)的主要是气温,影响ρ(NO2)及ρ(NO3-)、ρ(NH4+)的主要是辐射.总体来说,浙江省近20 a的气候变化事实可能有利于促进ρ(PM10)、ρ(PM2.5)、ρ(NO2)及ρ(O3)等上升,促进ρ(SO2)、ρ(NO3-)、ρ(SO42-)、ρ(NH4+)等下降.   相似文献   

4.
唐山市大气环境治理措施的效果及分析   总被引:1,自引:0,他引:1       下载免费PDF全文
刘莹  李金凤  聂滕 《环境科学研究》2013,26(12):1364-1370
为揭示河北省唐山市大气环境治理的措施效果,分析了“十一五”期间唐山市的减排措施、污染物排放量和空气污染物浓度的变化. 结果表明:“十一五”期间(2005—2010年),烟尘、工业粉尘、SO2排放量分别减少35%、57%、20%,ρ(PM10)、ρ(SO2)、ρ(NO2)年均值分别下降12%、33%、33%. 与GB 3095—2012《环境空气质量标准》相比,2005年ρ(PM10)、ρ(SO2)、ρ(NO2)分别超标36%、42%、7%,而到2010年ρ(SO2)、ρ(NO2)已达标,但ρ(PM10)仍然超标20%. 2008年北京奥运会期间的减排措施使得唐山市ρ(PM10)、ρ(SO2)、ρ(NO2)年均值均显著下降,分别比2007年下降13%、20%、28%. 2008—2009年的全球经济危机使得2009年地方生产总值增速较其他年均值降低13%,2009年烟尘和SO2排放量也呈显著下降趋势,二者比2008年分别下降14%和10%,但工业粉尘排放量反而增加8%. 经济危机使ρ(PM10)、ρ(SO2)、ρ(NO2)下降速率分别提升了20%、2%、2%. 研究结果表明,“十一五”总量减排、2008年北京奥运会期间的治理措施和全球经济危机对唐山市的空气质量产生了明显的影响.   相似文献   

5.
北京交通环境PM10分布特征及重金属形态分析   总被引:7,自引:1,他引:6  
以北京市西三环航天桥地区为对象,研究了城市交通环境大气可吸入颗粒物浓度及主要化学组成随时间和粒径的分布特征. 结果表明:该地区大气中ρ(PM10)冬季略高于春季,秋季次之,夏季最低;颗粒物中ρ(PM2.5)/ρ(PM10)和ρ(PM1.0)/ρ(PM10)平均值分别为82.6%和70.3%;ρ(PM10)与ρ(PM2.5)和ρ(PM10)与ρ(PM1.0)之间均有显著的相关性. PM10中金属元素浓度冬春季较高,夏秋季较低;Mg,Ca和Fe等地壳元素浓度随粒径的减小而降低,而Pb,Zn和Ni等重金属元素浓度总体上随粒径的减小而增加. 颗粒物中的Cr和Ni主要以有机物结合态存在,Cu,Zn和Cd主要以酸可提取态存在,Pb主要以酸可提取态和氧化物结合态存在;颗粒物中所含Cd和Zn元素的生物有效性最高. PM10中水溶性ρ(SO42-)在夏季和冬季最高,秋季最低,而水溶性ρ(NO3->/sup>)全年变化不大;[0.43~2.1 μm)粒径段颗粒物中的水溶性ρ(SO42-)及ρ(NO3->/sup>)较高,分别占PM10中水溶性ρ(SO42-)及ρ(NO3->/sup>)总量的68.3%及57.6%;ρ(NO3->/sup>)/ρ(SO42-)平均值为0.659.   相似文献   

