首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
While the techniques and technologies associated with contaminated sediment remediation are relatively mature, there are several issues associated with these practices that make them unattractive. The inability of currently used mechanical mixing implements to place amendments in aqueous environments and their intrusive behavior toward benthic communities are just two examples of a necessity for an improved delivery method. Waterjets may be a viable option for placement of particulate remediation amendments, such as activated carbon and granular iron, at depth. A custom waterjet nozzle and injection system has been fabricated by the authors to examine this delivery concept. The developed injection system's performance was tested by characterizing the waterjet‐delivered amendment (activated carbon and granular iron) distributions in a surrogate sediment. The delivered amendment distributions followed similar patterns for a range of injection times and a variety of amendments. The injection depths, however, were dependent upon the type of amendment being injected. These findings have led to a better understanding of what occurs during an amendment injection, which can be used for a more controlled placement of remediation amendments using this technique in the future. The laboratory results indicate that the subject waterjet system may have the potential for field‐scale applications, especially for granular iron delivery, as the authors were able to place between 60 and 70 wt percent into a surrogate sediment bed along the path of injection. © 2011 Wiley Periodicals, Inc.  相似文献   

2.
Adding activated carbon to sediments has been shown to be an effective means of reducing the bioavailability of certain contaminants. The current state of the practice is to mechanically mix activated carbon to a target concentration of 3 percent at depths of approximately 30 cm using a rotovator or similar construction equipment. Waterjets have been used to cut hard material using a mixture of water and an abrasive. If activated carbon is substituted for the abrasive, waterjets have the potential to use surface injection as a replacement for mechanical mixing during sediment remediation. A perceived benefit of waterjet‐based sediment remediation is that there may be a reduced potential for benthic organism mortality related to amendment delivery. A set of waterjet parameters were identified that have the potential to achieve amendment placement goals, and a series of waterjet tests were conducted to evaluate the potential impact on the benthic community. The tests included mortality testing using a swimming macroinvertebrate and a burrowing invertebrate, benthic artifacts such as shells, and craft foam as a surrogate for living organisms. The results indicated that the immediate survivability was typically greater than 50 percent, and that empirical relationships between two variables (waterjet nozzle diameter and the water column height between the nozzle and the target) and the depth of cut in the foam could be established. Data are not available in the literature for direct comparison of organism survivability immediately after mechanical mixing, but the results of this study provide motivation for the further evaluation of waterjets on the basis of the low observed mortality rates. Future waterjet work may address field‐scale characterization of mixing effectiveness, resuspension potential, technical feasibility, and cost. © 2011 Wiley Periodicals, Inc.  相似文献   

3.
Recovering dense nonaqueous‐phase liquid (DNAPL) remains one of the most difficult problems facing the remediation industry. Still, the most common method of recovering DNAPL is to physically remove the contaminants using common technologies such as total fluids recovery pumps, vacuum systems, and “pump‐and‐treat.” Increased DNAPL removal can be attained using surfactants to mobilize and/or solubilize the pollutants. However, very little is understood of the methods developed by petroleum engineers beginning in the 1960s to overcome by‐passed, low‐permeability zones in heterogeneous oil reservoirs. By injecting or causing the formation of viscous fluids in the subsurface, petroleum engineers caused increased in‐situ pressures that forced fluid flow into low permeability units as well as the higher permeability thief zones. Polymer flooding involves injecting a viscous aqueous polymer solution into the contaminated aquifer. Foam flooding involves injecting surfactant to decontaminate the high‐permeability zones and then periodic pulses of air to cause a temporary viscous foam to form in the high‐permeable zones after all DNAPL is removed. Later surfactant pulses are directed by the foam into unswept low‐permeable units. These methods have been applied to DNAPL removal using surfactants but they can also be applied to the injection of bio‐amendments into low‐permeability zones still requiring continued remediation. Here we discuss the principles of mobility control as practiced in an alluvial aquifer contaminated with chlorinated solvent and coal tar DNAPLs as well as some field results. © 2003 Wiley Periodicals, Inc.  相似文献   

