首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 406 毫秒
1.
废水反硝化生物反应器中喹啉降解细菌的分离与特性   总被引:1,自引:0,他引:1  
杂环化合物喹啉是焦化等工业废水中的一种难降解化合物.有关喹啉微生物降解的研究还很有限,分离筛选多样的喹啉降解细菌,对认识喹啉的降解机制和强化废水中喹啉的降解具有重要意义.本研究通过富集和多种分离条件的培养,从焦化废水活性污泥及唪啉驯化的生物膜样品中分离获得56株与喹啉降解相关的菌株,以16S rDNA双酶切方法进行ARDRA分型,将这些菌株分为12个OTU.选取部分代表菌株进行16S rDNA测序分析,表明分离所获得的菌株主要是Ochrobactrum、Bacillus、Pseudomonas和Rhodococcus属的微生物.通过对部分菌株测定其喹啉降解能力.发现大部分菌株都能以喹啉为唯一碳源进行生长并高效降解喹啉,极少数菌株不能单独降解喹啉.降解喹啉的Ochrobactrum属菌株还未见报道.  相似文献   

2.
从活性污泥中分离得到一株能以孔雀石绿为唯一碳源和能源生长的细菌M6,根据其形态、生理生化特性以及16S rRNA基因序列相似性分析结果,将其初步鉴定为节杆菌属(Arthrobacter sp.).该菌株在12h内对20mg/L的孔雀石绿降解率高于80%;降解孔雀石绿的最适pH为7.0,最适温度为30℃,降解速率与初始接种量呈正相关.研究结果对于孔雀石绿的生物降解以及含孔雀石绿废水的处理具有重要意义.图6参20  相似文献   

3.
氯代酰胺类除草剂降解菌的分离及降解性能   总被引:3,自引:0,他引:3  
从生产乙草胺的农药厂废水生物处理池活性污泥中分离到一株氯代酰胺类除草剂降解细菌,命名为Y3B-1.根据表型特征、生理生化特性和16S rDNA序列系统发育分析,将其鉴定为副球菌属(Paracoccus sp.).研究了菌株Y3B-1在不同条件下对多种氯代酰胺类除草剂的降解性能.结果表明:菌株Y3B-1能以乙草胺为碳源生长,并能降解乙草胺、丁草胺和丙草胺,3 d对这3种氯代酰胺类除草剂的降解率分别达到86.7%、65.5%和69.1%,不能降解异丙甲草胺.该菌降解乙草胺的最适温度为30℃,最适pH为7.0,对乙草胺的降解效果与接种量成正相关,对较低浓度的乙草胺有很好的降解效果,过高的起始浓度抑制其对乙草胺的降解,外加营养如酵母膏和土壤悬液则显著促进其对乙草胺的降解.图7参23  相似文献   

4.
从实验室定向驯化的活性污泥中分离筛选出一株具有异养硝化-好氧反硝化功能的菌株TS-1.通过生理生化及16S r RNA基因序列鉴定其为脱氮副球菌,通过单因素和正交实验对其去除NH_4~+-N的最佳条件进行优化,并通过对比进一步探究其在不同氮源条件下对各形态无机氮的去除规律.结果表明该菌株最适碳源为丁二酸钠,最佳C/N为15,最佳接种量为5%,最适温度为30℃、p H为8.0.以初始浓度约为100 mg/L的NH_4~+-N、NO_3~--N和NO_2~--N分别为单一氮源时,菌株TS-1对各形态氮的去除率为97.49%、100%和95.94%;维持各形态氮初始浓度不变,将其两两混合时发现混合氮源中若包含NO_2~--N会使菌株OD_(600)值达到最大值所用时间延长,氮源中含有NH_4~+-N会降低菌株对其他形态氮源的去除率,以及NO_3~--N的添加会使菌株对NH_4~+-N的去除能力降低;3种形态氮源同时存在的条件下,该菌对各氮源去除能力由强至弱为NO_2~--NNH_4~+-NNO_3~--N.本研究从活性污泥中分离筛选出一株具有高效异养硝化-好氧反硝化功能的菌株TS-1,通过研究碳源、氮源、温度、p H得到了最佳降解条件,可为废水短程脱氮提供参考.(图9表4参37)  相似文献   

5.
从某生活污水厂活性污泥中分离到一株能够以苯胺或苯酚为唯一碳源、能源生长的高效降解菌菌株ANP.经形态特征、生理生化及16S rDNA序列分析,将该菌株鉴定为Delftia sp.进一步研究表明,该菌株利用苯胺生长的最适温度和pH分别为30℃和6.0,最适降解浓度为2000mgL-1;利用苯酚生长的最适温度和pH分别为35℃和8.0,最适降解浓度为1500mgL-1.苯胺、苯酚混合培养时该菌株对苯酚的降解过程要滞后于对苯胺的降解过程,但经过42h均能彻底降解.研究了ANP降解苯胺和苯酚的开环途径,苯胺芳环通过间位途径裂解,苯酚芳环则是通过邻位途径裂解.图4表1参18  相似文献   

