首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The nutrient status of the trees and soil in 42 stands of Norway spruce (Picea abies (L.) Karst.) and Scots pine (Pinus sylvestris L.) in Scania, South Sweden was followed from 1985 to 1994. Samples from needles taken in winter 1985, 1987, 1990, and 1994, and soils in 1988 and 1993 were analyzed. Concentrations, as well as ratios to N, of K and Cu in needles of both species decreased by approximately 40% from 1985 to 1994. Soil analyses indicate ongoing soil acidification and leaching of mineral nutrients from the soil profile. Together with deposition data and corroboration from modeled scenarios, these data support the recent contention that one consequence of enhanced deposition of N and S will be the development of nutrient imbalances in trees growing in southern Sweden.  相似文献   

2.
Root length of naturally grown young beech trees (Fagus sylvatica L.) was investigated in 26 forest plots of differing base saturation and nitrogen deposition. The relative length of finest roots (<0.25 mm) was found to decrease in soils with low base saturation. A similar reduction of finest roots in plots with high nitrogen deposition was masked by the effect of base saturation. The formation of adventitious roots was enhanced in acidic soils. The analysis of 128 soil profiles for fine roots of all species present in stands of either Fagus sylvatica L., Picea abies [Karst.] L. or both showed a decreased rooting depth in soils with < or =20% base saturation and in hydromorphic soils. For base rich, well drained soils an average rooting depth of 108 cm was found. This decreased by 28 cm on acidic, well drained soils. The results suggest an effect of the current soil acidification in Switzerland and possibly also of nitrogen deposition on the fine root systems of forest trees.  相似文献   

3.
Nitrogen leaching from boreal and temporal forests, where normally most of the nitrogen is retained, has the potential to increase acidification of soil and water and eutrophication of the Baltic Sea. In parts of Sweden, where the nitrogen deposition has been intermediate to high during recent decades, there are indications that the soils are close to nitrogen saturation. In this study, four different approaches were used to assess the risk of nitrogen leaching from forest soils in different parts of Sweden. Nitrate concentrations in soil water and C:N ratios in the humus layer where interpreted, together with model results from mass balance calculations and detailed dynamic modelling. All four approaches pointed at a risk of nitrogen leaching from forest soils in southern Sweden. However, there was a substantial variation on a local scale. Basing the assessment on four different approaches makes the assessment robust.  相似文献   

4.
A dynamic soil chemistry model was used to explain the observed decrease in soil base saturation between 1949 and 1984 at three stands in southern Sweden. The results show that acid deposition has caused soil acidification. The model, SAFE (Soil Acidification in Forest Ecosystems), includes the fundamental physical processes such as leaching and accumulation, and chemical processes such as cation exchange, mineral weathering, nutrient uptake and solute equilibrium reactions. The sources and sinks of base cations in the soil system were quantified, showing that weathering, deposition of base cations and depletion of exchangeable base cations supply cations to the soil solution in similar amounts in the upper 1 m during the acidification phase. This demonstrates that budget studies alone cannot be used to distinguish between long-term capacity to resist acidification, represented by weathering, from short-term buffering caused by cation exchange.  相似文献   

5.
The dynamic forest ecosystem model ForSAFE was applied at 16 coniferous forest sites in Sweden to investigate past and future changes in soil chemistry following changes in atmospheric deposition. The simulation shows a considerable historical soil acidification. Acidification in the southwest, where deposition has been greatest, was more expressed in the deepest soil layers, while it was more evenly distributed through the soil profile in central Sweden, and was greater in the upper soil layers in the north. The simulation also shows that a slight recovery took place after the reduction in emissions, but was counteracted by the effect of harvesting. The simulation predicts an increase in the number of acidified sites in the future. The results also suggest that future acidification will be mainly due to the enhanced tree growth resulting from the chronic high deposition of nitrogen and the removal of soil base cations through harvesting.  相似文献   

6.
We evaluated foliar and forest floor chemistry across a gradient of N deposition in the Northeast at 11 red spruce (Picea rubens Sarg.) sites in 1987/1988 and foliar and forest floor chemistry and basal area growth at six paired spruce and deciduous sites in 1999. The six red spruce plots were a subset of the original 1987/1988 spruce sites. In 1999, we observed a significant correlation between mean growing season temperature and red spruce basal area growth. Red spruce and deciduous foliar %N correlated significantly with N deposition. Although N deposition has not changed significantly from 1987/1988 to 1999, net nitrification potential decreased significantly at Whiteface. This decrease in net potential nitrification is not consistent with the N saturation hypothesis and suggests that non-N deposition controls, such as climatic factors and immobilization of down dead wood, might have limited N cycling.  相似文献   

