首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The toxicities of seven chemicals [cadmium (Cd) chloride, potassium dichromate, sodium dodecyl sulfate, potassium chloride (KCl), Triton X-100, zinc (Zn) chloride and copper (Cu) (II) sulfate] were determined using the tropical freshwater cladoceran, Ceriodaphnia rigaudii and the temperate species, Daphnia magna. Data generated was subsequently used to determine the relative sensitivities of both species, using interspecies correlation to compare the 48?h LC50 values for both species. The 48?h LC50 values for C. rigaudii ranged from 0.002?mg?L?1 (potassium dichromate) to 21.1?mg?L?1 (KCl), whereas those for D. magna ranged from 0.3?mg?L?1 for Cu to 418.87?mg?L?1 for KCl. The LC50 values for C. rigaudii were significantly less than that for D. magna for six of the compounds tested. The interspecies correlation also showed a low, positive correlation suggesting that the sensitivities of both species were not similar for the compounds tested. The sensitivity factors for C. rigaudii and D. magna ranged between 0.01 and 12.3. These values further suggested that for six of the compounds tested, C. rigaudii appeared to be more sensitive than D. magna. It is therefore possible that because of these differences in relative sensitivities, toxicity data generated with D. magna may not be appropriate for Trinidad.  相似文献   

2.
The objective of this research was to investigate the effects of biosolids on the competitive sorption and lability of the sorbed Cd, Cu, Ni, Pb, and Zn in fluvial and calcareous soils. Competitive sorption isotherms were developed, and the lability of these metals was estimated by DTPA extraction following their sorption. Sorption of all metals was higher in the fluvial than in the calcareous soil. Sorption of Cu and Pb was stronger than that of Cd, Ni, and Zn in all soils. Biosolids application (2.5%) reduced the sorption of all metals especially Cu and Pb (28–43%) in both soils (especially the calcareous soil) at the lower added metal concentrations (50 and 100 mg L?1). However, it increased the sorption of all metals especially Pb and Cu in both soils (especially the calcareous soil; 15.5-fold for Cu) at the higher added concentrations (250 and 300 mg L?1). Nickel showed the highest lability followed by Cd, Zn, and Pb in both soils. Biosolids increased the lability of the sorbed Ni in the fluvial soils at all added concentrations and the lability of Cd, Pb, and Zn at 50 mg L?1, but decreased the lability of Cd, Pb, and Zn at 250 and 300 mg L?1 in both soils. We conclude that at low loading rate (e.g., 50 mg L?1) biosolids treatment might increase the lability and environmental risk of Cd, Cu, Pb, and Zn. However, at high loading rate (e.g., 300 mg L?1) biosolids may be used as an immobilizing agent for Cd, Cu, Pb, Zn and mobilizing agent for Ni.  相似文献   

3.
This present study deals with the growth, photosynthesis, oxidative stress and phytoremediation character of Azolla pinnata L. exposed to different levels (0.05, 0.1, 0.5, 1.0, 1.5 and 2.0 mg·L?1) of cadmium (Cd). Significant accumulation of Cd in Azolla fronds was noticed after 24 and 96 h of exposure and the accumulation rate was dose and time dependent. Growth of A. pinnata increased significantly after both exposure times with and without metal. At lower Cd doses (0.05 and 0.1 mg·L?1), growth and photosynthesis of A. pinnata showed a marginal increase over the respective control, however, at higher Cd doses (0.5, 1.0, 1.5 and 2.0 mg·L?1), a decreasing trend was noticed. At lower doses, Azolla fronds could counterbalance the negative effect of enhanced levels of superoxide radicals (SOR) and hydrogen peroxide (H2O2) through the greater activity of antioxidative enzymes. The decaresing trends in catalase and peroxidase activity at higher Cd doses suggest that Azolla fronds were not able to mitigate the negative effects of H2O2, hence an increase in malondialdehyde content was noticed. The study concludes that up to 0.1 ,mg·L?1 Cd, A. pinnata can flourish and be used as biofertiliser and for phytoremedial purposes in Cd-contaminated fields; beyond this concentration poor growth may restrict its application.  相似文献   

