首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The superior diversity of the tropics is well known and, for the largest marine and continental areas, there appears to be a positive relationship between area and species diversity (richness). There are certain portions of the tropics, however, in which species diversity has reached unusually high levels. Such areas apparently function as centers of evolutionary origin. In the ocean the largest of the four tropical shelf regions is the Indo-West Pacific, which stretches almost two thirds of the distance around the globe. Within that expanse by far the greatest diversity is found within the relatively small East Indies Triangle. From the Triangle an evolutionary radiation has reached many other parts of the marine world. On land the Neotropical, Ethiopian, and Oriental biogeographic regions demonstrate very high levels of species diversity. Various major groups of animals and plants have originated in these regions and subsequently spread to other parts of the world. There is no accepted scientific agreement on a conservation strategy for these areas. By focusing our attention on centers of origin, we can save the areas containing species that apparently have the greatest evolutionary potential.  相似文献   

2.
Freestone AL  Osman RW 《Ecology》2011,92(1):208-217
While communities are shaped by both local interactions and enrichment from the regional species pool, we propose a hypothesis that the balance of these forces shifts with latitude, with regional enrichment dominating at high latitudes and local interactions dominating at low latitudes. To test this hypothesis, we conducted a latitudinal-scale experiment with marine epifaunal communities. In four regions of the North Atlantic Ocean and Caribbean Sea, we used mimics of ecosystem engineers to manipulate biogenic structural complexity. We iteratively evaluated diversity patterns of experimental communities up to one year after deployment. Additional data were also collected from one of our tropical sites 2.5 years after initial deployment. As hypothesized, we found a reciprocal latitudinal gradient in the effects of the structurally complex mimics and regional enrichment. In the tropics, local diversity was always higher in association with the mimics than in exposed areas that were more open to predation. This effect was consistent across two spatial scales and beyond the one-year timescale of the experiment. In temperate communities, no consistent effects of the mimics on diversity were observed. However, the proportion of species from the regional species pool that were present at the local scale increased from the tropics to the temperate zone, consistent with the hypothesis that higher-latitude communities may experience greater influence from the regional species pool than communities at low latitudes. This study represents the first large-scale experimental demonstration that suggests that the relative impact of local interactions and regional enrichment on community diversity may depend on latitude.  相似文献   

3.
Species interactions are widely assumed to be stronger at lower latitudes, but surprisingly few experimental studies test this hypothesis, and none ties these processes to observed patterns of species richness across latitude. We report here the first experimental field test that predation is both stronger and has a disproportionate effect on species richness in the tropics relative to the temperate zone. We conducted predator-exclusion experiments on communities of sessile marine invertebrates in four regions, which span 32 degrees latitude, in the western Atlantic Ocean and Caribbean Sea. Over a three-month timescale, predation had no effect on species richness in the temperate zone. In the tropics, however, communities were from two to over ten times more species-rich in the absence of predators than when predators were present. While micro-and macro-predators likely compete for the limited prey resource in the tropics, micropredators alone were able to exert as much pressure on the invertebrate communities as the full predator community. This result highlights the extent to which exposure to even a subset of the predator guild can significantly impact species richness in the tropics. Patterns were consistent in analyses that included relative and total species abundances. Higher species richness in the absence of predators in the tropics was also observed when species occurrences were pooled across two larger spatial scales, site and region, demonstrating a consistent scaling relationship. These experimental results show that predation can both limit local species abundances and shape patterns of regional coexistence in the tropics. When preestablished diverse tropical communities were then exposed to predation for different durations, ranging from one to several days, species richness was always reduced. These findings confirmed that impacts of predation in the tropics are strong and consistent, even in more established communities. Our results offer empirical support for the long-held prediction that predation pressure is stronger at lower latitudes. Furthermore, we demonstrate the magnitude to which variation in predation pressure can contribute to the maintenance of tropical species diversity.  相似文献   

