首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

The combination of concentrated solar power–chemical looping air separation (CSP-CLAS) with an oxy-fuel combustion process for carbon dioxide (CO2) capture is a novel system to generate electricity from solar power and biomass while being able to store solar power efficiently. In this study, the computer program Advanced System for Process Engineering Plus (ASPEN Plus) was used to develop models to assess the process performance of such a process with manganese (Mn)-based oxygen carriers on alumina (Al2O3) support for a location in the region of Seville in Spain, using real solar beam irradiance and electricity demand data. It was shown that the utilisation of olive tree prunings (Olea europaea) as the fuel—an agricultural residue produced locally—results in negative CO2 emissions (a net removal of CO2 from the atmosphere). Furthermore, it was found that the process with an annual average electricity output of 18 MW would utilise 2.43% of Andalusia’s olive tree prunings, thereby capturing 260.5 k-tonnes of CO2, annually. Drawbacks of the system are its relatively high complexity, a significant energy penalty in the CLAS process associated with the steam requirements for the loop-seal fluidisation, and the gas storage requirements. Nevertheless, the utilisation of agricultural residues is highly promising, and given the large quantities produced globally (~?4 billion tonnes/year), it is suggested that other novel processes tailored to these fuels should be investigated, under consideration of a future price on CO2 emissions, integration potential with a likely electricity grid system, and based on the local conditions and real data.

  相似文献   

2.
在一台满足国三排放法规要求的重载车用增压中冷电控单体泵柴油机上,将其改造成柴油/甲醇组合燃烧(DMCC)发动机并进行台架试验.利用电控单元控制向进气歧管喷射的甲醇量及其喷射时刻,原柴油机供油系统保持不变.试验主要研究在稳定工况时,不同的负荷以及不同的甲醇对柴油的比例情况下,经催化转化后发动机干炭烟烟度(415烟度)和不透光烟度(439烟度)排放的情况.试验结果表明,在燃用现有市售的燃油条件下,与原机相比,相同工况下采用DMCC的干炭烟烟度和不透光烟度都有大幅度的减少.干炭烟的最大降幅达95%,平均降幅达到50%以上.在柴油喷射量不变的情况下,增加甲醇喷射量,干炭烟烟度会持续减小,而不透光烟度呈先减少后增加的趋势.同负荷时的甲醇对柴油替代率为44.88%到56.73%时,不透光烟度存在最低点,并且发动机的烟度排放存在最优值.在同一工况下,随着柴油对甲醇的比例增加,发动机的干炭烟烟度和不透光烟度排放都逐渐增加.  相似文献   

3.
Power conversion efficiency of p-i-n type macrocrystalline silicon (µc-Si:H) solar cells has been analyzed in terms of sequential processes of photo-induced electron transfer. The effect of the excitonic state on the charged carrier generation has been studied compared to a conventional scheme in which only charged carriers are taken into account for the operation of the solar cells. A numerical model has been developed to calculate current-voltage characteristics of solar cells on the basis of two types of charged carrier generation processes (exciton process and charged carrier process). The light trapping effect due to a textured back surface reflector (BSR) was embedded in the numerical model by using the effective medium theory in combination with the matrix method in the field of the electromagnetic theory of light. As an application of this modeling, it was found that the reported data of the power conversion efficiency were not explained by the conventional charged carrier process model and that the combined model of the charged carrier process with the exciton process well explains the performance of the p-i-n type μc-Si:H solar cells. In this way, the typical power conversion efficiencies were estimated to be 10.5% for the device (i-layer thickness: 1.8 μm) with the BSR (period: 600 nm; height: 250 nm) and 8.6% for the device with the flat reflector under the condition that the fractions of the exciton process and charged carrier process were 60% and 40%, respectively.  相似文献   