4.
In marine ecosystems, benthic organisms are really important because they are the first step in the transfer of contaminants from environment to biota. To this end, this study focused on biological assays with the amphipod Corophium orientale exposed to two different molecules of arsenic: arsenate (AsV), the most abundant form in sediments, and dimethyl-arsinate (DMA), expected to be moderately toxic as an intermediate in the process of detoxification. The toxicity of arsenic compounds was measured after exposure to three different matrices: water, spiked natural sediment and inert spiked quartz sand. LC50 values were calculated for each exposure, and the results confirmed the highest toxicity of AsV, in addition to underlining the importance of matrix of exposure. Water exposure was the matrix which presented the highest toxicity for inorganic arsenic (AsV LC50=3.51 mg L?1 vs DMA LC50=54.65 mg L?1), spiked natural sediment demonstrated its capability to chelate arsenate toxicity (AsV LC50=34.27 mg kg?1 vs. DMA LC50=52.19 mg kg?1) and spiked quartz sand presented intermediate values for AsV (LC50=25.26 mg kg?1), whereas for DMA a lower toxicity was registered (LC50=872.35 mg kg?1). This study can provide some useful data linked with chemical speciation of arsenic and exposure matrix, for improving the correct management of contaminated sediment.  相似文献   

5.
The uptake of lead (Pb) and cadmium (Cd) by Rhizophora apiculata and Avicennia alba under various salinity levels was examined using hydroponic cultivations. After 3 months of exposure at four levels of Pb (0, 0.03, 0.3 and 3 mg·L?1) and four levels of Cd (0, 0.005; 0.05 and 0.5 mg·L?1) at different salinities (0, 15 and 30), uptake of the metals was shown to be differently affected by salinity. For uptake of Pb by R. apiculata, the salinity effect was not significant for the leaves and was most significant in the stem, whereas for A. alba, the effect of salinity was significant only in the stem. Uptake of Pb in the roots and stems of both species was similar, but a higher concentration was recorded in the leaves of A. alba. Salinity was shown to affect the uptake of Cd by all tissues of R. apiculata, but most significantly roots. For A. alba, salinity significantly affects the total uptake of Cd, but this is most significant in the roots. The two mangrove species demonstrated different mechanisms of metal distribution into their organs which may be related to different adaptation mechanisms to saline conditions.  相似文献   

6.
Brachidontes variabilis is a common fouling mussel species in cooling water systems of tropical coastal power stations. However, there are hardly any data available on the response of B. variabilis to chlorine, a commonly used antifouling biocide. Therefore, lethal and sublethal responses of this mussel to chlorine are of considerable interest to the industry. The response of mussels in terms of mortality pattern (LT50 and LT100) and physiological activities (oxygen consumption, filtration rate, foot activity and byssus thread production) in different size groups (with shell lengths of 7–24 mm) of B. variabilis was studied in the laboratory under different chlorine concentrations (0.25, 0.50, 0.75 and 1.00 mg l?1 for sublethal responses and 1, 2, 3 and 5 mg l?1 for mortality). The results showed that the exposure time for 100% mortality of mussels decreased significantly with increasing chlorine concentration. However, mussel size was not a determinant of its chlorine tolerance: all size groups tested (with shell lengths of 7–24 mm) took comparable exposure times to reach 100% mortality at a given chlorine concentration (1–5 mg l?1). All size groups of B. variabilis showed a progressive reduction in physiological activities such as oxygen consumption, filtration rate, foot activity and byssus thread production, when chlorine residuals were increased from 0 to 1 mg l?1. The data generated in the present work are compared with similar data available for other tropical fouling mussel species to see how far relative chlorine toxicity could have influenced the relative distribution of the mussels inside the seawater intake tunnel of a power station at Kalpakkam in India. It is shown that in this insufficiently chlorinated system, the relative distribution of Brachidontes striatulus, B. variabilis and Modiolus philippinarum reflects the relative tolerance of the species to chlorine.  相似文献   

