首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Forest fires and adaptation options in Europe   总被引:1,自引:0,他引:1  
This paper presents a quantitative assessment of adaptation options in the context of forest fires in Europe under projected climate change. A standalone fire model (SFM) based on a state-of-the-art large-scale forest fire modelling algorithm is used to explore fuel removal through prescribed burnings and improved fire suppression as adaptation options. The climate change projections are provided by three climate models reflecting the SRES A2 scenario. The SFM’s modelled burned areas for selected test countries in Europe show satisfying agreement with observed data coming from two different sources (European Forest Fire Information System and Global Fire Emissions Database). Our estimation of the potential increase in burned areas in Europe under “no adaptation” scenario is about 200 % by 2090 (compared with 2000–2008). The application of prescribed burnings has the potential to keep that increase below 50 %. Improvements in fire suppression might reduce this impact even further, e.g. boosting the probability of putting out a fire within a day by 10 % would result in about a 30 % decrease in annual burned areas. By taking more adaptation options into consideration, such as using agricultural fields as fire breaks, behavioural changes, and long-term options, burned areas can be potentially reduced further than projected in our analysis.  相似文献   

2.
This study deals with the question of how winegrowing in Spain may be altered by anthropogenic climate change. The present state and expected future development of three bioclimatic indices relevant for winegrowing were assessed by observation, and four regional climate models from the EU-ENSEMBLES project were investigated. When comparing the 2061–2090 scenario period to the 1961–1990 reference period, the models unanimously indicate a significant increase in the mean of the two considered thermal indices over the entire study region. However, for the index based on temperature and precipitation, the models are heavily biased when verified against observations and generally disagree on the size of the projected future change. For this index, unanimous model agreement was only found for northwestern Spain where all models indicated a significant decrease in the mean. From these results, regional climate change is expected to negatively affect the quality of wine in the growing regions of central and southern Spain, and the Ebro valley, whereas positive effects should be expected in the northwest. No significant changes in the risk of mildew infestation are to be expected except for the northwest, where this risk is projected to decrease.  相似文献   

3.
植被NPP对气候变化的响应是全球变化与陆地生态系统碳循环研究的重要核心内容之一。利用CASA模型估算了2000~2015年江汉平原植被NPP,并利用线性回归与逐像元相关性分析方法定量研究了江汉平原植被NPP的时空变化特征及其与气候因素的相关性。结果表明:(1)16年来江汉平原植被NPP的年总量在25.43~29.76 TgC之间,呈波动增加趋势;(2)江汉平原NPP的空间分布格局具有明显的不均匀特征,形成一系列的高值中心和低值中心,符合“丘陵-平原-河流-城市”的衰减趋势;(3)江汉平原NPP与年降水量、年均温的相关系数分别为0.183 7和0.498 5;经显著性检验可知,江汉平原NPP的产量与年降水量相关性较弱,而与年均温则呈较强的正相关关系;(4)植被NPP与年降水量、年均温呈正相关的像元面积分别占总面积的69.19%和83.41%,主要分布在江汉平原腹部的农耕区域,说明江汉平原农耕区NPP的产量对年降水量与年均温的依赖性较强。  相似文献   

4.
One of the targets of the United Nations ‘Millennium Development Goals’ adopted in 2000 is to cut in half the number of people who are suffering from hunger between 1990 and 2015. However, crop yield growth has slowed down in much of the world because of declining investments in agricultural research, irrigation, and rural infrastructure and increasing water scarcity. New challenges to food security are posed by accelerated climatic change. Considerable uncertainties remain as to when, where and how climate change will affect agricultural production. Even less is known about how climate change might influence other aspects that determine food security, such as accessibility of food for various societal groups and the stability of food supply. This paper presents the likely impacts of thermal and hydrological stresses as a consequence of projected climate change in the future potential agriculture productivity in South Asia based on the crop simulation studies with a view to identify critical climate thresholds for sustained food productivity in the region. The study suggests that, on an aggregate level, there might not be a significant impact of global warming on food production of South Asia in the short term (<2°C; until 2020s), provided water for irrigation is available and agricultural pests could be kept under control. The increasing frequency of droughts and floods would, however, continue to seriously disrupt food supplies on year to year basis. In long term (2050s and beyond), productivity of Kharif crops would decline due to increased climate variability and pest incidence and virulence. Production of Rabi crops is likely to be more seriously threatened in response to 2°C warming. The net cereal production in South Asia is projected to decline at least between 4 and 10% under the most conservative climate change projections (a regional warming of 3°C) by the end of this century. In terms of the reference to UNFCCC Article 2 on dangerous anthropogenic (human-induced) interference with the climate system, the critical threshold for sustained food productivity in South Asia appears to be a rise in surface air temperature of ~2°C and a marginal decline in water availability for irrigation or decrease in rainfall during the cropping season.  相似文献   