4.
柴油轿车颗粒多环芳烃的排放特性   总被引:4,自引:3,他引:1  
谭丕强  周舟  胡志远  楼狄明 《环境科学》2013,34(3):1150-1155
以一辆柴油轿车为研究样车,分别使用纯柴油、生物柴油掺混比例为10%的B10燃油,进行了NEDC整车循环工况试验,测取了该车HC、CO、NOx、颗粒等法规限制的排放,利用气相色谱-质谱法对采集的排气颗粒样品进行了分析,重点研究了颗粒中多环芳烃的排放特性.结果表明,与柴油相比,燃用B10燃油的HC、CO、NOx和颗粒等常规排放均有所降低;两种燃料产生的颗粒多环芳烃排放中均以荧蒽和芘最多,与纯柴油相比,燃用B10燃油产生的低环数PAHs排放略有增加,中高环数的PAHs排放降幅明显.苯并[a]芘等效毒性分析结果显示燃用B10燃油的BEQs值比纯柴油降低了21.6%,表明柴油轿车燃用生物柴油后,排气颗粒的多环芳烃毒性有所下降.  相似文献   

5.
Power conversion efficiency of p-i-n type microcrystalline silicon (c-Si:H) solar cells has been analyzed in terms of sequential processes of photo-induced electron transfer. The effect of the excitonic state on the charged carrier generation has been studied compared to a conventional scheme in which only charged carriers are taken into account for the operation of the solar cells. A numerical model has been developed to calculate current-voltage characteristics of solar cells on the basis of two types of charged carrier generation processes (exciton process and charged carrier process). The light trapping effect due to a textured back surface reflector (BSR) was embedded in the numerical model by using the effective medium theory in combination with the matrix method in the field of the electromagnetic theory of light. As an application of this modeling, it was found that the reported data of the power conversion efficiency were not explained by the conventional charged carrier process model and that the combined model of the charged carrier process with the exciton process well explains the performance of the p-i-n type c-Si:H solar cells. In this way, the typical power conversion efficiencies were estimated to be 10.5% for the device (i-layer thickness: 1.8 m) with the BSR (period: 600 nm; height: 250 nm) and 8.6% for the device with the flat reflector under the condition that the fractions of the exciton process and charged carrier process were 60% and 40%, respectively.  相似文献   

6.
This study examines energy use patterns and the relationship between energy inputs and yield for canola production in Golestan province of Iran. Data used in this study were obtained from 130 randomly selected canola farms using a face to face survey. The results revealed that total energy of 17,786.36 MJ ha−1 was required for canola production and fertilizer, diesel fuel and electricity were the main energy consuming inputs. Energy use efficiency and energy productivity were 3.02 and 0.12 kg MJ−1, respectively. Moreover, in specifying a functional relationship the Cobb-Douglas production function was applied and the results showed that machinery, fertilizer, diesel fuel and water for irrigation energies significantly contributed to yield. Also, the marginal physical productivity (MPP) technique was applied to analyze the sensitivity of energy inputs. It was found that, canola production had more sensitivity on machinery, fertilizer and water for irrigation energies; so that an additional use of 1 MJ from each of the machinery, total fertilizer and water for irrigation would lead to an increase in production by 0.93, 0.61 and 0.24 kg, respectively. However, electricity and seed energies were contributed negatively to yield, which may result in inverse effect on yield and impose risks to the environment.  相似文献   

7.
利用卫星资料估算我国西北地区直接辐射   总被引:2,自引:0,他引:2  
在缺乏直接辐射、云量、日照时数等地面观测资料情况下,如何正确估算太阳直接辐射对太阳能合理开发利用有重要意义。利用NCEP/NCAR再分析资料、EOS-AURA卫星和FY-2C气象卫星反演资料,采用一个改进的宽带辐射传输模型对我国西北5个地面辐射站点2006年和2007年直射日曝辐量进行了估算。模型首先在Bird模型基础上对晴空条件下的太阳直接辐射进行了计算,然后结合FY-2C气象卫星总云量和云类反演数据,引入了一个线性方程,对实际天气状况下的直射日曝辐量进行了计算。结果表明:5个站点模拟的直射日曝辐量与实测值均存在较好一致性,评价效率系数NSE介于0.68~0.8,而对月均直射日曝辐量的模拟结果则显示模型在4-10月的估算精度要高于11-3月结果。  相似文献   