4.
We examined the relationship between swimming performance, wave exposure, and the distribution patterns of labrids on temperate rocky reefs, in comparison with previous functional analyses of a tropical assemblage. Visual censuses of the distribution and abundance of labrids across two major gradients of wave exposure (depth and aspect to prevailing winds) were made at two offshore islands near Port Stephens, New South Wales, Australia. Distinct shifts in species composition and abundance were evident between high and low wave exposure habitats on temperate rocky reefs, particularly between deep and shallow habitats on exposed reef fronts. The swimming performances of temperate labrids were assessed through examination of pectoral fin shape (aspect ratio) and in situ swimming speeds. A diversity of pectoral fin morphologies was exhibited within this temperate assemblage, ranging from rounded to tapered fins (aspect ratios of 0.52 and 1.43, respectively). Fin shape was strongly correlated (Pearsons correlation 0.884, P<0.001) with swimming speed (ranging from 1.05 and 3.06 body lengths s–1), in a relationship comparable to that observed in tropical labrids. Inter-specific differences in swimming ability provided some explanation for differences in the distribution and abundance of temperate labrids in relation to wave exposure. However, our findings suggest that although coral reef labrids appear to predominantly use high aspect-ratio fins to successfully occupy wave-exposed habitats, temperate labrids appear to be using an enhanced swimming ability through increased body size.Communicated by G.F. Humphrey, Sydney  相似文献   

5.
Summary Latex is a widespread defence in plants against natural enemies and a literature-based summary of latex-producing angiosperms shows records in 40 families, and more than 20,000 species are estimated to bear laticiferous structures of some kind. This is considerably higher than the usually quoted figure of 12,500 species. There are more tropical than temperate latex-bearing families, both in absolute numbers and proportionally. Proportions of latex-bearing families are similar both in tropical and in more widespread or cosmopolitan families. Significantly more latex-bearing species belong to tropical than either to temperate or to widespread taxa, both in absolute and in relative terms. These differences may be related to the higher diversity of natural enemy species and to higher rates of herbivory in the tropics.  相似文献   

6.
Algar AC  Kerr JT  Currie DJ 《Ecology》2011,92(4):903-914
The influence of regional and local processes on community structure is a major focus of ecology. Classically, ecologists have used local-regional richness regressions to evaluate the role of local and regional processes in determining community structure, an approach that has numerous flaws. Here, we implemented a novel trait-based approach that treats local and regional influences as a continuum, rather than a dichotomy. Using hylid frogs (Hylidae), we compared trait dispersion among members of local species assemblages to the trait dispersion in the regional assemblage from which they were drawn. Similarly, we compared trait dispersion in the regional assemblages to dispersion in the continental species pool. We estimated the contributions of local and regional filters, and we compared their strength in temperate and tropical zones. We found that regional and local filters explained 80% of the total variation among local assemblages in community body size dispersion. Overall, regional filters reduced trait dispersion, and local filters increased it, a pattern driven by particularly strong antagonistic effects in temperate zones that reduced the realized total variation by more than 40%. In contrast, local and regional filters acted in concert in tropical regions. Patterns within the tropics did not differ from the random expectation based on a null model, but within the temperate zone, local community filtering was stronger than expected by chance. Furthermore, in temperate regions, antagonistic regional and local filtering masked from 76% to 90% of the total variation in trait dispersion. Together, these results suggest that there are fundamental differences in the scale and identity of the processes determining community structure in temperate and tropical regions.  相似文献   

7.
Most hypotheses explaining the general gradient of higher diversity toward the equator are implicit or explicit about greater species packing in the tropics. However, global patterns of diversity within guilds, including trophic guilds (i.e., groups of organisms that use similar food resources), are poorly known. We explored global diversity patterns of a key trophic guild in stream ecosystems, the detritivore shredders. This was motivated by the fundamental ecological role of shredders as decomposers of leaf litter and by some records pointing to low shredder diversity and abundance in the tropics, which contrasts with diversity patterns of most major taxa for which broad-scale latitudinal patterns haven been examined. Given this evidence, we hypothesized that shredders are more abundant and diverse in temperate than in tropical streams, and that this pattern is related to the higher temperatures and lower availability of high-quality leaf litter in the tropics. Our comprehensive global survey (129 stream sites from 14 regions on six continents) corroborated the expected latitudinal pattern and showed that shredder distribution (abundance, diversity and assemblage composition) was explained by a combination of factors, including water temperature (some taxa were restricted to cool waters) and biogeography (some taxa were more diverse in particular biogeographic realms). In contrast to our hypothesis, shredder diversity was unrelated to leaf toughness, but it was inversely related to litter diversity. Our findings markedly contrast with global trends of diversity for most taxa, and with the general rule of higher consumer diversity at higher levels of resource diversity. Moreover, they highlight the emerging role of temperature in understanding global patterns of diversity, which is of great relevance in the face of projected global warming.  相似文献   