6.
天津冬季雾霾天气下颗粒物质量浓度分布与光学特性   总被引:1,自引:0,他引:1  
年1—2月连续在线观测天津ρ(PM2.5)、ρ(PM10)、大气能见度、σsp(气溶胶散射系数)、σap(气溶胶吸收系数)和AOD(大气光学厚度),结合气象资料,分析天津城区雾霾天气下的颗粒物质量浓度分布与光学特性. 结果表明:在为期52d的观测期间,发生雾日8d、轻雾日1d、霾日29d,雾霾日占观测时长的73%;霾日ρ(PM2.5)/ρ(PM10)为0.65,SSA(单次散射反照率)为0.95,MSE(气溶胶质量散射系数)为3.30m2/g,均高于非雾霾日,表明雾霾日下细粒子的散射作用是大气消光的主要贡献者;雾霾日的σsp和σap均高于非雾霾日,随着霾等级增强,σsp和σap逐渐增大,重度霾天气的σsp和σap与中度霾天气相当,分析高RH可能是造成能见度进一步降低的主要因素;雾霾天气下AOD500nm和波长指数均显著高于非雾霾天气,表明雾霾天气下气溶胶浓度远高于非雾霾天气,并且细粒子占主导地位.   相似文献   

7.
常州市冬季大气污染特征及潜在源区分析   总被引:2,自引:0,他引:2       下载免费PDF全文
为了解常州市冬季大气污染特征,对2013—2015年常州市冬季PM2.5、PM10、SO2、NO2、CO数据进行分析,并结合HYSPLIT 4.9模式研究不同气团来源对常州市各污染物浓度的影响及潜在污染源区分布特征.结果表明,常州市冬季以PM2.5污染为主,其占冬季首要污染物的90%以上,冬季PM2.5小时浓度对应的空气质量级别以良和轻度污染出现频次最多,冬季的ρ(PM2.5)对ρ(PM2.5)年均值的贡献率高达37.4%,不完全燃烧是颗粒物的一个重要来源.冬季ρ(PM2.5)、ρ(PM10)、ρ(SO2)、ρ(NO2)和ρ(CO)的日变化均呈双峰分布,两个峰值分别出现在交通的早高峰和晚高峰附近.ρ(NO2)在晚高峰明显大于早高峰,而ρ(SO2)和ρ(CO)表现为早高峰大于晚高峰.常州市CO/NOx和SO2/NOx的分析结果表明,常州市交通源的贡献明显,点源对常州市的空气质量的影响也较大.1和6 h的ρ(PM2.5)梯度变化可判识细颗粒物的爆发性增长.冬季常州市受到西北、西和西南等地区的大陆性气流影响较大,其对应的ρ(PM2.5)、ρ(PM10)、ρ(SO2)、ρ(NO2)和ρ(CO)平均值相对较高,且对应的污染轨迹出现概率较大.偏东方向的气流由于移动速度慢,不利于污染物扩散易造成污染累积,导致ρ(PM2.5)、ρ(SO2)和ρ(NO2)相对较高.WPSCF(源区分布概率)高值区(>0.5)集中于从芜湖至上海的长江中下游区域和杭州湾区域.PM2.5、PM10、SO2、NO2和CO潜在源区存在较大差异性,NO2、SO2和CO本地化的潜在贡献较PM2.5和PM10更明显.此外,受船舶等影响海洋源区对NO2、SO2和CO的潜在贡献较大.研究显示,长三角区域的大气污染物以本地污染为主,但远距离污染输送贡献也不容忽视.   相似文献   

8.
2013年9月10日国务院颁布了《大气污染防治行动计划》(下称《行动计划》).为研究《行动计划》颁布前后我国不同地区大气污染状况变化及其防治措施效果,通过分析2013—2014年“中国大气气溶胶研究网络(CARE-China)” 36个监测站点ρ(PM2.5),结合同期环境保护部公布的74个重点城市大气主要污染物浓度数据和OMI卫星数据,分析了我国不同地区ρ(PM2.5)变化及其原因;同时,以北京为例,分析了不同粒径段中颗粒物质量浓度变化的原因.结果表明:①京津冀及其周边、长三角、珠三角、西南、成渝、西北、华中、关中和东北9个地区ρ(PM2.5)年均值下降了1.1~16.3 μg/m3.其中,京津冀及其周边、长三角、珠三角、成渝和关中地区降幅均超过10.0%,分别为10.2%、10.7%、11.6%、16.9%和20.8%.②不同地区ρ(NO2)和ρ(SO2)年均值变化基本一致,近地面ρ(NO2)年均值在京津冀及其周边、珠三角、西南、成渝和华中等地区降幅在3.0%~9.2%之间,但是华北平原地区NO2柱浓度下降明显,降幅在10.0%~20.0%之间.③北京地区ρ(PM1)和ρ(PM2.5)年均值分别下降了5.7和0.2 μg/m3,并且ρ(NO3-)和ρ(SO42-)年均值在PM1和PM2.5中均有所下降,但ρ(PM1~2.5)与其ρ(NH4+)年均值升幅分别为27.9%和16.2%.因此,京津冀及其周边地区在防治措施实施过程中,在控制高架点源与实施脱硝措施等情况下,应逐步加强近地面面源和线源的控制力度;在实施SO2和NOx减排措施的同时,还需要重视机动车三元催化过程和燃煤电厂脱硫脱硝过程中可能导致的NH3排放问题.   相似文献   