5.
温室气体减排问题中的公平性与效率问题   总被引:6,自引:0,他引:6  
《联合国气候变化框架公约》的最终目的是减少人为温室气体排放,稳定大气温室气体浓度,避免气候系统受到人为的危险干扰。本文指出,在承担温室气体减排义务时,公平性与时间效率,以及公平性与空间效率都是相互冲突的,并提出了兼顾公平性和效率的方案。  相似文献   

6.
Using the drivers–pressures–state–impact–responses (DPSIR) analytical framework, local stakeholder respondents and experts were interviewed to construct and prioritize a causality network that links ecosystem state of the coastal waters of Berau (East Kalimantan, Indonesia) with societal drivers of change. Particularly on the perceived top priority drivers and pressures, consensus among respondents was considerable. The constructed network was found to be consistent with literature findings from elsewhere in SE Asia. This causality network was then confronted with a local articulation of the SRES scenarios (IPCCs Special Report on Emissions Scenarios: A1, A2, B1, B2), and four plausible trajectories of future change were deduced over a period of 20?years, until 2030. Our scenario articulations differed greatly in the projected immigration influx into the region, in local economic growth and in institutional strength of governance. Under business-as-usual conditions, it is foreseen that fisheries will continue to overexploit the resource, and inland and mangrove deforestation, as well as sediment and sewage loading of the coastal waters, will increase, leading to declines in coral and seagrass extent and depleted fisheries. Scenarios with continued immigration (~A1, A2) will probably aggravate this pattern, whereas those with reduced immigration (~B1, B2) would appear to lead to considerable improvements in the state of the coastal waters of Berau.  相似文献   

7.
Loss of forest cover is a likely consequence of climate change in many parts of the world. To test the vulnerability of eucalypt forests in Australia’s island state of Tasmania, we modelled tree canopy cover in the period 2070–2099 under a high-emission scenario using the current climate–canopy cover relationship in conjunction with output from a dynamically downscaled regional climate model. The current climate–canopy cover relationship was quantified using Random Forest modelling, and the future climate projections were provided by three dynamically downscaled general circulation model (GCM) simulations. Three GCMs were used to show a range of projections for the selected scenario. We also explored the sensitivity of key endemic and non-endemic Tasmanian eucalypts to climate change. All GCMs suggested that canopy cover should remain stable (proportional cover change <10 %) across ~70 % of the Tasmanian eucalypt forests. However, there were geographic areas where all models projected a decline in canopy cover due to increased summer temperatures and lower precipitation, and in addition, all models projected an increase in canopy cover in the coldest part of the state. The model projections differed substantially for other areas. Tasmanian endemic species appear vulnerable to climate change, but species that also occur on the mainland are likely to be less affected. Given these changes, restoration and carbon sequestration plantings must consider the species and provenances most suitable for future, rather than present, climates.  相似文献   