7.
The overall effect of the number of boats on the copper (Cu) levels in the water column and sediment, along with their spatial variability within Shelter Island Yacht Basin (SIYB), San Diego Bay, California was examined. We identified a horizontal gradient of increasing dissolved Cu and Cu in sediment from outside to the head of SIYB which was coincident with the increasing number of boats. Spatial models of Cu distribution in water and sediment indicated the presence of ‘hotspots’ of Cu concentration. From outside to the head of SIYB, dissolved Cu ranged from 1.3 μ g L?1 to 14.6 μ g L?1 in surface water, and 2.0 μ g L?1 to 10.2 μ g L?1 in bottom water. Cu in sediment exceeded the Effect Range Low of 34 mg kg?1 (i.e. where adverse effects to fauna may occur), with a peak concentration of 442 mg kg?1 at the head of the basin. Free Cu++ in surface water was several orders of magnitude higher than in sediment porewater. High-resolution data of Cu species together with probability maps presented in this paper will allow managers to easily visualise and localise areas of impaired quality and to prioritise which areas should be targeted to improve Cu-related conditions.  相似文献   

8.
The study deals with the toxicological impact of cadmium nanoparticles (Cd NPs) on Bacillus subtilis as a model Gram-positive bacterium. Cadmium oxide (CdO) NPs (~22 nm) and cadmium sulfide (CdS) NPs (~3 nm) were used in this study. Both the NPs were found to inhibit the cell viability of B. subtilis when added to the culture at mid-log phase, the viable cell number declined with increasing concentration of Cd NPs. At mid-log phase, 15 mg L?1 CdO NPs inhibited growth by ~50%, whereas at 30 mg L?1 growth completely ceased. Under the same conditions, CdS NPs inhibited growth by ~50% at a concentration of 8 mg L?1, and at 20 mg L?1 growth was completely retarded. The cells changed their morphological features to a filamentous form with increasing Cd NPs exposure time, leading to associated with clumping. NPs treated cells when stained with 4′, 6-diamino-2-phenylindole, showed filamentous multinucleated bead structure, suggesting irregularities in cell division. Increasing intracellular oxidative stress due to Cd NPs exposure might be one of the reasons for the cell morphological changes and toxicity in B. subtilis.  相似文献   

9.
Cadmium (Cd) is a carcinogenic metal contaminating the environment and ending up in wastewaters. There is therefore a need for improved methods to remove Cd by adsorption. Biogenic elemental selenium nanoparticles have been shown to adsorb Zn, Cu and Hg, but these nanoparticles have not been tested for Cd removal. Here we studied the time-dependency and adsorption isotherm of Cd onto biogenic elemental selenium nanoparticles using batch adsorption experiments. We measured ζ-potential values to assess the stability of nanoparticles loaded with Cd. Results show that the maximum Cd adsorption capacity amounts to 176.8 mg of Cd adsorbed per g of biogenic elemental selenium nanoparticles. The ζ-potential of Cd-loaded nanoparticles became less negative from ?32.7 to ?11.7 mV when exposing nanoparticles to an initial Cd concentration of 92.7 mg L?1. This is the first study that demonstrates the high Cd uptake capacity of biogenic elemental selenium nanoparticles, of 176.8 mg g?1, when compared to that of traditional adsorbents such as carboxyl-functionalized activated carbon, of 13.5 mg g?1. An additional benefit is the easy solid–liquid separation by gravity settling due to coagulation of Cd-loaded biogenic elemental selenium nanoparticles.  相似文献   

10.
This study investigated two digestion methods (USEPA 3051: microwave, HNO3 or Hossner: hot plate, HF–H2SO4–HClO4) for heavy metals analysis in contaminated soil surrounding Mahad AD'Dahab mine, Saudi Arabia. Moreover, contamination metal levels were estimated. The Hossner and USEPA 3051 methods showed, respectively, average total contents of 17.2 and 18.1 mg kg?1 for Cd, 11.6 and 10.6 mg kg?1 for Co, 45.7 and 34.7 mg kg?1 for Cr, 1030 and 1100 mg kg?1 for Cu, 33,300 and 27,400 mg kg?1 for Fe, 963 and 872 mg kg?1 for Mn, 33.2 and 22.8 mg kg?1 for Ni, 791 and 782 mg kg?1for Pb, and 6320 and 2870 mg kg?1 for Zn. A lack of significant differences and a high correlation coefficient (>90%) for Cd, Pb and Cu between the two digestion methods suggest that the total-recoverable method (USEPA 3051) may be equivalent to the total-total digestion method (Hossner) for determining these metals in the studied soil. However, significantly higher concentrations of Cr, Fe, Ni and Zn were found by the Hossner method comapred with the USEPA 3051 method. The soil samples have very or extremely high levels of Zn, Cu, Cd and Pb contamination, indicating very high potential ecological risk.  相似文献   