4.
In March 2011, the Interstate Technology & Regulatory Council (ITRC) Contaminated Sediments Team published a web‐based Technical and Regulatory Guidance on the concepts, processes, and uses of bioavailability in a risk decision‐making framework at a contaminated sediment site. Bioavailability processes, as defined by the National Research Council (NRC; 2003), are the “individual physical, chemical, and biological interactions that determine the exposure of plants and animals to chemicals associated with soils and sediments.” Bioavailability assessment tools aid in the assessment of human and ecological exposure and development of site‐specific remedial objectives. The guidance provides information on the processes that may affect contaminant bioavailability within sediments to understand exposure within ecological and human receptors; supports the development of conceptual site models (CSMs); and describes available tools (biological, chemical, and physical) and models that are used to measure and characterize the fate and transport and potential bioavailability of contaminants. Case studies, referenced throughout the document, demonstrate the practical application of bioavailability measures. The guidance will describe the proper application of traditional and emerging sediment remediation technologies to support the selection of a remedy that is protective of human health and the environment. © 2013 Wiley Periodicals, Inc.  相似文献   

5.
Active capping involves the use of capping materials that react with sediment contaminants to reduce their toxicity or bioavailability. Although several amendments have been proposed for use in active capping systems, little is known about their long‐term ability to sequester metals. Recent research has shown that the active amendment apatite has potential application for metals‐contaminated sediments. The focus of this study was to evaluate the effectiveness of apatite in the sequestration of metal contaminants through the use of short‐term laboratory column studies in conjunction with predictive, numerical modeling. A breakthrough column study was conducted using North Carolina apatite as the active amendment. Under saturated conditions, a spike solution containing elemental As, Cd, Co, Se, Pb, Zn, and a nonreactive tracer was injected into the column. A sand column was tested under similar conditions as a control. Effluent water samples were periodically collected from each column for chemical analysis. Relative to the nonreactive tracer, the breakthrough of each metal was substantially delayed by the apatite. Furthermore, breakthrough of each metal was substantially delayed by the apatite compared to the sand column. Finally, a simple 1‐D, numerical model was created to qualitatively predict the long‐term performance of apatite based on the findings from the column study. The results of the modeling showed that apatite could delay the breakthrough of some metals for hundreds of years under typical groundwater flow velocities. © 2012 Wiley Periodicals, Inc.  相似文献   

6.
This study considered alternative configurations of passive wells equipped with filter cartridges for removing contaminated groundwater. The wells fully penetrated a simulated unconfined aquifer. Both homogeneous and heterogeneous hydraulic conductivity distributions were considered. An initial configuration comprised wells along the downgradient perimeter of a contaminant plume, spaced 0.5 m in the direction transverse to regional groundwater flow. Additional wells near the downgradient tip of the plume prevented off‐site contamination. Alternative configurations had the same number of wells, but some included wells along higher (interior) concentration contours to facilitate quicker removal of the contaminant plume. Results suggest that downgradient configurations generally outperform alternatives, although repositioning a few outer wells near the contaminant source may be effective in some cases. © 2009 Wiley Periodicals, Inc.  相似文献   

7.
This study evaluated pilot‐scale active caps composed of apatite, organoclay, biopolymers, and sand for the remediation of metal‐contaminated sediments. The active caps were constructed in Steel Creek, at the Savannah River Site near Aiken, South Carolina. Monitoring was conducted for 12 months. Effectiveness of the caps was based on an evaluation of contaminant bioavailability, resistance to erosion, and impacts on benthic organisms. Active caps lowered metal bioavailability in the sediment during the one‐year test period. Biopolymers reduced sediment suspension during cap construction, increased the pool of carbon, and lowered the release of metals. This field validation showed that active caps can effectively treat contaminants by changing their speciation, and that caps can be constructed to include more than one type of amendment to achieve multiple goals. © 2012 Wiley Periodicals, Inc.  相似文献   

8.
This article summarizes a study conducted by the U.S. Army Engineer Waterways Experiment Station to develop technical information and to evaluate the engineering feasibility of restoration alternatives for DDT-and PCB-contaminated sediments on the Palos Verdes shelf and slope near Los Angeles, California. The study evaluated the nonremoval alternative of in-place capping of contaminated sediments on the shelf and slope; removal of contaminated sediments using conventional and specialized dredging equipment and deep ocean mining equipment; treatment of contaminated sediments; and disposal of contaminated sediments in confined (diked) disposal facilities (CDFs), contained aquatic disposal (CAD) sites, upland landfills, and deep ocean basin sites. Cost estimates of the various alternatives were also prepared. This article concludes that restoration of the contaminated sediments is technically feasible. Sediments on the shelf and slope can be removed using available dredging technologies for deep water environments. In-place capping, CAD, and CDF alternatives are technically feasible. The deep ocean basin disposal alternative is not feasible from the technical or regulatory standpoint. The treatment alternative is not feasible from the implementability and economic standpoint.  相似文献   