8.
Agricultural crops are affected by climate change due to the relationship between crop development, growth, yield, CO2 atmospheric concentration and climate conditions. In particular, the further reduction in existing limited water resources combined with an increase in temperature may result in higher impacts on agricultural crops in the Mediterranean area than in other regions. In this study, the cropping system models CERES-Wheat and CROPGRO-Tomato of the Decision Support System for Agrotechnology Transfer (DSSAT) were used to analyse the response of winter durum wheat (Triticum aestivum L.) and tomato (Lycopersicon esculentum Mill.) crops to climate change, irrigation and nitrogen fertilizer managements in one of most productive areas of Italy (i.e. Capitanata, Puglia). For this analysis, three climatic datasets were used: (1) a single dataset (50?km?×?50?km) provided by the JRC European centre for the period 1975–2005; two datasets from HadCM3 for the IPCC A2 GHG scenario for time slices with +2°C (centred over 2030–2060) and +5°C (centred over 2070–2099), respectively. All three datasets were used to generate synthetic climate series using a weather simulator (model LARS-WG). Adaptation strategies, such as irrigation and N fertilizer managements, have been investigated to either avoid or at least reduce the negative impacts induced by climate change impacts for both crops. Warmer temperatures were primarily shown to accelerate wheat and tomato phenology, thereby resulting in decreased total dry matter accumulation for both tomato and wheat under the +5°C future climate scenario. Under the +2°C scenario, dry matter accumulation and resulting yield were also reduced for tomato, whereas no negative yield effects were observed for winter durum wheat. In general, limiting the global mean temperature change of 2°C, the application of adaptation strategies (irrigation and nitrogen fertilization) showed a positive effect in minimizing the negative impacts of climate change on productivity of tomato cultivated in southern Italy.  相似文献   

9.
Central and Eastern European countries are a hotspot area when analyzing the impacts of climate change on agricultural and environmental sectors. This paper conducts a socio-economic evaluation of climate risks on crop production in Hungary, using panel data models. The region has a special location in the Carpathian basin, where the spatial distribution of precipitation varies highly from humid conditions in the western part to semiarid conditions in eastern Hungary. Under current conditions, crop systems are mainly rainfed, and water licences are massively underexploited. However, water stress projected by climate change scenarios could completely change this situation. In the near future (2021–2050), most of the crops examined could have better climatic conditions, while at the end of the century (2071–2100), lower yields are expected. Adaptation strategies must be based on an integrated evaluation which links economic and climatic aspects, and since the results show important differences in the case of individual systems, it is clear that the response has to be crop and region specific.  相似文献   

10.
Projection of hazard changes in climate extremes is critical to assessing the potential impacts of climate change on human and natural systems. Using simulations of providing regional climates for impacts studies, five indicators (rainstorm days, maximum 3-day precipitation, elevation, gradient and distance from river or lake) were selected to project the spatial patterns of flood hazard over Yangtze River Basin for the baseline period (1961– 1990) and future (2011–2100) under SRES B2 scenario. The results ...  相似文献   

11.
The assessment of regional climate change impacts combined with the sensitivity of landscape functions by predictive modelling of hazardous landscape processes is a new fundamental field of research. In particular, this study investigates the effects of changing weather extremes on meso-regional-scale landscape vulnerability. Climatic-exposure parameter analysis was performed on a predicted climate change scenario. The exposure to climate change was analysed on the basis of the original data of the meso-scale IPCC A1B climate scenario from the REMO and ALADIN regional models for the periods of 2021–2050 and 2071–2100, and the regional types of climate change impacts were calculated by using cluster analysis. Selected climate exposure parameters of the REMO and ALADIN models were analysed, in particular, for extreme events (days with precipitation greater than 30 mm, heat waves, dry periods, wet periods) and for daily temperature and precipitation. The landscape functions impacted by climate change are proxies for the main recent and future problematic processes in Hungary. Soil erosion caused by water, drought, soil erosion caused by wind, mass movement and flash floods were analysed for the time periods of 1961–1990, 2021–2050 and 2071–2100. Based on the sensitivity thresholds for the impact assessments, the landscape functional sensitivity indicators were interpreted, and an integrative summary of the five indicators was made, differentiating the regions facing only a few or multiple sensitivities. In Central Hungary, the increasing exposure and sensitivity to droughts will be a serious problem when following the REMO scenario. In several regions, most indicators will change the sensitivity threshold from a tolerable risk to an increased or very high risk.  相似文献   