11.
Temporal variations and correlations between radial oxygen loss (ROL), iron (Fe) plaque formation, cadmium (Cd) and arsenic (As) accumulation were investigated in two rice cultivars at four different growth stages based upon soil pot and deoxygenated solution experiments. The results showed that there were significant differences in ROL (1.1–16 μmol O2 plant?1 h?1), Fe plaque formation (4,097–36,056 mg kg?1), Cd and As in root tissues (Cd 77–162 mg kg?1; As 49–199 mg kg?1) and Fe plaque (Cd 0.4–24 mg kg?1; As 185–1,396 mg kg?1) between these growth stages. ROL and Fe plaque increased dramatically from tillering to ear emergence stages and then were much reduced at the grain-filling stage. Furthermore, significantly positive correlations were detected between ROL and concentrations of Fe, Cd and As in Fe plaque. Our study indicates that increased Fe plaque forms on rice roots at the ear emergence stage due to the increased ROL. This stage could therefore be an important period to limit the transfer and distribution of Cd and As in rice plants when growing in soils contaminated with these toxic elements.  相似文献   

12.
Pharmaceutically active compounds are produced worldwide and consumed in large quantities, so these chemicals are frequently detected in limnic environments posing potential ecological risks. Thirty pharmaceutically active compounds were selected for examination of their acute toxicity for freshwater planarians (Dugesia japonica). Among the 30 compounds tested, diclofenac, mefenamic acid, naproxen, propranolol HCl, and diphenhydramine HCl had a 48-h nominal LC50 below10 mg L?1, and for 18 chemicals, it exceeded 100 mg L?1. The 96-h nominal LC50 was below 10 mg L?1 for diclofenac, mefenamic acid, naproxen, propranolol HCl, diltiazem HCl, diphenhydramine HCl, hydroxyzine HCl, and triprolidine HCl, and for 15 chemicals, it exceeded 100 mg L?1. Among different therapeutic groups, analgesics were most toxic to planarians, and antibiotics were least toxic. Antihistamines and beta blockers varied in their acute toxicity to planarians. At the current environmental levels, none of the tested pharmaceutically active compounds may have acutely harmful impacts on aquatic invertebrates. To answer the question whether chronic, long-term exposure to pharmaceutically active compounds may entail ecological risks for aquatic ecosystems, further investigations with different end points in multiple species tests are needed.  相似文献   

13.
This study was a preliminary step to evaluate the acute toxicity of 1-methyl-3-octylimidazolium chloride ([C8mim]Cl) on loach (Misgurnus anguillicaudatus) by determining the effects on hepatic antioxidant enzyme activities and by the comet assay. The results showed that [C8mim]Cl had acute toxicity at concentrations above 20 mg L?1, inducing oxidative stress and genotoxicity on fish liver cells. In respect to enzyme activities, [C8mim]Cl induced changes in the activities of superoxide dismutase, catalase, and glutathione content the livers of fish exposed at 20–80 mg L?1. [C8mim]Cl at the same exposure level caused a remarkable increase in malondialdehyde level. The comet assay indicated that [C8mim]Cl at 20–80 mg L?1 induced genotoxicity in liver cells. With increased exposure concentration and time, the two comet parameters trailing rate and tail moment were significantly increased, with significant differences (P < 0.05) observed between control group and each treatment group. The present study shows that ionic liquids can be a threat to the health of aquatic organism when accidentally released to aquatic ecosystems.  相似文献   