9.
合肥市郊夏季PM10浓度及其与能见度的关系   总被引:3,自引:0,他引:3  
年8—9月在合肥市郊对ρ(PM10)进行了观测,并分析了其中9种水溶性离子(NO2-、Cl-、NO3-、SO42-、NH4+、Ca2+、Na+、Mg2+、K+)质量浓度. 结果表明:采样期间该地区ρ(PM10)日均值为78.9 μg/m3,9种水溶性离子的平均质量浓度为18.93 μg/m3,占ρ(PM10)的26.6%,表明水溶性组分是PM10的重要组成之一. SO42-、NO3-、NH4+和Ca2+是主要的阴、阳离子,日均质量浓度分别为8.14、4.81、3.46和1.33 μg/m3. 不同RH(相对湿度)下PM10对能见度的影响不同,RH小于80%时,二者呈显著的线性负相关〔R(相关系数)为-0.80〕;RH大于80%时,二者呈指数负相关(R为-0.48). 离子间相关性分析显示,PM10中水溶性离子的主要结合方式为(NH4)2SO4、NH4HSO4、NH4NO3、KCl及K2SO4. 采样期间ρ(NO3-)/ρ(SO42-)平均值为0.59,说明在该地区固定源对水溶性组分的贡献大于移动源. 另外,扬尘也是PM10重要来源之一.   相似文献   

10.
西安市是我国承东启西、连接南北的战略性枢纽城市,但其长期受到重空气污染的影响.基于2018年11月24日-12月3日西安市及其周边7个地级市共38个环境质量监测站点的逐时数据,利用空间插值、趋势分析和相关性分析方法,研究了西安市一次重空气污染期间六大污染物(PM2.5、PM10、CO、NO2、SO2和O3)的质量浓度时空变化及彼此间的相关关系.结果表明:①IDW(inverse distance weighting,反距加权插值法)和OKri(ordinary Kriging,普通克里格插值法)均能较好地获得西安市空气污染物的时空变化情况,但IDW的插值精度优于OKri,距离指数为7的IDW可以满足西安市空气污染物时空变化模拟的要求.②研究期间,西安市首要污染物为PM2.5和PM10,二者分别是中度-重度污染及严重-"爆表"污染天气的首要贡献因子.③ρ(PM2.5)、ρ(PM10)、ρ(CO)、ρ(NO2)和ρ(SO2)均呈中部高、两边低,北部高、南部低的空间分布特点,而ρ(O3)则相反;PM2.5、PM10、O3污染程度日趋严重,NO2污染程度逐渐缓解.④ρ(PM2.5)、ρ(NO2)、ρ(CO)之间呈中等正相关,三者在时空变化上具有较高的一致性;ρ(SO2)与ρ(PM2.5)、ρ(NO2)、ρ(CO)均呈弱正相关;ρ(O3)与ρ(NO2)、ρ(CO)均呈弱负相关.受扬尘天气和特殊风向及地形共同影响,西安市PM10出现"爆表"现象,导致ρ(PM10)与其他污染物质量浓度之间的相关性不明显.研究显示,距离指数为7的IDW适合西安市空气污染情况时空变化的模拟,重污染天气条件下,西安市ρ(PM2.5)、ρ(NO2)、ρ(CO)之间具有较高的同源性,但各污染物间时空变化和相关性关系较复杂.   相似文献   