8.
Hydrogen can be produced through dark anaerobic fermentation using carbohydrate-rich biomass, and through photofermentation using the organic acids produced from dark fermentation. Sugar beet is an ideal energy crop for fermentative production of hydrogen in the EU due to its environmental profile and its potential availability in the area. In this work, various aspects of cultivating sugar beet in the EU for biohydrogen were highlighted, with special focus on The Netherlands and Greece. Moreover, fermentation of sugar beet juice with Caldicellulosiruptor saccharolyticus at sucrose concentration 10 g/l was performed, and was found comparable to the fermentation on pure sucrose except that the hydrogen production was 10% higher on sugar beet juice. A conservative estimate of the annual hydrogen potential in the EU was made (300 × 106 kg hydrogen), considering the utilization of sugar beet pulp in hydrogen production.  相似文献   

9.
黄淮海地区冬小麦光温生产潜力数值模拟研究   总被引:28,自引:10,他引:28  
建立了一个冬小麦光温生产潜力数值模式,该模式可以模拟瞬时光合作用并充分考虑了冬小麦叶片空间分布特征。研究结果表明,北京地区冬小麦光温生产潜力与抽穗前10天至成熟期辐射量相关性最大,年际之间存在4年和9~10年的变化周期。黄淮海地区冬小麦光温生产潜力变幅在9000~10950kg/hm之间,其中河北石家庄地区和山东胶东半岛为两个高值区,超过10500kg/hm。模拟结果与当前黄淮海地区冬小麦高产实践结论具有较好的一致性,可为该地区作物高产提供一定的理论指导  相似文献   

10.
太阳辐射试验标准中的太阳光谱分布   总被引:1,自引:0,他引:1       下载免费PDF全文
目的为太阳辐射试验标准、光老化试验标准修订时正确选择太阳光谱提供依据。方法辨析CIE NO.20,CIE NO.85两种出版物太阳辐射光谱特点,从五个方面对此问题进行探讨,统计这两种太阳辐射光谱带宽辐照度的误差;分析相对空气质量、臭氧与水分、云层光学厚度、地表反射率等因素对太阳辐射光谱辐照度的影响;分析人工辐射光源光谱分布特点,以及它们与太阳辐射光谱的差别;分析当前光老化试验标准对光谱辐照度允差的要求;介绍光老化试验结果间的可比性。结果 CIE NO.85光谱更准确、更细致,但其波长范围较窄,两种光谱辐照度的差别很小,大气环境中许多因素会降低到达地面的光谱辐照度;人工辐射光源光谱与太阳光谱的误差、光老化试验标准中光谱辐照度允差都远大于前述太阳辐射光谱间的误差,标准对太阳光谱波长范围的要求比CIE NO.85光谱宽。结论太阳辐射试验标准、光老化试验标准修订时,仍可选用CIE NO.20光谱作为太阳辐射光谱。  相似文献   

11.
Biodiesel, produced from various vegetable and/or animal oils, is one of the most promising alternative fuels for transportation in Thailand. Currently, the waste oils after use in cooking are not disposed adequately. Such oils could serve as a feedstock for biodiesel which would also address the waste disposal issue. This study compares the life cycle greenhouse gas (GHG) emissions from used cooking oil methyl ester (UCOME) and conventional diesel used in transport. The functional unit (FU) is 100 km transportation by light duty diesel vehicle (LDDV) under identical driving conditions. Life cycle GHG emissions from conventional diesel are about 32.57 kg CO2-eq/FU whereas those from UCOME are 2.35 kg CO2-eq/FU. The GHG emissions from the life cycle of UCOME are 93% less than those of conventional diesel production and use. Hence, a fuel switch from conventional diesel to UCOME will contribute greatly to a reduction in global warming potential. This will also support the Thai Government's policy to promote the use of indigenous and renewable sources for transportation fuels.  相似文献   

12.
乙醇柴油混合燃料的制备工艺和废气的排放特性   总被引:22,自引:0,他引:22  
为降低柴油机排放对环境造成的污染,用乙醇部分替代柴油,探索了乙醇柴油混合燃料的制备方法,研究了掺混乙醇及助溶剂对柴油机排放的影响.结果表明:无水乙醇可以和柴油以任意比例混溶,但痕量水(0.2%)的添加即导致混合物分层,合成的有机助溶剂可保证乙醇-柴油-痕量水体系的稳定性基于台架实验,考察了掺混10%、20%、30%乙醇对燃料排放性能的影响乙醇的最佳掺混比为20%在额定工况点(功率为13kW,转速为1540r/min)时,掺混20%乙醇的混合燃料可降低烟度55%,降低HC排放70%,降低CO排放45%.不添加助溶剂时,乙醇的掺混导致排放尾气中产生乙醇、微量乙醛等有机物.而添加非金属离子助溶剂可使HC、乙醇、乙醛排放的浓度明显降低.  相似文献   