14.
全氟丁基磺酸钾(PFBSK)作为全氟辛基磺酸(PFOS)潜在的替代品,极易溶于水,主要存在于水体中,因而其水生毒性的研究十分重要。采用OECD 201、OECD 202、OECD 203和OECD 211标准试验方法,研究了PFBSK对羊角月牙藻(Pseudokirchneriella subcapitata)、大型溞(Daphnia magna)和中国本土鱼种稀有鮈鲫(Gobiocypris rarus)的急性毒性效应以及对大型溞繁殖的影响。组合多终点急慢性水生生物毒性结果:PFBSK的急性毒性终点均大于100 mg·L-1,大型溞繁殖试验的无观察效应浓度(NOEC)为571 mg·L-1,最低可观察效应浓度(LOEC)为981 mg·L-1。按GHS分类导则,PFBSK未表现出急性毒性和慢性毒性。与之相比,PFOS则对水生生物表现出毒性,黑头软口鲦(Pimephales promelas)为最敏感物种,其96 h-LC50为4.7 mg·L-1;大型溞繁殖试验的NOEC为12 mg·L-1。按GHS分类导则,属于中等毒性物质。可见,PFBSK较PFOS水生毒性明显降低。  相似文献   

15.
Cultures of the copepod Acartia tonsa are used both in aquaculture and ecotoxicology studies. However, the cultivation of these crustaceans at high densities results in the proliferation of microorganisms that can affect the organisms of interest, leading to illness or death. Antimicrobials inhibit microbial growth and may favour the cultivated species, aiding the development of ecological studies. This study investigated the potential of antimicrobials (antibiotic + antifungal) to inhibit bacteria and fungi when applied to marine zooplankton cultures, using the copepod A. tonsa as a bioindicator of acute toxicity. Treatment with 0.025?g?L?1 of penicillin G potassium + 0.08?g?L?1 of streptomycin sulphate + 0.04?g?L?1 of neomycin sulphate + 0.005?g?L?1 of nystatin resulted in 95% bacterial inhibition (after 12?h of exposure); however, after this time, the inhibitory effect was lost. The antimicrobial combination tested in this study prevented colonisation by fungi until 168?h after exposure, without causing acute toxicity to A. tonsa. Thus, it has potential for use in marine cultures of less sensitive organisms.  相似文献   

16.
Liming materials have been used to immobilize heavy metals in contaminated soils. However, no studies have evaluated the use of eggshell waste as a source of calcium carbonate (CaCO3) to immobilize both cadmium (Cd) and lead (Pb) in soils. This study was conducted to evaluate the effectiveness of eggshell waste on the immobilization of Cd and Pb and to determine the metal availability following various single extraction techniques. Incubation experiments were conducted by mixing 0–5% powdered eggshell waste and curing the soil (1,246 mg Pb kg?1 soil and 17 mg Cd kg?1 soil) for 30 days. Five extractants, 0.01 M calcium chloride (CaCl2), 1 M CaCl2, 0.1 M hydrochloric acid (HCl), 0.43 M acetic acid (CH3COOH), and 0.05 M ethylendiaminetetraacetic acid (EDTA), were used to determine the extractability of Cd and Pb following treatments with CaCO3 and eggshell waste. Generally, the extractability of Cd and Pb in the soils decreased in response to treatments with CaCO3 and eggshell waste, regardless of extractant. Using CaCl2 extraction, the lowest Cd concentration was achieved upon both CaCO3 and eggshell waste treatments, while the lowest Pb concentration was observed using HCl extraction. The highest amount of immobilized Cd and Pb was extracted by CH3COOH or EDTA in soils treated with CaCO3 and eggshell waste, indicating that remobilization of Cd and Pb may occur under acidic conditions. Based on the findings obtained, eggshell waste can be used as an alternative to CaCO3 for the immobilization of heavy metals in soils.  相似文献   