11.
年6—8月在天津市区进行的连续灰霾观测发现,灰霾发生的天数占观测时段的1/3. 灰霾日与非灰霾日颗粒物质量浓度存在显著差异,灰霾日ρ(PM2.5)与ρ(PM10)的平均值分别是非灰霾日的1.64和1.55倍. 灰霾日S含量高于非灰霾日近50%;灰霾日ρ(SO42-)和ρ(NO3-)明显高于非灰霾日,其中灰霾日ρ(NO3-)增幅最高可达251.02%;灰霾日PM2.5和PM10中的ρ(OC)、ρ(EC)均是非灰霾日的1.25倍以上. 灰霾日与非灰霾日的气象条件相近,表明此次观测期间天津市区夏季灰霾天气发生与气象条件的关系不大. 使用CMB模型(化学质量平衡模型)对PM2.5来源进行的解析表明,二次硝酸盐和二次硫酸盐对灰霾日ρ(PM2.5)的贡献率分别是非灰霾日的2.17和1.34倍,而其他源类在灰霾日和非灰霾日的贡献差异不明显,说明二次离子可能是造成天津市区夏季灰霾最主要的颗粒物源类.   相似文献   

12.
苏州市气溶胶消光特性及其对灰霾特征的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
为研究气溶胶消光特性对城市灰霾特征及形成的影响机制,采用2010年1月─2013年12月4 a的苏州市逐时散射系数、能见度、颗粒物质量浓度以及风速、风向、气温、气压、相对湿度等数据,对该市气溶胶散射系数、消光特性及影响因子进行了研究. 结果表明:苏州市气溶胶散射系数为(301.1±251.3)Mm-1,日变化呈双峰型,早高峰出现在07:00─08:00,晚高峰出现在20:00─21:00;其年内变化呈夏季低、冬季高. 气溶胶散射系数与ρ(PM2.5)的相关系数为0.77,高于与ρ(PM1)和ρ(PM10)的相关性,PM2.5散射效率为6.08 m2/g. 气溶胶散射系数受风速、风向等气象要素的影响:风速<4 m/s时,气溶胶散射系数下降迅速;风速在4~6 m/s时,气溶胶散射系数随风速下降缓慢. 苏州市气溶胶单次散射反照率平均值为0.84,散射消光比平均值为0.79,说明该地区气溶胶消光以散射性气溶胶为主. 气溶胶散射消光、气溶胶吸收消光、空气分子散射消光、NO2吸收消光分别占大气消光的82.33%、13.63%、2.72%和1.32%. 研究表明,对气溶胶散射消光贡献最大的非吸收性PM2.5是苏州市能见度下降、灰霾增加的最重要原因.   相似文献   

13.
保定市大气污染特征和潜在输送源分析   总被引:1,自引:0,他引:1       下载免费PDF全文
保定市是京津冀地区重要城市之一.为了解保定市大气污染物质量浓度特征和潜在输送源,对保定市国控点2017年1月1日-12月31日PM10、PM2.5、SO2、NO2、O3、CO等常规大气污染物数据进行分析,并利用TrajStat后向轨迹模型进行区域传输研究.结果表明:①ρ(PM10)、ρ(PM2.5)、ρ(SO2)、ρ(NO2)分别为(138±96)(84±66)(29±23)和(50±24)μg/m3,与2016年相比分别下降5.9%、9.1%、25.5%和13.1%;ρ(CO)较2016年下降了14.0%;ρ(O3)较2016年增长了25.2%.ρ(PM10)、ρ(PM2.5)、ρ(NO2)和ρ(O3)分别超过GB 3095-2012《环境空气质量标准》二级标准限值的0.97、1.40、0.25和0.34倍,ρ(SO2)和ρ(CO)未超标.②除ρ(O3)外,其他污染物质量浓度均呈冬季最高、夏季最低的季节性特征,其中,冬季PM2.5污染最为严重,春季PM2.5~10(粗颗粒物)污染严重.③空气质量模型源解析结果显示,保定市ρ(PM2.5)约60.0%~70.0%来自本地污染源排放.后向轨迹结果表明,在外来区域传输影响中,保定市主要受到西北方向气团(占比为21.7%~60.0%)远距离传输和正南方向气团(占比为34.8%~50.5%)近距离传输的影响.④PSCF(潜在源贡献因子分析法)和CWT(浓度权重轨迹分析法)分析表明,除保定市及周边区县本地污染贡献外,位于太行山东麓沿线西南传输通道的邯郸市、邢台市、石家庄市是影响保定市PM2.5的主要潜在源区.研究显示,PM2.5为保定市大气中的主要污染物,并呈冬季高、夏季低的变化特征,其主要来自西北远距离输送和南部近距离传输.   相似文献   