12.
Both climate extremes and agricultural disasters have been reported to increase in recent decades; however, so far, we have little idea on the characteristics of agricultural disasters changes, as well as their meteorological and agronomic causes. Here, using the observed records on rice disasters at agro-meteorological stations across China and the meteorological indexes, we investigated the temporal and spatial changes of major rice disasters occurrence frequency and their relationships to climate change, climate extremes and agronomic practices from 1991 to 2009. We presented the temporal and spatial changes in occurrence frequency of major rice disasters, including droughts, floods, heat stress, chilling damage, insects and diseases, during the warmer period of 2000–2009, in comparison with the period of 1991–2000, based on both the observed records and the meteorological indexes. The results showed that changes in rice disasters could be largely ascribed to changes in climate extremes in recent decades. Floods, insects and diseases occurred more frequently at earlier growth stages; in contrast, chilling damage occurred more frequently at later growth stages in southwestern China during the period of 2000–2009, in comparison with the period of 1991–2000. Our findings highlighted the options should be taken timely and scientifically to reduce the disasters and to cope with ongoing climate change, based on the characteristics of agricultural disasters changes in recent decades.  相似文献   

13.
气候变化知识的不断深化和积累是全球气候治理的基础。政府间气候变化专门委员会(IPCC)邀请全球有代表性的科学家,通过分析评估国际上正式发表的文献,提供关于全球气候变化科学进展的最新认识结论。本文基于文献计量学,通过统计中国在气候变化十大重要领域的科技成果产出量和影响力、中国政府和科学家对IPCC评估报告的参与以及中国大陆引文在IPCC第五次评估报告中的贡献,分析了中国对全球气候变化知识的贡献与局限。结果表明:近十年来,中国在气候变化大多数领域的科技成果产出量已居全球第二或第三位,但在海洋与气候变化、适应气候变化和全球气候治理领域的国际论文量明显落后;与美国和英国相比,中国气候变化科技成果的各类影响力指标明显偏低;中国对IPCC评估报告的参与度和影响力在不断提升,中国积极组织相关机构和专家参与IPCC评估工作,对全球气候治理起到了重要的科学支撑作用;但从IPCC第五次评估报告中国大陆引文的角度看,中国贡献仍整体偏弱,中国大陆引文的贡献呈领域分布不均衡,优势领域少,成果影响面窄的特点。与科学基础领域相比,中国在影响和适应、减缓和国际合作领域的科学贡献更弱,对全球视角关注不够,但中国大陆引文总体的国际科学合作活跃度较高。后巴黎时代,中国需要更加面向国家需求、气候公约和《巴黎协定》目标以及国际气候变化科技前沿,加强全球视野和原始创新,突出中国优势和特色,使气候变化的中国研究成果更多支撑全球气候治理进程的推进。  相似文献   

14.
The Welsh Government is committed to reduce greenhouse gas (GHG) emissions from agricultural systems and combat the effects of future climate change. In this study, the ECOSSE model was applied spatially to estimate GHG and soil organic carbon (SOC) fluxes from three major land uses (grass, arable and forest) in Wales. The aims of the simulations were: (1) to estimate the annual net GHG balance for Wales; (2) to investigate the efficiency of the reduced nitrogen (N) fertilizer goal of the sustainable land management scheme (Glastir), through which the Welsh Government offers financial support to farmers and land managers on GHG flux reduction; and (3) to investigate the effects of future climate change on the emissions of GHG and plant net primary production (NPP). Three climate scenarios were studied: baseline (1961–1990) and low and high emission climate scenarios (2015–2050). Results reveal that grassland and cropland are the major nitrous oxide (N2O) emitters and consequently emit more GHG to the atmosphere than forests. The overall average simulated annual net GHG balance for Wales under baseline climate (1961–1990) is equivalent to 0.2 t CO2e ha?1 y?1 which gives an estimate of total annual net flux for Wales of 0.34 Mt CO2e y?1. Reducing N fertilizer by 20 and 40 % could reduce annual net GHG fluxes by 7 and 25 %, respectively. If the current N fertilizer application rate continues, predicted climate change by the year 2050 would not significantly affect GHG emissions or NPP from soils in Wales.  相似文献   