6.
氯氰菊酯降解菌的筛选鉴定及其降解特性研究   总被引:2,自引:0,他引:2  
从农药厂废水排放口附近的污泥中分离到1株能降解氯氰菊酯的细菌LQ-3.根据其形态、生理生化特征和16S rDNA(GenBank Accession No.FJ222585)序列分析,将该菌株鉴定为Starkeya sp..LQ-3菌株只能以共代谢方式降解氯氰菊酯,在有酵母粉、蛋白胨、葡萄糖等营养物质存在的条件下,5 d内对20 mg·L-1氯氰菊酯的降解率达到72.1%.LQ-3菌株降解氯氰菊酯的最适温度为30 ℃左右,pH值为7~8.LQ-3菌株还能降解功夫菊酯、甲氰菊酯、联苯菊酯和溴氰菊酯.酶的定域试验表明,LQ-3菌株降解氯氰菊酯的酶属于胞外酶.  相似文献   

7.
为去除环境中异菌脲残留,从某农药厂废水处理系统的活性污泥中分离到一株异菌脲降解菌YJN-G,对其进行鉴定和降解特性分析.通过形态特征、生理生化特性和16S rRNA基因序列相似性分析,将其初步鉴定为微杆菌属(Microbacterium sp.).当接种量为5%时,菌株YJN-G在24 h内能够降解100 mg/L的异菌脲.菌株YJN-G降解异菌脲的最适pH是7.0,最适温度为30-37℃.通过对其降解异菌脲产物的质谱分析,确定其代谢产物为N-(3,5-二氯苯基)-2,4-二氧代咪唑烷和异丙基氨基甲酸;菌株能够利用异丙基氨基甲酸生长,但是不能进一步降解N-(3,5-二氯苯基)-2,4-二氧代咪唑烷.菌株降解异菌脲的水解酶属于胞内酶.本研究结果可为异菌脲污染环境的生物修复提供菌株资源和理论依据.  相似文献   

8.
从石油污染土壤中分离到一株菲降解菌2F5-2.根据该菌株生理生化特征和16S rDNA序列相似性分析,将其初步鉴定为鞘氨醇杆菌属(Sphingobium sp.).该菌株在10 h内对100 mg/L的菲的降解率为100%.降解菲的最适温度为30℃,最适pH为7.对降解途径的初步研究显示,该菌株通过水杨酸途径降解菲.克隆了编码芳香烃双加氧酶α亚基的基因phdA,它与菌株Sphingomonas sp.P2、Sphingobium yanoikuyae B1、Sphingomonas sp.ZP1中phdA的同源性分别为97.9%、98%和100%,表明该基因具有保守性.图6参16  相似文献   

9.
从农药厂活性污泥中分离筛选到一株可降解灭幼脲、除虫脲、氟铃脲的菌株,命名为M6.经生理生化特征和16S rRNA基因序列分析,将其鉴定为无色杆菌属(Achromobacter sp.).菌株M6可在48 h内降解91%以上初始浓度为100mg/L的灭幼脲、除虫脲、氟铃脲;且可在不添加其他碳源的情况下,以这3种杀虫剂为唯一碳源生长.选取菌株降解效果较好的灭幼脲为底物,研究其降解特性.菌株M6降解灭幼脲时,对温度、pH值等培养条件适应范围较宽,降解灭幼脲的最适温度为30℃,最适pH为7.0;可耐受400 mg/L的灭幼脲.通过对乙酰氨基酚变色和芳基酰胺酶基因克隆试验,初步确定菌株M6通过水解酰胺键降解灭幼脲、除虫脲、氟铃脲.本研究得到了苯甲酰脲类杀虫剂的高效降解菌,可为其污染修复的开展提供资源和理论基础.  相似文献   

10.
对山西省长治市一家煤焦化厂经活性污泥处理后的废水中的吡啶降解菌进行了分离,并对其中一株吡啶高效降解菌JB27进行了分类鉴定及其吡啶降解特性分析。通过菌落形态观察、菌体显微观察、生理生化测定和16S r RNA基因序列分析对菌株JB27进行菌种分类;利用紫外分光光度计和可见光分光光度计分别测定培养基中吡啶质量浓度和菌液OD_(600)值;分别测定菌株JB27在不同pH、温度、葡萄糖添加量以及初始吡啶质量浓度条件下的菌液OD_(600)值和吡啶降解率。结果表明,菌株JB27为Shinella zoogloeoides;该菌株能利用吡啶作为唯一碳源;菌株JB27在pH 5.0~9.0条件下均能发挥较强的吡啶降解能力,其降解吡啶的最适pH为8.0或9.0;菌株JB27降解吡啶的最适温度为30℃;葡萄糖的添加会降低菌株JB27的吡啶降解速率,不利于该菌株对吡啶的降解;菌株JB27对吡啶的降解程度与菌液OD600值成正比,在吡啶初始浓度分别为500、1 000、1 500、2 500和3 000 mg·L~(-1)的培养基中,可分别在3、4、4、5和6 d内降解掉99%以上的吡啶。菌株JB27的吡啶降解能力高于多数已报道吡啶降解菌,是一株吡啶高效降解菌,可作为煤化工废水中吡啶类化合物的生物降解的优良菌种资源。该研究可为该菌种的进一步应用提供理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号