14.
研究区域ρ(PM2.5)的时空分布特征和污染天气类型的关系是开展大气污染防治和空气质量预报预警的关键支撑技术之一.基于2015—2016年广西14个城市环境空气质量日监测数据和相关气象资料,分析了2015—2016年广西空气质量概况和污染的基本特征,采用EOF(经验正交函数)分析和后向轨迹聚类分析方法表征了广西ρ(PM2.5)时空分布模态,统计了广西两年间24次区域范围(3个及以上连片城市)大气轻度及以上污染过程,分析了不同污染过程的天气类型和空气质量变化特点.结果表明:PM2.5是广西大气污染首要污染物,ρ(PM2.5)年均值呈北高南低的区域特征,月际变化基本呈正V字型分布;EOF分析和后向轨迹聚类分析显示,广西ρ(PM2.5)的时空结构主要有3种模态,其方差贡献率分别为78.9%、5.7%和3.7%,基本反映了广西ρ(PM2.5)变化的时空模态的主要特征,桂林和玉林两年间的后向轨迹聚类很好地解释了第二和第三模态的南北浓度和东西浓度异常反相位分布特征;广西14个城市两年间PM2.5区域性污染天气类型主要有10种,其中污染天气类型中占比较大的是弱冷高压脊型(24.4%)、均压场型(20.2%)、高压后部型(16.1%)和高压后部配合西南暖低压型(8.5%),是引发广西大范围大气污染的典型天气类型.研究显示,广西大气污染具有地域性、季节性和南北输送特征,污染过程的天气形势变化具有一定规律性.   相似文献   

15.
为研究京津冀地区典型城市大气细颗粒物及其碳质组分的时空变化特征及来源,于2016年12月28日—2017年1月22日及2017年7月1—26日,对北京市与石家庄市PM2.5(细颗粒物)及PM1(亚微米颗粒物)进行采集,使用DRI(热光碳分析仪)检测PM2.5与PM1中ρ(OC)与ρ(EC),并对其碳质组分来源进行分析.结果表明:①采样期间,冬、夏两季PM2.5与PM1中ρ(OC)均为石家庄市采样点远高于北京市采样点;冬季PM2.5与PM1中ρ(EC)均为石家庄市采样点高于北京市采样点,夏季则略有不同.②冬季污染日,北京市采样点ρ(PM2.5)与ρ(PM1)均为石家庄市采样点的1.08倍,PM2.5与PM1中的ρ(OC)分别为石家庄市采样点的1.14和1.12倍,石家庄市采样点PM2.5与PM1中ρ(EC)分别为北京市采样点的1.15和1.28倍;冬季重污染日,北京市采样点的ρ(PM2.5)与ρ(PM1)分别为石家庄市采样点的1.03和1.04倍,PM2.5和PM1中的ρ(OC)分别为石家庄市采样点的1.23和1.22倍,石家庄市采样点PM2.5和PM1中的ρ(EC)分别为北京市采样点的1.03和1.16倍.夏季污染日,石家庄市采样点ρ(PM2.5)与ρ(PM1)分别为北京市采样点的1.16和1.30倍,PM2.5与PM1中ρ(OC)分别为北京市采样点的1.64和2.71倍,两个采样点ρ(EC)相近.③冬、夏两季PM2.5与PM1中ρ(SOC)/ρ(OC)均较高,冬季北京市采样点分别为48.09%和54.29%,石家庄市采样点分别为44.98%和48.09%,夏季北京市采样点分别为48.47%和61.50%,石家庄市采样点分别为61.52%和63.55%,表明SOC更易富集于亚微米粒子中.④冬季北京市和石家庄市两个采样点PM2.5与PM1中碳质组分均主要来源于生物质燃烧、燃煤和机动车尾气;夏季北京市采样点PM2.5与PM1中碳质组分主要来源于机动车尾气,石家庄市采样点PM2.5与PM1中碳质组分主要来源于燃煤和机动车尾气.研究显示,北京市和石家庄市两个采样点大气细颗粒物及其碳质组分浓度存在时空分布和污染来源差异.   相似文献   