8.
Chiba S 《Ecology》2007,88(7):1738-1746
The relationship between species richness and environmental variables may change depending on habitat structure, dispersal ability, species mixing, and community adaptation to the environment. It is crucial to know how these factors regulate the environment-diversity relationship. The land molluscan fauna of the Ogasawara Islands in the West Pacific is an excellent model system to address this question because of the high species endemicity (> 90%), small area, and simple habitat structure of the islands. I examined relationships among indigenous species composition, richness, and habitat condition, and especially productivity and forest moisture on the island of Anijima. Two major communities of snails could be distinguished by detrended correspondence analysis (DCA): one group dominated in a moist habitat with high productivity, and the other group dominated in a dry habitat with low productivity. However, species richness became highest at the intermediate condition between the habitats in which the two snail communities were dominant, so that species richness showed a hump-shaped relationship with moisture and productivity. In contrast, the species richness of the snail community in the moist habitat showed a monotonically positive correlation, and that in the dry habitat showed a monotonically negative correlation with moisture and productivity. Thus, the greater species richness in intermediate moisture and productivity resulted from the ecotone effect or community overlap at the transitional areas, where faunas with different ecologies can meet in a single site. These findings suggest that hump-shaped productivity-diversity relationships in land Mollusca would reflect the ecotone effect as a result of the mixing of species adapted to either fertile habitats or sterile habitats.  相似文献   

9.
Global variation in the diversification rate of passerine birds   总被引:3,自引:0,他引:3  
Ricklefs RE 《Ecology》2006,87(10):2468-2478
  相似文献   

10.
Little is known about the biodiversity of free-living nematodes. We have attempted to provide baseline information about the natural diversities (those not influenced by pollution) that might be expected in six biotopes. Seventeen marine nematode data sets consisting of 197 samples were standardized to allow a comparison of alpha diversity, or sample diversity, from temperate estuarine, tropical sublittoral, temperate sublittoral, bathyal, abyssal, and hadal biotopes, which were selected on criteria of depth and latitude. The diversity analysis methods we employed were rarefaction curves; three weighted diversity indices of species richness, SR, H', and ES(X); and two equitability indices, J' and V. Diversity was significantly different in the six biotopes. The weighted indices of species richness were more capable of resolving differences between the biotopes than were the equitability indices, whose large standard errors suggested that they were more influenced by local, small-scale ecological factors. This suggests that species richness is a better measure than equitability for large-scale comparisons of biotopes or regions. The ES(X), which is robust to sample size variations, was more efficient than the weighted indices of species richness, which were easily influenced by sample size. There was a nonlinear relationship between depth and diversity with the bathyal and abyssal biotopes displaying the highest diversity. The tropical sublittoral biotope was not more diverse than the temperate sublittoral biotope. The lowest diversities were found in the physically challenging temperate estuarine and hadal biotopes.  相似文献   

11.
在中国东南部的全尺度复合垂直流人工湿地中开展2年的植物多样性实验,以研究植物多样性(包括植物物种丰富度和植物组成)对群落生产力与多样性效应(即互补效应、选择效应和净多样性效应)的影响及其产生机制。结果表明,2007年物种丰富度与群落生产力呈线形正相关,而2008年显著的单峰格局,其关系式为:y=-0.213x2+3.455x+15.192(R=0.215)。2008年物种丰富度与互补效应呈显著地线形负相关,而2007年呈单峰格局,其关系式为:y=-0.389x2+6.974x-10.707(R=0.247),而且2007年与2008年的互补效应与生产力都呈显著的正相关,表明互补效应对生产力的提高有重要作用。然而,2007年与2008年物种丰富度与选择效应之间均没有显著相关性,且选择效应与群落生产力之间也没有显著相关性,表明选择效应对生产力的提高作用不显著。2007年与2008年中物种组成对生产力、互补效应、选择效应与净多样性效应均有显著影响,说明人工湿地的植物配置对其生态系统功能的维持尤为重要。2008年物种丰富度与净多样性效应呈极显著地线形负相关,而2007年呈显著单峰格局,其关系式为:y=-0.329 x2+5.968 x-12.659(R=0.234),这种趋势主要是由于植物多样性-生态系统功能关系的影响因素(如物种的竞争力和生态位)在2年中有所变化。同时,2007年与2008年的多样性净效应与生产力都呈显著正相关关系,表明生产力与多样性净效应的变化趋势是同步的。与抽样效应假说不同的是,本实验中单种最高产物种(芦竹)在混种时没有表现出高产,主要是由于生长的分配、资源的竞争力与环境的变化等。  相似文献   