15.
将干旱作为定性事件,以长江中下游地区为研究对象,基于生态系统过程模型的动态模拟,根据IPCC有关脆弱性的概念,以生态系统功能特征量偏离多年平均状况的程度及其变化趋势分别定义生态系统对降水变化的敏感性和适应性,在生态系统的尺度上评估其对干旱的脆弱性。结果表明,长江中下游区域生态系统对降水脆弱性的空间分布有较为明显的区域差异。轻度脆弱及以下的生态系统占区域总面积的65%,主要分布在区域的中南部。重度脆弱和高度脆弱区域约占20%,主要分布在长江中下游的西北部。区域内生态系统对降水变率的平均脆弱度为轻度脆弱。干旱会显著增加研究区生态系统的脆弱性,具体表现为干旱导致原本不脆弱的生态系统脆弱度增加,而对脆弱度较高的生态系统的脆弱性影响不大。不同类型生态系统对干旱的响应稍有差异,干旱导致森林生态系统和农业生态系统的脆弱性均有所增加,但农业生态系统对干旱的脆弱性更高于森林生态系统。在研究区内,干旱对生态系统的影响会持续一段时间,但在干旱过后一年,不论是农业生态系统还是森林生态系统的脆弱性均有进一步上升,但相对多年平均水平没有显著差异  相似文献   

16.
How the past human society responded to climatic disasters could provide better understanding on the nature of climate–human–ecosystem interactions and the knowledge of the vulnerability for the society in the context of changing climate. In this paper, the North China Plain in the Qing dynasty (1644–1911) is selected as a typical regional social-ecological system; with historical information kept in official documents, social responsive behavior and measures to flood/drought (e.g., reclamation, disaster relief, migration, revolt) are quantitatively described with proxy indicator time-series. It is found that the dominant responsive strategy altered significantly in different stages: (1) stage of cropland expansion (1644–1720); (2) stage of governmental disaster relief (1721–1780); (3) stage of increasing climate refugees (1781–1860); (4) stage of revolt and emigration (1861–1911). The multi-stage evolution of social response was impacted by various natural and social factors: (1) regional population–food balance and governmental finance were the most important limiting factors; (2) the interaction between the governmental policy and refugees’ behavior in disasters affected the social consequences to a certain extent; (3) decadal-to-multi-decadal climate change would also impact the social response measures, even directly trigger the shift of dominant responsive strategy. This study would be helpful for deeper understanding of social resilience and better responding to climate change and extreme events in the present and future.  相似文献   

17.
According to IPCC reports, the Mediterranean basin and particularly the North African area are amongst the most vulnerable regions to climate change. However, the information concerning the North African zone is very limited, and studies on climate change have never been conducted in Algeria up to now. This paper aims at bridging this information gap and initiates a first research on the impact of climate change on durum wheat cropping, the most strategic commodity in the food system and in the national economy of Algeria. Climate projections for the distant future (2071–2100), obtained from the ARPEGE-Climate model of Météo-France run under the medium A1B SRES scenario, are introduced into a simple agrometeorological crop model previously validated with field data. Two options for the sowing date are assessed: a dynamical date, chosen within the traditional sowing window by means of a rainfall criterion, or a prescribed date with supplemental irrigation on the same day. Crop development is modelled using thermal time, and maximum yield is determined from the accumulation of solar radiation. A water stress index is inferred from a daily water balance model, and actual yield is estimated from potential yield corrected by the water stress index. The model also takes into account the occurrence of dry periods during the growing season, which can induce partial or total failure of the crop cycle. Two stations, representative of two of the three agroclimatic areas where durum wheat is grown, were chosen: Algiers in the central northern region and Bordj Bou Arreridj in the eastern high plains. Climate change is not similar for both areas, but a tendency towards aridity is clear especially in spring. Future temperature and potential evapotranspiration increase in both regions with a maximum in spring and summer. In Algiers, rainfall will decrease throughout the year and mainly in spring and summer. Conversely, summer precipitation in Bordj Bou Arreridj will increase significantly. In both regions, the autumn rains will increase in the future climate, the possibilities of early sowing will be improved, crop cycle will be reduced, and harvest will take place earlier. In Algiers, yields tend to decrease in the future climate, whereas in Bordj Bou Arreridj, a dynamical (earlier) sowing will tend to keep yields at their current level.  相似文献   