9.
A new use for biofilm barriers was developed and successfully applied to treat nitrate‐contaminated groundwater down to drinking water standards. The barrier was created by stimulating indigenous bacteria with injections of molasses as the carbon donor and a combination of yeast extract and trimetaphosphate as nutrients. This injection of amendments results in bacterial growth in the aquifer, which attaches to the sand grains to create a reactive semipermeable biofilm. The biofilm barrier presented in this article reduced the migration of contaminants and provided an active zone for remediation. The cylindrical biobarrier was constructed using eight wells on the perimeter forming a 60‐foot‐diameter reactive biodenitrification region. Another well at the center was installed to continuously extract the treated water. The intent was to produce a continuous source of nitrate‐free water. The system operated for over one year, and during this period, the biobarrier was revived multiple times by reinjecting molasses in the perimeter wells. Nitrate concentrations of treated water decreased from 275 mg/L (as nitrogen) to < 1 mg/L. © 2005 Wiley Periodicals, Inc.  相似文献   

10.
A new in situ remediation concept termed a Horizontal Reactive Media Treatment Well (HRX Well®) is presented that utilizes a horizontal well filled with reactive media to passively treat contaminated groundwater in situ. The approach involves the use of a large‐diameter directionally drilled horizontal well filled with solid reactive media installed parallel to the direction of groundwater flow. The engineered contrast in hydraulic conductivity between the high in‐well reactive media and the ambient aquifer hydraulic conductivity results in the passive capture, treatment, and discharge back to the aquifer of proportionally large volumes of groundwater. Capture and treatment widths of up to tens of feet can be achieved for many aquifer settings, and reductions in downgradient concentrations and contaminant mass flux are nearly immediate. Many different types of solid‐phase reactive treatment media are already available (zero valent iron, granular activated carbon, biodegradable particulate organic matter, slow‐release oxidants, ion exchange resins, zeolite, apatite, etc.). Therefore, this concept could be used to address a wide range of contaminants. Laboratory and pilot‐scale test results and numerical flow and transport model simulations are presented that validate the concept. The HRX Well can access contaminants not accessible by conventional vertical drilling and requires no aboveground treatment or footprint and requires limited ongoing maintenance. A focused feasibility evaluation and alternatives analysis highlights the potential cost and sustainability advantages of the HRX Well compared to groundwater extraction and treatment systems or funnel and gate permeable reactive barrier technologies for long‐term plume treatment. This paper also presents considerations for design and implementation for a planned upcoming field installation.  相似文献   

11.
Point Pelee National Park (PPNP) is highly contaminated with dichlorodiphenyltrichloroethane (DDT) and dieldrin due to the historical use of these two persistent organochlorine pesticides. Zero‐valent iron (ZVI) technology with and without amendments has been successfully used in the past to promote organochlorine pesticides degradation in several locations in North America and Europe. In this study, the use of two commercially available ZVI products, DARAMEND® and EHC®, to promote DDT and dieldrin degradation in PPNP's soil and groundwater were investigated. DARAMEND® was applied to PPNP's soil in a laboratory experiment and in an in situ pilot‐scale plot. In both cases, DARAMEND® did not significantly increase DDT or dieldrin degradation in treated soils. The effectiveness of EHC® was tested in a laboratory experiment that simulated the park's groundwater environment using PPNP's pesticide contaminated soil. The result was consistent with the one reported for DARAMEND®, in that there was no significant increase in DDT or dieldrin degradation in any of the samples treated with EHC®. These results demonstrate that both of these ZVI commercially available products are not suitable for in situ remediation at PPNP.  ©2017 Wiley Periodicals, Inc.  相似文献   

12.
The North Fork of Clear Creek (NFCC), Colorado, is an acid‐mine‐drainage‐impacted stream typical of many mountain surface waters affected by historic metal mining in the western United States. The stream is devoid of fish primarily because of high metal concentrations in the water (e.g., copper and zinc) and has large amounts of settled iron oxyhydroxide solids that coat the streambed. The NFCC is part of the Central City/Clear Creek Superfund site, and remediation plans are being implemented that include treatment of three of the main point‐source inputs and cleanup of some tailings and waste rock piles. This article examines dissolved (0.45‐μm filterable) concentrations of cadmium, copper, and zinc following several potential remediation scenarios, simulated using a reactive transport model (WASP4/META4). Results from modeling indicate that for cadmium, remediation of the primary point‐source adit discharges should be sufficient to achieve acute and chronic water‐quality standards under both high‐ and low‐flow conditions. To achieve standards for copper and zinc, however, the modeling scenarios suggest that it may be necessary to treat or remove contaminated streambed sediments in downstream reaches, as well as identify and treat nonpoint sources of metals. Recommendations for improvements to the model for metal transport in acid‐mine drainage impacted streams are made. These recommendations are being implemented by the U.S. Environmental Protection Agency. © 2009 Wiley Periodicals, Inc.  相似文献   

