首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
基础理论   1篇
污染及防治   2篇
  2020年   1篇
  2002年   2篇
排序方式: 共有3条查询结果,搜索用时 78 毫秒
1
1.
The national Forest Health Monitoring (FHM) program conducted a remeasurement study in 1999 to evaluate the usefulness and feasibility of collecting data needed for investigating carbon budgets in forests. This study indicated that FHM data are adequate for detecting a 20% change over 10 years (2% change per year) in percent total carbon and carbon content (MgC/ha) when sampling by horizon, with greater than 80% probability that a change in carbon content will be determined when a change has truly occurred (P < or = 0.33). The data were also useful in producing estimates of forest floor and soil carbon stocks by depth that were somewhat lower than literature values used for comparison. The scale at which the data were collected lends itself to producing standing stock estimates needed for carbon budget development and carbon cycle modeling. The availability of site-specific forest mensuration data enables the exploration of above ground and below ground linkages.  相似文献   
2.
The national Forest Health Monitoring (FHM) program requires protocols for monitoring soil carbon contents. In a pilot study, 30 FHM plots loblolly shortleaf (Pinus taeda L./Pinus echinata Mill.) pine forests across Georgia were sampled by horizon and by depth increments. For total soil carbon, approximately 40% of the variance was between plots, 40% between subplots and 20% within subplots. Results by depth differed from those obtained by horizon primarily due to the rapid changes in carbon content from the top to the bottom of the A horizon. Published soil survey information overestimated bulk densities for these forest sites. The measurement of forest floor depths as a substitute to sampling did not provide reliable estimates of forest floor carbon. Precision of replicate samples was approximately 10-30% for field duplicates and 5-10% for laboratory duplicates. Based on national indicator evaluation criteria, sampling by depth using bulk density core samplers has been recommended for national implementation. Additional procedures are needed when sampling organic soils or soils with a high percentage of large rock fragments.  相似文献   
3.
ABSTRACT

Land system science and affiliated research linked to sustainability require improved understanding and theorization of land and its change as a social-ecological system (SES). The absence of a general land-use theory, anchored in the social subsystem but with explicit links to the environmental subsystem, hampers this effort. Drawing on land-use explanations, meta-analyses, and associated frameworks, we advance a broad framework structure of eight elements – aggregations of explanatory variables – with links to the biophysical subsystem, for systematic comparisons of extant explanations. Tests and models can be employed to identify which set of variables and their configurations provide robust explanations of across land uses, identifying the potential for theory development. The framework and its application are applicable to both top-down and bottom-up explanatory approaches employed in the social sciences. Links to the environmental subsystem invite future exploration of SES explanations that reach across the different dimensions of global change and sustainability science.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号