18.
Climate change is expected to cause shifts in species distributions worldwide, threatening their viability due to range reductions and altering their representation in protected areas. Biodiversity hotspots might be particularly vulnerable to climate change because they hold large numbers of species with small ranges which could contract even further as species track their optimal habitat. In this study, we assessed the extent to which climate change could cause distribution shifts in threatened and range-restricted birds in Colombia, a megadiverse region that includes the Tropical Andes and Tumbes-Choco-Magdalena hotspots. To evaluate how climate change might influence species in this region, we developed species distribution models using MAXENT. Species are projected to lose on average between 33 and 43 % of their total range under future climate, and up to 18 species may lose their climatically suitable range completely. Species whose suitable climate is projected to disappear occur in mountainous regions, particularly isolated ranges such as the Sierra Nevada de Santa Marta. Depending on the representation target considered, between 46 and 96 % of the species evaluated may be adequately represented in protected areas. In the future, the fraction of species potentially adequately represented is projected to decline to 30–95 %. Additional protected areas may help to retain representativeness of protected areas, but monitoring of species projected to have the largest potential declines in range size will be necessary to assess the need of implementing active management strategies to counteract the effects of climate change.  相似文献   

19.
Mediterranean viticulture could suffer from hotter and drier growing seasons over the coming decades. The present article focuses on the wine-producing area Côtes-du-Roussillon-Villages near Perpignan, in southern France. We used observational daily data (1925–2010) from Perpignan weather station and daily outputs (2001–2060) of the regional climate model ARPEGE-RETIC-V4 from Météo-France with scenarios A2, A1B and B1, to assess the exposure of the regional wine system to changes in temperature and precipitation, both in the recent past and the coming decades (1925–2060). Temperatures during the growing season and summer temperature extremes have been increasing continuously since the mid-1980s and are projected to increase faster from the mid-2040s. Precipitation is highly variable and very low in summer, and projections suggest greater uncertainty, and more extreme drought events could be expected. The analysis of climate data was complemented by thirty-two in-depth interviews with local actors of the wine industry to assess the impacts of climate change on their activities and potential adaptive options. Producers reported negative impacts of recent changes in climate in conjunction with a difficult economic situation. Analyses of historical, social and economic backgrounds are important to fully conceptualize the nature and extent of climate change risks in the region. This case study provides important insights into the roles of non-climatic factors in the generation of vulnerability for Mediterranean agricultural systems facing rapid climate change.  相似文献   

20.
近40年气候变化对江西自然植被净第一性生产力的影响   总被引:1,自引:0,他引:1  
根据全球气候变化的趋势,采用植被净第一性生产力模型,对江西省南昌、吉安、赣州3地近40年气候变化对自然植被净第一性生产力(NPP)的影响进行研究,并模拟了3地自然植被NPP在未来气候3种水热条件下的变化趋势。此外还以1980年江西全省自然植被NPP为例分析了自然植被NPP的区域分布特征,结果表明:3地近40年自然植被NPP平均值分别为1319 、1311和1320 t/hm2〖DK1〗·a,总体上都呈上升的趋势。 当年均气温增加2℃且降水量增加20%时,NPP值增加了149%~1585%;随着年均气温增加2℃且降水量减少20%,NPP减少了477%~516%;当年均气温增加2℃且降水量不变时,NPP增加了530%~569%。江西自然植被NPP区域分布特征由东、南、西3个方向向北呈放射状分布,随着地形由高山向丘陵、平原的方向变化而减小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号