12.
In this paper, we analyzeatabases on birds and insects to assess patterns of functional diversity in human-dominated landscapes in the tropics. A perspective from developed landscapes is essential for understanding remnant natural ecosystems, because most species experience their surroundings at spatial scales beyond the plot level, and spillover between natural and managed ecosystems is common. Agricultural bird species have greater habitat and diet breadth than forest species. Based on a global data base, bird assemblages in tropical agroforest ecosystems were composed of disproportionately more frugivorous and nectarivorous, but fewer insectivorous bird species compared with forest. Similarly, insect predators of plant-feeding arthropods were more diverse in Ecuadorian agroforest and forest compared with rice and pasture, while, in Indonesia, bee diversity was also higher in forested habitats. Hence, diversity of insectivorous birds and insect predators as well as bee pollinators declined with agricultural transformation. In contrast, with increasing agricultural intensification, avian pollinators and seed dispersers initially increase then decrease in proportion. It is well established that the proximity of agricultural habitats to forests has a strong influence on the functional diversity of agroecosystems. Community similarity is higher among agricultural systems than in natural habitats and higher in simple than in complex landscapes for both birds and insects, so natural communities, low-intensity agriculture, and heterogeneous landscapes appear to be critical in the preservation of beta diversity. We require a better understanding of the relative role of landscape composition and the spatial configuration of landscape elements in affecting spillover of functionally important species across managed and natural habitats. This is important for data-based management of tropical human-dominated landscapes sustaining the capacity of communities to reorganize after disturbance and to ensure ecological functioning.  相似文献   

13.
In the global campaign against biodiversity loss in forest ecosystems, land managers need to know the status of forest biodiversity, but practical guidelines for conserving biodiversity in forest management are lacking. A major obstacle is the incomplete understanding of the relationship between site primary productivity and plant diversity, due to insufficient ecosystem‐wide data, especially for taxonomically and structurally diverse forest ecosystems. We investigated the effects of site productivity (the site's inherent capacity to grow timber) on tree species richness across 19 types of forest ecosystems in North America and China through 3 ground‐sourced forest inventory data sets (U.S. Forest Inventory and Analysis, Cooperative Alaska Forest Inventory, and Chinese Forest Management Planning Inventory). All forest types conformed to a consistent and highly significant (P < 0.001) hump‐shaped unimodal relationship, of which the generalized coefficients of determination averaged 20.5% over all the forest types. That is, tree species richness first increased as productivity increased at a progressively slower rate, and, after reaching a maximum, richness started to decline. Our consistent findings suggest that forests of high productivity would sustain few species because they consist mostly of flat homogeneous areas lacking an environmental gradient along which a diversity of species with different habitats can coexist. The consistency of the productivity–biodiversity relationship among the 3 data sets we examined makes it possible to quantify the expected tree species richness that a forest stand is capable of sustaining, and a comparison between the actual species richness and the sustainable values can be useful in prioritizing conservation efforts.  相似文献   

14.
Within the tropics, mangroves and coral reefs represent highly productive biomes. Although these habitats are often within close proximity, the role and importance of mangrove habitats for reef fish species remains unclear. Throughout the Indo-Pacific, reef fish species appear to have few links with estuarine mangrove habitats. In contrast, clear-water non-estuarine mangrove habitats throughout the Caribbean support many reef fish species and may be fundamental for sustaining reef fish populations. But how important are clear-water non-estuarine mangroves for reef fishes within the Indo-Pacific? Using visual surveys during diurnal high tide, the fish assemblages inhabiting clear-water mangrove and adjacent reef habitats of Orpheus Island, Great Barrier Reef, were recorded. Of the 188 species of fishes that were recorded, only 38 were observed to inhabit both habitats. Of these, only eight were observed more than five times within each habitat. These observations provide little indication that the clear-water mangroves are an important habitat for reef fish species. In addition, although based on just a 3-month survey period, we found little evidence to suggest that these areas are important nurseries for reef fish species. The clear-water mangroves of Orpheus Island may, however, provide an additional foraging area for the few reef fish species that were observed to utilize these habitats during high tide. The difference in the importance of clear-water mangroves for reef fishes within this study compared with clear-water mangrove counterparts within the Caribbean is surprising. Although only preliminary, our observations would support suggestions that the patterns reflect the different hydrological characteristics and evolutionary histories of these two biogeographic regions.  相似文献   