13.
为了进一步减少甲醇掺烧后的柴油机颗粒物排放,在一台由增压中冷的高压共轨柴油机改造成的柴油甲醇组合燃烧(DMCC—diesel/methanol compound combustion)发动机上详细研究了柴油喷射时刻对两种燃料共燃时的颗粒物生成及其排放的影响.试验工况选择重型柴油机常用的A50工况.试验结果表明,当柴油在上止点后喷射时,颗粒物排放的数量浓度随着甲醇替代率的增加而减少,当上止点前喷射时,颗粒物的数量浓度先减少后增加.随着喷射时刻的提前,颗粒中超细颗粒所占比例增大.随着喷射时刻的推迟,甲醇替代率降低颗粒物质量浓度的作用增强,同时甲醇替代率降低颗粒物几何平均直径的作用减弱.  相似文献   

14.
含氧柴油对柴油机排放及细颗粒物碳质组分的影响   总被引:2,自引:1,他引:1  
乙缩醛(1,1-diethoxyethane)与柴油互溶性好, 可替代乙醇作为生物质来源的柴油含氧添加成分. 生物柴油掺混可以提高乙缩醛和柴油混合燃料的闪点及含氧量. 在柴油发动机台架上, 考察柴油和2种含氧柴油(10%乙缩醛+90%柴油和10%乙缩醛+10%生物柴油+80%柴油)在2个固定转速不同负荷的5个工况点的排放特性, 分析了NOx、HC、CO和PM2.5排放情况, 并用DRI的碳分析仪分析了PM2.5中的碳质组分.结果表明, 与普通柴油排放相比, 含氧柴油对NOx排放速率的影响不大, 在某些工况点HC排放速率有较显著的增加. 含氧柴油降低了柴油机PM2.5排放速率, 最大降低幅度29%. 从碳质组成上看, 含氧燃料降低了PM2.5中总碳 (total carbon,TC) 的排放速率, 最大降低幅度24%. 含氧柴油的元素碳(elemental carbon,EC)排放速率普遍低于普通柴油; 有机碳(organic carbon,OC)的排放速率在发动机高转速工况时明显低于普通柴油; PM2.5的OC/EC值在大多数工况下高于普通柴油. 3种燃料排放PM2.5的碳质组成百分比相似, OC和EC主要为OC1和EC1. 含氧柴油降低了柴油机PM2.5的排放速率, 颗粒物中OC的比例有所增加, 但对颗粒物的碳质组分组成没有明显的影响.  相似文献   

15.
太湖水体上行漫射衰减系数的变化特征研究   总被引:1,自引:0,他引:1  
水体上行漫射衰减系数是反映水体中上行光强衰减的重要光学参数,它直接影响着水下光场分布,对水环境生态系统变化具有重要意义.然而,对于太湖水体而言,上行漫射衰减系数的变化特征尚不明确.为此,本课题组于2010年4月29日到5月2日对太湖水体28个采样点进行了野外原位观测,获取了相应的水体光学参数和水质参数数据集.在分析水体上行衰减系数光谱特征和空间分布特征的基础上,对其与太阳高度角、悬浮物浓度和叶绿素浓度之间的关系进行了研究.结果表明,上行漫射衰减系数的光谱特征表现为短波蓝光部分衰减系数较大,长波红光部分衰减系数较小,且衰减系数在575~700 nm之间随着波长的增加变化不明显,在675 nm附近出现相对高值,其与叶绿素a浓度存在显著的相关关系(r=0.574,n=28,p<0.05).下行与上行漫射衰减系数随波长的变化特征大致相似,其差值谱线的变化规律为:小于400 nm的范围内,呈线性减小;在400~800 nm之间除760 nm附近有一峰值外,其余部分基本无明显变化;大于800 nm时,又迅速增加.上行衰减系数在不同湖区的空间分布大致为:开阔水域区>草型湖区>典型藻型湖区>草、藻过渡型湖区,藻型和草、藻过渡湖区在675 nm附近的峰值皆较为明显.上行衰减系数基本上随太阳高度角的增大而减小,上行漫射衰减系数与悬浮物浓度的偏相关性最好(r=0.963,n=28,p<0.05),太阳高度角次之(r=0.474,n=28,p<0.05),叶绿素浓度的最低(r=0.175,n=28,p<0.05).  相似文献   