17.
Due to its potential toxic properties, metal mobilization is of major concern in areas surrounding Pb–Zn mines. In the present study, metal contents and toxicity of soils, aqueous extracts from soils and mine drainage waters from an abandoned F–Ba–Pb–Zn mining area in Osor (Girona, NE Spain) were evaluated through chemical extractions and ecotoxicity bioassays. Toxicity assessment in the terrestrial compartment included lethal and sublethal endpoints on earthworms Eisenia fetida, arthropods Folsomia candida and several plant species, whereas aquatic tests involved bacteria Vibrio fischeri, microalgae Raphidocelis subcapitata and crustaceans Daphnia magna. Total concentrations of Ba (250–5110 mg kg?1), Pb (940 to >5000 mg kg?1) and Zn (2370–11,300 mg kg?1) in soils exceeded intervention values to protect human health. Risks for the aquatic compartment were identified in the release of drainage waters and in the potential leaching and runoff of metals from contaminated soils, with Cd (1.98–9.15 µg L?1), Pb (2.11–326 µg L?1) and Zn (280–2900 µg L?1) concentrations in filtered water samples surpassing US EPA Water Quality Criteria (2016a, b). Terrestrial ecotoxicity tests were in accordance with metal quantifications and identified the most polluted soil as the most toxic. Avoidance and reproduction tests with earthworms showed the highest sensitivity to metal contamination. Aquatic bioassays performed in aqueous extracts from soils confirmed the results from terrestrial tests and also detected toxic effects caused by the mine drainage waters. Algal growth inhibition was the most sensitive aquatic endpoint. In view of the results, the application of a containment or remediative procedure in the area is encouraged.  相似文献   

18.
In this study, the effect of silicon (Si) addition on cadmium (Cd) toxicity in rice seedlings was investigated. After a series of screening experiments, 50 μmol·L?1 of Cd and 10 μ mol·L?1 of Si were selected. Treatment of rice seedlings with Cd (50 μ mol·L?1) resulted in significant accumulation of this metal in roots and shoots. The data revealed that accumulation of Cd resulted in oxidative stress in rice seedlings as evidenced by increased accumulation of hydrogen peroxide (H2O2) and malondialdehyde (MDA; a peroxidation product of lipids). However, addition of Si (10 μ mol·L?1) together with Cd prevented accumulation of Cd, H2O2 and MDA. Antioxidant capacity was decreased by Cd but enhanced by Si addition. Cd decreased the length and frequency of root hairs, stomatal frequency, and distorted leaf mesophyll cells and vascular bundles. However, addition of Si together with Cd reduced these abnormalities. The results showed that addition of exogenous Si protected rice seedlings against Cd toxicity by preventing Cd accumulation and oxidative stress (H2O2 and MDA accumulation) by increasing Si accumulation and antioxidant capacity, which maintained the structure and integrity of leaf and root.  相似文献   

19.
Surface and subsurface soil samples contaminated with crude oils were collected from an impacted site at Bodo City in the Niger Delta, Nigeria, after a field reconnaissance survey. An uncontaminated soil sample collected 100 m from the impacted site, but within the same geographical area, was used as a control. Trace elements such as, As, Cu, Cr, Cd, Fe, Pb, Ba, Ni, V, Hg and cation-exchange capacity constituents of the contaminated and uncontaminated soils were determined by atomic absorption spectroscopy. Trace element concentrations were: Cu, 0.5–13.4 mg kg? 1; Cr, 0.2–0.8 mg kg? 1; Fe, 6.2–8.7 mg kg? 1; Ba 80.0–108.0 mg kg? 1; Ni, 0.6–4.8 mg kg? 1; and V, 4.0–9.4 mg kg? 1; cation-exchange capacity ranged from 43.6 to 57.2 mg kg? 1 in surface and subsurface soils. Results showed that eigenvalues for the two first principal components represent up to 49% of the total variance. A positive correlation of the first principal component with Cu, Cr and cation-exchange capacity shows pollution from oil spillage, while a positive correlation of the second principal component with Cr, Fe, V, and dissolved oxygen (DO) shows both oil pollution and allochthonous inputs.  相似文献   

20.
The extracellular extract obtained from 3 weeks incubation of the soil isolate cyanobacterium strain Nostoc piscinale GT-319 in BG-11 broth medium showed cytotoxic activity against Chinese Hamster Ovary (CHO) cells. Based on comet assay, a concentration of 333 µg mL?1 (IC50) produced DNA breakages in CHO cells. The concentration of 481 mg kg?1 (LD50) produced acute toxicity in mice at 48 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号