7.
8.
Soil sensitivity to acidification in Asia: status and prospects   总被引:5,自引:0,他引:5  
Exceedance of steady-state critical loads for soil acidification is consistently found in southern China and parts of SE Asia, but there is no evidence of impacts outside of China. This study describes a methodology for calculating the time to effects for soils sensitive to acidic deposition in Asia under potential future sulfur (S), nitrogen (N), and calcium (Ca) emission scenarios. The calculations are matched to data availability in Asia to produce regional-scale maps that provide estimates of the time (y) it will take for soil base saturation to reach a critical limit of 20% in response to acidic inputs. The results show that sensitive soil types in areas of South, Southeast, and East Asia, including parts of southern China, Burma, Hainan, Laos, Thailand, Vietnam, and the Western Ghats of India, may acidify to a significant degree on a 0-50 y timescale, depending on individual site management and abiotic and biotic characteristics. To make a clearer assessment of risk, site-specific data are required for soil chemistry and deposition (especially base cation deposition); S and N retention in soils and ecosystems; and biomass harvesting and weathering rates from sites across Asia representative of different soil and vegetation types and management regimes. National and regional assessments of soils using the simple methods described in this paper can provide an appreciation of the time dimension of soil acidification-related impacts and should be useful in planning further studies and, possibly, implementing measures to reduce risks of acidification.  相似文献   

9.
Four experiments were established (1992) in Scots pine stands at distances of 0.5, 2, 4 and 8 km along a line running to the SE of the Cu-Ni smelter at Harjavalta, SW Finland, in order to investigate the effects of Cu and Ni emissions on macronutrient availability and estimates of cation exchange capacity (CEC) and base saturation (BS). The accumulation of Cu and Ni (total, exchangeable) in forest soil close to the smelter has resulted in a deficit of base cations (exchangeable Ca, Mg, K and BS) in the organic layer caused by inhibition of mineralisation and the displacement of base cations from cation exchange sites by Cu and Ni cations. No signs of soil acidification were found in the topmost layers of the soil measured as a change in pH, exchangeable acidity and Al. The determination of CEC by the summation method in heavy-metal polluted forest soils is not recommended unless heavy metal cations are also included in the calculations.  相似文献   

10.
Modeling recovery of Swedish ecosystems from acidification   总被引:2,自引:0,他引:2  
Dynamic models complement existing time series of observations and static critical load calculations by simulating past and future development of chemistry in forest and lake ecosystems. They are used for dynamic assessment of the acidification and to produce target load functions, that describe what combinations of nitrogen and sulfur emission reductions are needed to achieve a chemical or biological criterion in a given target year. The Swedish approach has been to apply the dynamic acidification models MAGIC, to 133 lakes unaffected by agriculture and SAFE, to 645 productive forest sites. While the long-term goal is to protect 95% of the area, implementation of the Gothenburg protocol will protect approximately 75% of forest soils in the long term. After 2030, recovery will be very slow and involve only a limited geographical area. If there had been no emission reductions after 1980, 87% of the forest area would have unwanted soil status in the long term. In 1990, approximately 17% of all Swedish lakes unaffected by agriculture received an acidifying deposition above critical load. This fraction will decrease to 10% in 2010 after implementation of the Gothenburg protocol. The acidified lakes of Sweden will recover faster than the soils. According to the MAGIC model the median pre-industrial ANC of 107 microeq L(-1) in acid sensitive lakes decreased to about 60 microeq L(-1) at the peak of the acidification (1975-1990) and increases to 80 microeq L(-1) by 2010. Further increases were small, only 2 microeq L(-1) between 2010 and 2040. Protecting 95% of the lakes will require further emission reductions below the Gothenburg protocol levels. More than 7000 lakes are limed regularly in Sweden and it is unlikely that this practice can be discontinued in the near future without adverse effects on lake chemistry and biology.  相似文献   

11.
Beier C  Moldan F  Wright RF 《Ambio》2003,32(4):275-282
The reduced emissions of acidifying sulfur and nitrogen in Europe since the late 1970s will be further reduced when the Gothenburg protocol is fully implemented by 2010. Here we address the consequences for the recovery of acidified terrestrial ecosystems using the acidification model MAGIC applied to 3 large-scale "clean rain" experiments, the so-called roof experiments at Risdalsheia, Norway; G?rdsj?n, Sweden, and Klosterhede, Denmark. Implementation of the Gothenburg protocol will initiate recovery of the soils at all 3 sites by rebuilding base saturation. The rate of recovery is small and base saturation increases less than 5% over the next 30 years. A climate-induced increase in storm severity will increase the sea-salt input to the ecosystems. This will provide additional base cations to the soils and more than double the rate of the recovery, but also lead to strong acid pulses following high sea-salt inputs as the deposited base cations exchange with the acidity stored in the soil. Future recovery of soils and runoff at acidified catchments will thus depend on the amount and rate of reduction of acid deposition, and in the case of systems near the coast, the frequency and intensity of sea-salt episodes as well.  相似文献   