16.
On-board measurements of unit emissions of CO,HC,NOx and CO2 were conducted on 17 private cars powered by different types of fuels including gasoline,dual gasoline–liquefied petroleum gas(LPG),gasoline,and diesel. The tests performed revealed the effect of LPG injection technology on unit emissions and made it possible to compare the measured emissions to the European Artemis emission model. A sequential multipoint injection LPG kit with no catalyst installed was found to be the most efficient pollutant reduction device for all of the pollutants,with the exception of the NOx. Specific test results for a sub-group of LPG vehicles revealed that LPG-fueled engines with no catalyst cannot compete with catalyzed gasoline and diesel engines. Vehicle age does not appear to be a determining parameter with regard to vehicle pollutant emissions. A fuel switch to LPG offers many advantages as far as pollutant emissions are concerned,due to LPG's intrinsic characteristics.However,these advantages are being rapidly offset by the strong development of both gasoline and diesel engine technologies and catalyst converters. The LPG's performance on a chassis dynamometer under real driving conditions was better than expected. The enforcement of pollutant emission standards in developing countries is an important step towards introducing clean technology and reducing vehicle emissions.  相似文献   

17.
Oxygenated fuels are known to reduce particulate matter (PM) emissions from diesel engines. In this study, 100% soy methyl ester (SME) biodiesel fuel (B100) and a blend of 10% acetal denoted by A-diesel with diesel fuel were tested as oxygenated fuels. Particle size and number distributions from a diesel engine fueled with oxygenated fuels and base diesel fuel were measured using an Electrical Low Pressure Impactor (ELPI). Measurements were made at ten steady-state operational modes of various loads at two engine speeds. It was found that the geometric mean diameters of particles from SME and Adiesel were lower than that from base diesel fuel. Compared to diesel fuel, SME emitted more ultra-fine particles at rated speed while emitting less ultra-fine particles at maximum speed. Ultra-fine particle number concentrations of A-diesel were much higher than those of base diesel fuel at most test modes.  相似文献   

18.

Chemical-looping combustion (CLC) is a combustion process with inherent separation of carbon dioxide (CO2), which is achieved by oxidizing the fuel with a solid oxygen carrier rather than with air. As fuel and combustion air are never mixed, no gas separation is necessary and, consequently, there is no direct cost or energy penalty for the separation of gases. The most common form of design of chemical-looping combustion systems uses circulating fluidized beds, which is an established and widely spread technology. Experiments were conducted in two different laboratory-scale CLC reactors with continuous fuel feeding and nominal fuel inputs of 300 Wth and 10 kWth, respectively. As an oxygen carrier material, ground steel converter slag from the Linz–Donawitz process was used. This material is the second largest flow in an integrated steel mill and it is available in huge quantities, for which there is currently limited demand. Steel converter slag consists mainly of oxides of calcium (Ca), magnesium (Mg), iron (Fe), silicon (Si), and manganese (Mn). In the 300 W unit, chemical-looping combustion experiments were conducted with model fuels syngas (50 vol% hydrogen (H2) in carbon monoxide (CO)) and methane (CH4) at varied reactor temperature, fuel input, and oxygen-carrier circulation. Further, the ability of the oxygen-carrier material to release oxygen to the gas phase was investigated. In the 10 kW unit, the fuels used for combustion tests were steam-exploded pellets and wood char. The purpose of these experiments was to study more realistic biomass fuels and to assess the lifetime of the slag when employed as oxygen carrier. In addition, chemical-looping gasification was investigated in the 10 kW unit using both steam-exploded pellets and regular wood pellets as fuels. In the 300 W unit, up to 99.9% of syngas conversion was achieved at 280 kg/MWth and 900 °C, while the highest conversion achieved with methane was 60% at 280 kg/MWth and 950 °C. The material’s ability to release oxygen to the gas phase, i.e., CLOU property, was developed during the initial hours with fuel operation and the activated material released 1–2 vol% of O2 into a flow of argon between 850 and 950 °C. The material’s initial low density decreased somewhat during CLC operation. In the 10 kW, CO2 yields of 75–82% were achieved with all three fuels tested in CLC conditions, while carbon leakage was very low in most cases, i.e., below 1%. With wood char as fuel, at a fuel input of 1.8 kWth, a CO2 yield of 92% could be achieved. The carbon fraction of C2-species was usually below 2.5% and no C3-species were detected. During chemical-looping gasification investigation a raw gas was produced that contained mostly H2. The oxygen carrier lifetime was estimated to be about 110–170 h. However, due to its high availability and potentially low cost, this type of slag could be suitable for large-scale operation. The study also includes a discussion on the potential advantages of this technology over other technologies available for Bio-Energy Carbon Capture and Storage, BECCS. Furthermore, the paper calls for the use of adequate policy instruments to foster the development of this kind of technologies, with great potential for cost reduction but presently without commercial application because of lack of incentives.