16.
为了解福州市大气颗粒物污染状况,利用中国环境监测总站发布的实时大气环境监测资料,结合气象资料和HYSPLIT4轨迹模式,分析了2015年福州市大气颗粒物污染特征和典型污染过程.结果表明:2015年福州市ρ(PM10)、ρ(PM2.5)年均值分别为55.8和29.2μg/m3,均低于GB 3095-2012《环境空气质量标准》二级标准限值.颗粒物浓度季节性变化特征明显,表现为冬春季高、夏秋季低的变化特征. ρ(PM2.5)/ρ(PM10)为52%,普遍低于我国东部其他大中城市;日际变化明显,受混合层高度日变化和机动车排放的影响,呈双峰形态. ρ(PM2.5)/ρ(PM10)日变化趋势与ρ(PM10)日变化特征相反,即ρ(PM10)高时ρ(PM2.5)所占比例低,ρ(PM10)低时ρ(PM2.5)所占比例高,表明早晚高峰机动车排放所造成的颗粒物污染以粗颗粒物贡献为主.福州市颗粒物污染天气成因主要有"积累型"和"输送型"污染. 2015年1月5-6日发生的污染过程,是在一次静稳、高湿天气形势下,本地排放的污染物在不利于扩散的气象条件下聚集、二次转化,导致颗粒物浓度升高、能见度降低. 2015年1月17-19日的污染过程主要是北方污染物随冷空气输送南下,导致本地颗粒物浓度迅速升高、能见度迅速降低.研究显示,福州市PM10和PM2.5优良率较高,颗粒物污染主要发生于冬季,污染成因包括局地累积和区域输送.   相似文献   

17.
关中地区是我国大气污染的重点监测区域,为探究偏东风输送对关中地区冬季PM2.5重污染的影响,重点分析了2018年1月12-18日在偏东风输送影响下关中地区ρ(PM2.5)日均值的变化过程;利用WRF和CAMx模式对PM2.5重污染过程进行模拟并讨论其消长原因.结果表明:①冬季关中地区在高压脊和西南槽的控制下,偏东风将污染物输送至关中地区,加之关中地区地形阻滞,致使关中地区的ρ(PM2.5)上升.②研究期间,关中地区ρ(PM2.5)日均值范围为103~240 μg/m3,偏东风输送是导致此次重污染过程的重要原因.重污染的发生还与气象要素的变化有关,其中ρ(PM2.5)日均值与气温、相对湿度均呈滞后相关性.在ρ(PM2.5)日均值相等的情况下,相对湿度越大,能见度越低;随着ρ(PM2.5)日均值和相对湿度的升高,能见度下降的速率逐渐变慢.③根据WRF-CAMx的模拟结果,此次重污染过程中关中地区PM2.5污染输送关系不均衡,宝鸡市和咸阳市均以本地贡献为主,其本地贡献率超过45.00%,而渭南市接收关中地区其他城市及关中地区以外区域污染输送占比为69.82%;位于盆地中东部的咸阳市、西安市和渭南市的ρ(PM2.5)月均值均大于关中地区ρ(PM2.5)平均值;渭南市、西安市、运城市以及关中地区以外城市是此次关中地区跨市PM2.5污染输送的主要来源.研究显示,偏东风输送是关中地区此次大气重污染过程的重要原因.   相似文献   