12.
A set of physico-chemical properties of soils: soil pH, hydrolytic acidity, alkaline exchangeable cations, cation exchangeable capacity (CEC), and base saturation were studied in six-year long investigations of ecto-humus (organic layer) and endo-humus (Ah horizon) horizons of forest soils at the Kampinoski National Park in Poland. The soil properties determined in the present study showed differentiated values, depending on the actual horizon, the type and degree of soil development advancement, the genesis of the soil parent material (bedrock) as well as on the development of plant community prevailing in given site.  相似文献   

13.
Chlorophenols, like many other synthetic compounds, are persistent problem in industrial areas. These compounds are easily degraded in certain natural environments where the top soil is organic. Some studies suggest that mineral soil contaminated with organic compounds is rapidly remediated if it is mixed with organic soil. We hypothesized that organic soil with a high degradation capacity even on top of the contaminated mineral soil enhances degradation of recalcitrant chlorophenols in the mineral soil below. We first compared chlorophenol degradation in different soils by spiking pristine and pentachlorophenol-contaminated soils with 2,4,6-trichlorophenol in 10-L buckets. In other experiments, we covered contaminated mineral soil with organic pine forest soil. We also monitored in situ degradation on an old sawmill site where mineral soil was either left intact or covered with organic pine forest soil. 2,4,6-Trichlorophenol was rapidly degraded in organic pine forest soil, but the degradation was slower in other soils. If a thin layer of the pine forest humus was added on top of mineral sawmill soil, the original chlorophenol concentrations (high, ca. 70 μg g?1, or moderate, ca. 20 μg g?1) in sawmill soil decreased by >40 % in 24 days. No degradation was noticed if the mineral soil was kept bare or if the covering humus soil layer was sterilized beforehand. Our results suggest that covering mineral soil with an organic soil layer is an efficient way to remediate recalcitrant chlorophenol contamination in mineral soils. The results of the field experiment are promising.  相似文献   

14.
Recent studies have demonstrated that natural abundance (15)N can be a useful tool for assessing nitrogen saturation, because as nitrification and nitrate loss increase, delta(15)N of foliage and soil also increases. We measured foliar delta(15)N at 11 high-elevation spruce-fir stands along an N deposition gradient in 1987-1988 and at seven paired northern hardwood and spruce-fir stands in 1999. In 1999, foliar delta(15)N increased from -5.2 to -0.7 per thousand with increasing N deposition from Maine to NY. Foliar delta(15)N decreased between 1987-1988 and 1999, while foliar %N increased and foliar C:N decreased at most sites. Foliar delta(15)N was strongly correlated with N deposition, and was also positively correlated with net nitrification potential and negatively correlated with soil C:N ratio. Although the increase in foliar %N is consistent with a progression towards N saturation, other results of this study suggest that, in 1999, these stands were further from N saturation than in 1987-1988.  相似文献   

15.
Total mercury (TotHg) and methyl mercury (MeHg) concentrations were studied in runoff from eight small (0.02-1.3 km2) boreal forest catchments (mineral soil and peatland) during 1990-1995. Runoff waters were extremely humic (TOC 7-70 mg l-1). TotHg concentrations varied between 0.84 and 24 ng l-1 and MeHg between 0.03 and 3.8 ng l-1. TotHg fluxes from catchments ranged from 0.92 to 1.8 g km-2 a-1, and MeHg fluxes from 0.03 to 0.33 g km-2 a-1. TotHg concentrations and output fluxes measured in runoff water from small forest catchments in Finland were comparable with those measured in other boreal regions. By contrast, MeHg concentrations were generally higher. Estimates for MeHg output fluxes in this study were comparable at sites with forests and wetlands in Sweden and North America, but clearly higher than those measured at upland or agricultural sites in other studies. Peatland catchments released more MeHg than pure mineral soil or mineral soil catchments with minor area of peatland.  相似文献   

16.
Nitrogen fluxes, particularly those of ammonium, are extremely high in Dutch forests. In soils exposed to high ammonium deposition, acidification, eutrophication or a combination of both processes may occur. In addition to the amounts of ammonium deposited, the rate of soil nitrification determines which process takes place. A nation-wide investigation, in which three coniferous tree species were involved, was carried out to study the relation between deposition fluxes, measured by means of throughfall and bulk samplers, and the chemical composition of the soil. The ammonium deposition accounted directly for the high ammonium content and the high ammonium/cation ratios in the soil. In the top layer of most of the forest soils which were investigated nitrification rates were low. In these stands ammonium/cation ratios in the soil often reflected ammonium/cation ratios in throughfall water. Even in soils with relatively high nitrification rates, ammonium concentrations exceeded those of nitrate in the top layer of the mineral soil, indicating that ammonium deposition was more important than nitrification rate in determining the predominant form of nitrogen.  相似文献   