  相似文献   

19.
DOC+CDPF对生物柴油燃烧颗粒排放特性的影响   总被引:2,自引:0,他引:2  
以一台满足国五排放法规的车用柴油机为样机,研究加装氧化催化转化器DOC与催化型颗粒捕集器CDPF(DOC+CDPF后处理装置)前后,柴油机燃用B20燃料(燃料含20%体积掺混比的生物柴油)的颗粒排放特性.结果表明,在未加装该后处理装置时,该机排气颗粒数量浓度的粒径分布呈双峰形态,B20燃料的排气颗粒数量浓度的峰值粒径在10nm和50nm附近,纯柴油的排气颗粒数量浓度的峰值粒径在50nm和200nm附近.在颗粒粒径小于120nm的区域,该机燃用B20燃料的排气颗粒数量浓度大于纯柴油.加装该后处理装置后,该机排气颗粒数量浓度的粒径分布呈多峰形态,峰值粒径在10nm、20nm和60nm附近.加装DOC+CDPF后,不论是柴油还是B20燃料,与原机相比,柴油机排气颗粒总数量下降明显,其中60~200nm粒径范围的颗粒数量浓度降幅更为显著.在相同工况下,DOC+CDPF对柴油机燃用B20燃料的颗粒总数量净化效率高于纯柴油.  相似文献   

20.

Both China’s national subsidy policies for plug-in electric vehicles (PEVs) purchasers and passenger cars corporate average fuel consumption and new vehicle credit regulation (dual-credit policy) favor long-range 300+ km battery electric vehicles (BEVs) and 80+ km plug-in hybrid electric vehicles (PHEVs). However, these electric vehicles tend to have lower energy efficiency and higher purchase and operation costs. Vehicle with larger batteries can also be less equitable because the subsidies are often provided to more expensive vehicles and wealthier owners. This study takes advantage of a novel dataset of daily driving data from 39,854 conventional gasoline vehicles in Beijing and 4999 PHEVs in Shanghai to determine the optimal range of BEVs and PHEVs within their respective cities. We simulate a model to explore ranges with which PEVs emit less GHGs than that of a baseline hybrid and conventional gasoline vehicle while ensuring that all daily travel demands are met. Our findings indicate that in both cities, the optimal ranges to balance cost and travel demand for BEVs are 350 km or less and for PHEVs are 60 km or less in Beijing and 80 km or less in Shanghai. We also find that to minimize carbon dioxide (CO2) emissions, the ranges are even lower 10 km in Beijing and 30 km in Shanghai. Our study suggests that instead of encouraging long-range PEVs, governments should subsidize PEV models with shorter ranges. Parallel efforts should also be made to both increase renewable energy over fossil fuels and expand charging facilities. Although individual mobility demand varies, the government could reduce occasional long-distance driving by subsidizing alternative transportation choices. Providing week-long driving trials to consumers before their purchases may help decrease the demand of very long range PEVs by alleviating the range anxiety through a learning process.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号