13.
The use of bioremediation technologies to clean up contaminated soil and groundwater is increasingly winning favor over more costly and often ineffective mechanical approaches. One new type of bioremediation process, known as TreeMediationTM, uses trees and other vegetation to remediate soil by acting as a natural pump to extract and remediate contaminated groundwater in aquifers less than 30 feet deep. This article describes this innovative treatment method, shows its advantages over traditional pump and-treat techniques, and explains how TreeMediation is being used to extract nitrate and ammonium contamination from an aquifer in New Jersey.  相似文献   

14.
This study evaluated chemically active amendments used to construct active caps for remediating contaminated sediments. Three experiments assessed the effects of apatite, organoclay, zeolite, and biopolymers (chitosan and xanthan) on metal mobility, retention, and speciation. The first showed that the amendments individually and in mixtures (2 percent dry weight) reduced the concentrations of Cr, Co, Ni, and Pb in water extracts from reduced sediment. The second experiment, which used sequential extraction procedures to evaluate the effects of the amendments on metal speciation, showed that the amendments reduced the potentially mobile fractions of Pb, Zn, Ni, Cr, and Cd that are likely to be bioavailable. Last, column studies showed that active caps composed of the amendments prevented the diffusive transport of metals from contaminated sediment over six months. In addition, there was a “zone of influence” beneath the caps in which water extractable concentrations of metals declined substantially compared with untreated sediment. © 2014 Wiley Periodicals, Inc.  相似文献   

15.
A laboratory study was conducted to determine the feasibility of biotreatment of liquid Sulfinol waste stored at a gas treatment facility. Sulfinol is used to scrub impurities from gas generated from both traditional gas extraction and that from hydraulic fracturing processes. Chemical characterization and microbiological assessment showed that cultures of Sulfinol‐degrading microorganisms could be enriched from Sulfinol‐contaminated soil containing saturated concentrations of Sulfinol: a mixture of di‐isopropanolamine (DiPA), sulfolane, and oxazolidone. Based on this initial finding from the enrichment culture study, batch reactors were incubated with inoculants from enrichment cultures containing known numbers of presumptive Sulfinol‐degrading microorganisms. The microbial analyses of liquors from batch reactors showed microbial inhibition and/or loss of viability due to Sulfinol toxicity, even at the lowest Sufinol waste concentration used (5 percent of the original waste). The changes in concentrations of the chemicals in the batch reactor trials were a result of chemical rather than biodegradation processes. Further research is recommended to develop repeatable strategies for biodegrading the constituents of Sulfinol under field conditions.  相似文献   

16.
Contaminated groundwater and surface water have posed a great challenge in restoring wood preserving sites to beneficial use. Often contaminated groundwater plumes extend far beyond the legal property limits, adversely impacting drinking water supplies and crop lands. To contain, treat, and/or remediate these valuable resources is an important part of restoring these impacted sites. Various options are available for remediating the groundwater and other affected media at these sites. Frequently, pump and treat technologies have been used that can provide well‐head treatment at installed extraction wells. This approach has shown to be costly and excessively time consuming. Some of the technologies used for pump and treat are granular activated carbon (GAC), biotreatment, and chemical oxidation. Other approaches use in‐situ treatment applications that include enhanced bioremediation, monitored natural attenuation (biotic and abiotic), and chemical reduction/fixation. Ultimately, it may only be feasible, economically or practicably, to use hydraulic containment systems. Depending upon site‐specific conditions, these treatment approaches can be used in various combinations to offer the best remedial action. A comparison of water treatment system costs extrapolated from the treatability studies performed on contaminated groundwater from the McCormick/Baxter Superfund site in Stockton, California, yielded operation and maintenance costs of $1.19/1,000 gal. for carbon treatment and $7.53/1,000 gal. for ultraviolet (UV) peroxidation, respectively.  相似文献   

17.
Laboratory column experiments run for up to 13 days compared air sparging of groundwater contaminated by dissolved petroleum hydrocarbons in sterile and non-sterile aquifer sediments as well as uncontaminated sediments and groundwater. Loss of dissolved BTEX compounds in the contaminated columns was very rapid, occurring through volatilisation. The majority of the dissolved total organic carbon (TOC) persisted for much longer periods however. A direct comparison between losses from sterile and non-sterile columns suggested a negligible contribution of biodegradation to the removal of TOC. This was difficult to confirm through examination of O2 utilisation because oxidation of a small amount of reduced sulphur in the aquifer materials was the dominant sink for O2. Despite this, it was possible to conclude that less than 22% of the removal of TOC was through biodegradation during the first three days of air sparging.  相似文献   