18.
为探讨空气中ρ(PM2.5)的空间集聚特征和气候、大气成分变量对空气中ρ(PM2.5)的影响,利用首批纳入PM2.5监测的74个城市的ρ(PM2.5)数据计算Moran's I指数,并选取其中38个典型城市进行计量分析.在基于引力模型的空间权重矩阵基础上,构建面板数据SDM(空间面板杜宾模型).结果表明:ρ(PM10)、ρ(SO2)、ρ(CO)、ρ(O3)、RH(relative humidity,相对湿度)与城市ρ(PM2.5)呈正相关,而T(temperature,温度)和WS(wind speed,风速)与城市ρ(PM2.5)呈负相关;ρ(PM10)、ρ(CO)、RH是位于前3位影响城市ρ(PM2.5)的关键性因素,其总效应分别为0.720 1、0.241 7、0.133 9.地理上邻近城市ρ(PM2.5)具有明显的外部空间溢出效应,即邻近城市ρ(PM2.5)每增加10百分点,将导致该地区ρ(PM2.5)增长6.12百分点.300 km左右是保证PM2.5区域"联防联控"最佳效果的最大门槛距离,超过该门槛距离,区域"联防联控"的力度和效果会随着距离的增加而逐渐减弱;当门槛距离大于500 km时,ρ(PM2.5)的空间自相关性不显著.气候变量中,RH和ρ(PM2.5)呈同方向变化,而T、WS与ρ(PM2.5)呈反方向变化.研究显示,关注单一地区或单一因素(气候或大气成分)均不能有效控制PM2.5污染,在保持经济稳定增长的前提下,各地治理PM2.5应从调整产业结构、优化能源结构、完善防控机制等多个维度共同推进,促使经济增长方式早日从"粗放型"向"集约型"转变.   相似文献   

19.
福建省沿海地区春季一次近地层O3超标成因分析   总被引:1,自引:0,他引:1       下载免费PDF全文
福建省沿海地区春季ρ(O3)较高且超标天数较多,为研究春季ρ(O3)超标的天气学成因,选取2017年4月26日-5月1日O3污染过程,利用统计对比和聚类分析方法,将全过程分成污染前、污染维持和污染后3个阶段,再将污染维持阶段分为4个区,利用ρ(O3)和ρ(PM2.5)小时均值资料,结合天气形势和气象要素场变化,分析此次O3污染的主要特点.结果表明:①此次O3污染与天气形势关系密切,在冷高压(4月28-29日)控制下,光化学反应条件有利,太阳辐射强、日照时间超过11 h,08:00起ρ(O3)上升速率为15~20 μg/(m3·h),ρ(O3)最大8 h滑动平均值[简称"ρ(O3)-max-8 h"]超过GB 3095-2012《环境空气质量标准》二级标准限值,但大气扩散条件好,ρ(PM2.5)日均值未超过一级标准限值,ρ(O3)超标原因为光化学反应所致,并且ρ(O3)分布有明显的日变化规律.②在锋前暖区(4月26日08:00-16:00)及变性冷高压(4月30日-5月1日)控制下,光化学反应剧烈,08:00起ρ(O3)上升速率为25~35 μg/(m3·h),天气静稳且大气扩散条件差,本地生成的O3在近地层累积效应明显,4月30日ρ(O3)小时均值和ρ(O3)-max-8 h达到过程峰值,ρ(PM2.5)日均值超过GB 3095-2012二级标准限值,ρ(O3)-max-8 h超过三级标准限值,空气质量达中度污染,ρ(O3)超标原因为光化学反应加本地累积所致,并且ρ(O3)分布也有明显的日变化规律.③受强冷空气影响,4月26日20:00-24:00福建省沿海地区的6个城市ρ(O3)不降反升,22:00-24:00 ρ(O3)8 h滑动平均值陆续达到一天中的最高值;4月27日ρ(O3)维持在70~140 μg/m3之间,ρ(O3)分布没有明显的日变化规律.研究显示,导致福建省沿海地区春季O3污染天气的成因是多种因素共同作用的结果.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号