17.
The national Forest Health Monitoring (FHM) program requires protocols for monitoring soil carbon contents. In a pilot study, 30 FHM plots loblolly shortleaf (Pinus taeda L./Pinus echinata Mill.) pine forests across Georgia were sampled by horizon and by depth increments. For total soil carbon, approximately 40% of the variance was between plots, 40% between subplots and 20% within subplots. Results by depth differed from those obtained by horizon primarily due to the rapid changes in carbon content from the top to the bottom of the A horizon. Published soil survey information overestimated bulk densities for these forest sites. The measurement of forest floor depths as a substitute to sampling did not provide reliable estimates of forest floor carbon. Precision of replicate samples was approximately 10-30% for field duplicates and 5-10% for laboratory duplicates. Based on national indicator evaluation criteria, sampling by depth using bulk density core samplers has been recommended for national implementation. Additional procedures are needed when sampling organic soils or soils with a high percentage of large rock fragments.  相似文献   

18.
Rapeseed (Brassica napus L.) has been cultivated for biodiesel production worldwide. Winter rapeseed is commonly grown in the southern part of Korea under a rice-rapeseed double cropping system. In this study, a greenhouse pot experiment was conducted to assess the effects of rapeseed residue applied as a green manure alone or in combinations with mineral N fertilizer on Cd and Pb speciation in the contaminated paddy soil and their availability to rice plant (Oryza sativa L.). The changes in soil chemical and biological properties in response to the addition of rapeseed residue were also evaluated. Specifically, the following four treatments were evaluated: 100% mineral N fertilizer (N100) as a control, 70% mineral N fertilizer + rapeseed residue (N70 + R), 30% mineral N fertilizer + rapeseed residue (N30 + R) and rapeseed residue alone (R). The electrical conductivity and exchangeable cations of the rice paddy soil subjected to the R treatment or in combinations with mineral N fertilizer treatment, N70 + R and N30 + R, were higher than those in soils subjected to the N100 treatment. However, the soil pH value with the R treatment (pH 6.3) was lower than that with N100 treatment (pH 6.9). Use of rapeseed residue as a green manure led to an increase in soil organic matter (SOM) and enhanced the microbial populations in the soil. Sequential extraction also revealed that the addition of rapeseed residue decreased the easily accessible fraction of Cd by 5-14% and Pb by 30-39% through the transformation into less accessible fractions, thereby reducing metal availability to the rice plant. Overall, the incorporation of rapeseed residue into the metal contaminated rice paddy soils may sustain SOM, improve the soil chemical and biological properties, and decrease the heavy metal phytoavailability.  相似文献   

19.
Fleischer S 《Ambio》2003,32(1):2-5
Evidence is provided for an internal CO2 sink in forest soils, that may have a potential impact on the global CO2-budget. Lowered CO2 fraction in the soil atmosphere, and thus lowered CO2 release to the aboveground atmosphere, is indicated in high N-deposition areas. Also at forest edges, especially of spruce forest, where additional N-deposition has occurred, the soil CO2 is lowered, and the gradient increases into the closed forest. Over the last three decades the capacity of the forest soil to maintain the internal sink process has been limited to a cumulative supply of approximately 1000 and 1500 kg N ha(-1). Beyond this limit the internal soil CO2 sink becomes an additional CO2 source, together with nitrogen leaching. This stage of "nitrogen saturation" is still uncommon in closed forests in southern Scandinavia, however, it occurs in exposed forest edges which receive high atmospheric N-deposition. The soil CO2 gradient, which originally increases from the edge towards the closed forest, becomes reversed.  相似文献   

20.
Methods of quantifying the roles of atmospheric acid inputs and internal acid generation by carbonic, organic, and nitric acids are illustrated by reviewing data sets from several intensively studied sites in North America. Some of the sites (tropical, temperate deciduous, and temperate coniferous) received acid precipitation whereas others (northern and subalpine) did not. Natural leaching by carbonic acid dominated soil leaching in the tropical and temperate coniferous sites, nitric acid (caused by nitrification) dominated leaching In an N-fixing temperate deciduous site, and organic acids dominated surface soil leaching in the subalpine site and contributed to leaching of surface soils in several other sites. Only at the temperate deciduous sites did atmospheric acid input play a major role in soil leaching. In no case, however, are the annual net losses of cations regarded as alarming as compared to soil exchangeable cation capital.

These results were used to illustrate the methods of quantifying the effects of atmospheric inputs and internal processes on soil leaching rates, not to draw broad generalizations as to acid rain effects on soils. However, there are predictable patterns in natural soil leaching processes which relate to climate, soil properties, and vegetation that may help in predicting the relative importances of natural vs. atmospheric acid inputs to soil leaching.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号