18.
Gentle remediation options (GRO) are risk management strategies/technologies that result in a net gain (or at least no gross reduction) in soil function as well as risk management. They encompass a number of technologies, including the use of plant (phyto‐), fungi (myco‐), and/or bacteria‐based methods, with or without chemical soil additives or amendments, for reducing contaminant transfer to local receptors by in situ stabilization, or extraction, transformation, or degradation of contaminants. Despite offering strong benefits in terms of risk management, deployment costs, and sustainability for a range of site problems, the application of GRO as practical on‐site remedial solutions is still in its relative infancy, particularly for metal(loid)‐contaminated sites. A key barrier to wider adoption of GRO relates to general uncertainties and lack of stakeholder confidence in (and indeed knowledge of) the feasibility or reliability of GRO as practical risk management solutions. The GREENLAND project has therefore developed a simple and transparent decision support framework for promoting the appropriate use of gentle remediation options and encouraging participation of stakeholders, supplemented by a set of specific design aids for use when GRO appear to be a viable option. The framework is presented as a three phased model or Decision Support Tool (DST), in the form of a Microsoft Excel‐based workbook, designed to inform decision‐making and options appraisal during the selection of remedial approaches for contaminated sites. The DST acts as a simple decision support and stakeholder engagement tool for the application of GRO, providing a context for GRO application (particularly where soft end‐use of remediated land is envisaged), quick reference tables (including an economic cost calculator), and supporting information and technical guidance drawing on practical examples of effective GRO application at trace metal(loid) contaminated sites across Europe. This article introduces the decision support framework. ©2015 Wiley Periodicals, Inc.  相似文献   

19.
Mechanical blending of contaminated soil with amendments has recently reemerged as an important treatment technology. From its original application using large‐diameter augers in the early 1990s to the current use of rotary drum blenders, soil blending is being used as an alternative to other remediation technologies like amendment injection and soil vapor and groundwater extraction. Shallow (approximately 10 m below ground surface [bgs] or less) soil blending also offers an alternative to excavation and disposal. Soil blending has been used to remediate a site with various contaminants including, but not limited to, chlorinated solvents, petroleum, and metals. The types of soils susceptible to soil blending vary from sands and gravels to silts and clays to fractured rock and combinations of all of these. The types of amendments blended include oxidants, reducing agents, biological enhancements, and stabilizing amendments. Soil blending systems deliver the power to the mixing head to adequately mix the soil and amendment to enhance remediation effectiveness. Since long‐term contamination is often a result of heterogeneously distributed residual contaminant in localized source zones that are difficult to access, the typical aim of soil blending is to homogenize the soil while effectively distributing amendment to these zones made accessible by blending. By effectively homogenizing the soil, however, soil blending will increase the void ratio and disrupt the shear strength and bearing capacity of the soil so an important component of a soil blending technology is proper recovery of these geotechnical parameters. This can be achieved by using well‐known soil improvement techniques such as amending all or a portion of the blended area with Portland cement or lime. Several case studies of soil blending treatments of different contaminants and amendments in various soil types are provided.  相似文献   

20.
Numerical models were used to simulate alternative funnel‐and‐gate groundwater remediation structures near property corners in hypothetical homogeneous and heterogeneous unconfined aquifers. Each structure comprised a highly permeable central gate (hydraulic conductivity = 25 m/d) and soil‐bentonite slurry walls (hydraulic conductivity = 0.00009 m/d). Gates were perpendicular to regional groundwater flow and approximately 5 m from a contaminant plume's leading tip. Funnel segments collinear to the central gate reached property boundaries; additional funnel segments followed property boundaries in the most hydraulically upgradient direction. Structures were 1 m thick and anchored into the base of the aquifer. Two structures were simulated for each aquifer: one with a 3.0‐m‐long central gate and funnels on either side; and a second with a 1.5‐m‐long central gate, funnels on either side, and 0.75‐m‐long end gates. Funnels were lengthened in successive simulations, until a structure contained a contaminant plume. Results suggest that, for the same total gate length, one‐gate structures may facilitate more rapid remediation, up to 44 percent less time in trials conducted in this study, than multiple‐gate structures constructed near property corners. However, in order to effectively contain a plume, one‐gate structures were up to 46 percent larger than multiple‐gate structures. © 2011 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号