15.
Bonebrake TC  Deutsch CA 《Ecology》2012,93(3):449-455
Evolutionary history and physiology mediate species responses to climate change. Tropical species that do not naturally experience high temperature variability have a narrow thermal tolerance compared to similar taxa at temperate latitudes and could therefore be most vulnerable to warming. However, the thermal adaptation of a species may also be influenced by spatial temperature variations over its geographical range. Spatial climate gradients, especially from topography, may also broaden thermal tolerance and therefore act to buffer warming impacts. Here we show that for low-seasonality environments, high spatial heterogeneity in temperature correlates significantly with greater warming tolerance in insects globally. Based on this relationship, we find that climate change projections of direct physiological impacts on insect fitness highlight the vulnerability of tropical lowland areas to future warming. Thus, in addition to seasonality, spatial heterogeneity may play a critical role in thermal adaptation and climate change impacts particularly in the tropics.  相似文献   

16.
Eleven mesopelagic fish species from the Weddell/Scotia Sea region of the Antarctic captured during the austral spring 1983, austral fall 1986, and austral winter 1988, were analyzed for proximate composition. Water, ash level, protein, lipid and carbohydrate were examined in relation to depth of occurrence and season. No depth-related trends were evident, primarily due to a low species diversity and minimal differences in those species' vertical distributions. The Antarctic speciesElectrona antarctica showed a significant increase in lipid level (% wet wt and % ash-free dry wt) between spring, fall and winter. The increase may signify an accumulation over the productive season, possibly as a reserve for the winter months. Lipid levels (% wet wt and % ash-free dry wt) were significantly lower in the Weddell Sea specimens examined in this study than in previously examined identical and congeneric species taken during the same season from a more productive near-shore Antarctic region. Comparisons with congeners and confamilials from tropical-subtropical and temperate systems revealed variable trends. The Antarctic speciesE. antarctica andCyclothone microdon had lower water and protein (% wet wt) levels than similar species from tropical-subtropical or temperate regions. Lipid levels of the two species are similar to temperate individuals, while energy levels are slightly higher. In contrast, species of the genusBathylagus show no trends in composition as a function of latitude. Differences in productivity, water-column temperature-structure, and seasonality are important considerations when examining trends among mesopelagic species.  相似文献   

17.
Present biodiversity comprises the evolutionary heritage of Earth's epochs. Lineages from particular epochs are often found in particular habitats, but whether current habitat decline threatens the heritage from particular epochs is unknown. We hypothesized that within a given region, humans threaten specifically habitats that harbor lineages from a particular geological epoch. We expect so because humans threaten environments that dominated and lineages that diversified during these epochs. We devised a new approach to quantify, per habitat type, diversification of lineages from different epochs. For Netherlands, one of the floristically and ecologically best-studied regions, we quantified the decline of habitat types and species in the past century. We defined habitat types based on vegetation classification and used existing ranking of decline of vegetation classes and species. Currently, most declining habitat types and the group of red-listed species are characterized by increased diversification of lineages dating back to Paleogene, specifically to Paleocene-Eocene and Oligocene. Among vulnerable habitat types with large representation of lineages from these epochs were sublittoral and eulittoral zones of temperate seas and 2 types of nutrient-poor, open habitats. These losses of evolutionary heritage would go unnoticed with classical measures of evolutionary diversity. Loss of heritage from Paleocene-Eocene became unrelated to decline once low competition, shade tolerance, and low proportion of non-Apiaceae were accounted for, suggesting that these variables explain the loss of heritage from Paleocene-Eocene. Losses of heritage from Oligocene were partly explained by decline of habitat types occupied by weak competitors and shade-tolerant species. Our results suggest a so-far unappreciated human threat to evolutionary heritage: habitat decline threatens descendants from particular epochs. If the trends persist into the future uncontrolled, there may be no habitats within the region for many descendants of evolutionary ancient epochs, such as Paleogene.  相似文献   

18.
The native vascular plant flora of the Republic of Singapore has suffered the extinction of 594 out of a total 2277 species. These represent local, not global, species extinctions. Coastal habitats, including mangroves, have lost 39% of their species, while inland forests have last 29%. Epiphytic species (62% loss) appear particularly prone to extinction, which is reflected in a similar disposition exhibited by the Orchidaceae. Deforestation and disturbance have been the main cause of plant species extinction in Singapore. The rich mangrove epiphyte flora has been totally exterminated, and a number of tree species are reduced to populations of a few mature individuals. Many more species continue to survive than the species-area relationship would predict given the 99.8% loss of primary forest. This is interpreted as a result of the failure of equilibrium to be achieved yet in the remnant forest fragments, even after more than a century of isolation. Singapore's secondary forests appear to accrete plant diversity very slowly, even if contiguous with primary forest areas. We conclude that remnant fragments of primary tropical forest, even of very small size, can play a major role in the conservation of tropical biodiversity. The patterns of extinction observed in Singapore indicate that coastal and estuarine sites are in greatest demand for development and therefore must be given high priority for conservation despite their somewhat lower biodiversity. Epiphyte and orchid diversity appear to be very good indicators of the degree of disturbance suffered by a habitat in the humid tropics.  相似文献   

19.
Tan J  Pu Z  Ryberg WA  Jiang L 《Ecology》2012,93(5):1164-1172
Species immigration history can structure ecological communities through priority effects, which are often mediated by competition. As competition tends to be stronger between species with more similar niches, we hypothesize that species phylogenetic relatedness, under niche conservatism, may be a reasonable surrogate of niche similarity between species, and thus influence the strength of priority effects. We tested this hypothesis using a laboratory microcosm experiment in which we established bacterial species pools with different levels of phylogenetic relatedness and manipulated the immigration history of species from each pool into microcosms. Our results showed that strong priority effects, and hence multiple community states, only emerged for the species pool with the greatest phylogenetic relatedness. Community assembly also resulted in a significant positive relationship between bacterial phylogenetic diversity and ecosystem functions. Interestingly, these results emerged despite a lack of phylogenetic conservatism for most of the bacterial functional traits considered. Our results highlight the utility of phylogenetic information for understanding the structure and functioning of ecological communities, even when phylogenetically conserved functional traits are not identified or measured.  相似文献   

20.

Goal, Scope, and Background

Soil organisms play a crucial role in terrestrial ecosystems. Plant Protection Products (PPPs) are known to affect these organisms and might have negative impacts on soil functions influenced by these organisms. Little research has been done to day on the impact of PPPs on tropical ecosystems. Therefore, in this study it was investigated whether the effects of pesticides differ between tropical and temperate regions and whether data generated under temperate conditions can be used for the Environmental Risk Assessment (ERA) in tropical regions.

Methods

The effects of one fungicide (Carbendazim) and one insecticide (lambda-Cyhalothrin) on soil invertebrates (earthworms and arthropods) and functional parameters (organic matter (OM) breakdown, feeding rate) were evaluated in semi-field tests using Terrestrial Model Ecosystems (TMEs) and in field tests using litter-bags. The soil for the TMEs was extracted from the same site near Manaus (Amazonas, Brazil) where the field test was conducted (see Part 1, Römbke et al. 2005 〈DOI: http://dx.doi.org/10.1065/uswf2004.12.088.1〉). The soil was acid clay, typical for tropical regions. In the TMEs the standard test species as well as native tropical species were introduced. Several application scenarios, selected according to their relevance for practical conditions, were realized in TME-tests and field (duration: 150 and 365 days, respectively). Finally, an Environmental Risk Assessment (ERA) for the two chemicals was performed.

Results and Conclusions

The results from the TME-tests show that both test chemicals (depending on their concentration) had toxic effects on the tested organisms and organic matter breakdown, but not on the feeding rates. In the field organic matter breakdown was affected for some time too, but effects on single species were, with one exception (the native earthworm Andiorrhinus amazonicus) not observed; a result probably influenced by the small size of the test plots. Observed differences in OM breakdown between control and treated TMEs were often significant, while due to the higher variability even with differences >10% between means this was not the case in the field.

Recommendation and Perspective

According to the preliminary results of the Environmental Risk, Assessment presented here, the use of the three model chemicals in the tropics (e.g. in Brazil) can cause a damage to the environmental compartment soil. Therefore, a more detailed investigation of these PPPs is recommended, in particular a better evaluation of the exposure (residue analysis). In general, the work performed in Amazonia can be summarised as follows: (1) Depending on the properties of the PPP, the effects of pesticides in tropical resp, temperate regions can differ. (2) If a PPP is going to be used in the tropics, data from tests modified for these conditions should be performed and their results should be incorporated in an Environmental Risk Assessment (ERA) for tropical regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号