首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Water samples were taken from Lake Dianchi, on the Yungui Plateau of southwest China, and experiments were conducted to simulate the photochemical degradation characteristic of chromophoric dissolved organic matter (CDOM) in the lake water. Three groups of experiments under different light conditions: ultraviolet (UV) light, visible light, and dark, were done and variations of fluorescence properties, UV absorbance, and dissolved organic carbon (DOC) concentrations during the experiments were analyzed to study the photodegradation process of CDOM with time. The result showed that light irradiation led to significant photochemical degradation of CDOM, resulting in changes in florescent properties, absorbance losses, decreases in aromaticity and average molecular weight, as well as decline in DOC concentration in the water. It was also observed that UV irradiation had greater effect than visible light did. However, various fluorophores had different sensitivities to the same irradiation condition, that is, protein-like fluorophore at the low excitation wavelengths is more sensitive to UV irradiation than the other fluorophores, and is more readily to undergo photo-degradation. In addition, visible light irradiation did not have significant impact on DOC in the water, with DOC concentration decrease by 5.57% –59.9% during the experiment time. These results may provide new knowledge on the environment behavior of CDOM in the water of Lake Dianchi.  相似文献   

2.
Visible light is a major fraction of the solar spectrum; however, information on visible light radiation of macrophyte detritus is lacking. In this study, we conducted a microcosm experiment to assess the effects of visible light radiation on degradation of two litter species: Potamogeton malaianus (P. malaianus) and Phragmites australis (Ph. australis). This research represents an investigation of mass loss, microbial activity and nutrients released over a period of 168 days. Overall, we found that visible light radiation had significant effects on litter decomposition, but it did not affect the microbial activities which degrade cellulose and lignin. The decomposition rate order of the three components in P. malaianus and Ph. australis in treatments was: cellulose?>?hemicellulose?>?lignin. The visible light radiation mainly affected the degradation of lignin, which is the primary compound in litter susceptible to photodegradation. The exposure to visible light radiation up to 17.6?Wm?2 stimulated the dissolved organic carbon release and reduced the molecular weight to less reactive. Meanwhile, no obvious difference in nutrient contents (TP, TN, NO3–N, NO2–N, and NH3–N) was observed among different visible light intensities. The results of this study contribute to better understanding of the photochemical behaviour of macrophyte litter in shallow lakes.  相似文献   

3.
The possibility of riboflavin sensitized photo‐oxidation of polychlorinated pesticides was investigated. The dye proved to be an inefficient sensitizer for that purpose, when irradiated with visible light, in aereated aqueous solutions. A quenching of singlet and triplet excited states of the chromophore (depending on the concentrations of the quencher) is responsible for this failure in the photo‐degradation of the pesticides, which resulted easily oxidizable, via singlet oxygen mechanism, when proflavine was employed as a sensitizer. Parallel, and as a direct consequence, the rate of aerobic riboflavin photobleaching decreased drastically in the presence of the chlorophenols.

The implication of our results on the inhibition of riboflavin degradation by the presence of chlorinated phenolic pesticides in the environment, is discussed, from the point of view of a kinetic and mechanistic study.  相似文献   

4.
Phototransformation of UC‐54229 (1) [2,3‐dihydro‐2,2‐dimethyl‐7‐benzofuranyl‐N‐(trimethylamino acetyl)‐N‐methyl carbamate chloride] was studied under UV and visible light conditions. Photoirradiation of 1 with UV‐light resulted in the formation of five degradation products which on the basis of their mass and 1H Nmr spectral analysis were characterised as 2, 3, 4, 5 and 6. It was observed that under the influence of light, UC‐54229 was degraded to acetyl‐carbofuran which under similar conditions underwent further transformation to the actual toxicant carbofuran. The degradation products or impurities present in 100% water soluble powder formulation were identified as carbofuran phenol and triethylamine hydrochloride.  相似文献   

5.
可见光下氮掺杂二氧化钛对巯基苯并噻唑的降解   总被引:1,自引:1,他引:1  
秦好丽  古国榜  柳松 《生态环境》2006,15(4):720-725
光降解反应中为了有效地利用可见光,以氨水为氮源,采用溶胶凝胶法在温和条件下制备出黄色氮掺杂二氧化钛。分别采用XRD、TEM、XPS和UV-Vis漫反射光谱对样品进行了表征。结果表明,所制备的样品均为锐钛矿相,晶粒随N/Ti配比的增加而增大;氮掺杂进入二氧化钛晶格中使可见光吸收增强。为控制水处理过程中的气味问题,以巯基苯并噻唑为探针,考察了氮掺杂二氧化钛的可见光活性。结果显示氮掺杂二氧化钛在可见光照射下可使巯基苯并噻唑的降解率为商用二氧化钛DegussaP-25的3倍。此外,存在一个最佳N/Ti配比显示出最高的可见光活性。  相似文献   

6.
In this study, stability of statin drugs in different conditions, such as various pH, diverse solvents ratio, presence of UV, and sunlight have been investigated. Results suggest strong dependence of statins upon pH, potential environmental persistence towards sun light, and UV light degradation via singlet excited state obtained by excitation into the ππ* band. In acidic conditions interconversion between lactone and hydroxy acid forms in aqueous solutions at room temperature is retarded, while for the same sun-exposed samples are accelerated. Longer exposures lead to the degradation processes. Statin interconversion in water is much lower than in acetonitrile.  相似文献   

7.
Dye wastewater is a major source of toxic aromatic amines released into the environment. Semiconductor photocatalysis is a clean, solar-driven process for the treatment of dye wastewater. To enhance applicability of semiconductor photocatalysis, the catalyst used should be visible light active. Here we report a facile synthesis of a highly visible-light-active nitrogen-doped tungsten oxide, N-WO3, by thermal decomposition of peroxotungstic acid–urea complex. The structure and properties of N-WO3 are characterized by X-ray photoelectron spectroscopy and X-ray absorption near-edge spectroscopy. The photodegradation of amaranth catalyzed by N-WO3 is evaluated in a batch system under visible and ultraviolet A (UVA) light. Our results show successful doping of N in both interstitial and substitutional sites and the presence of N2-like species. The N doping surprisingly expands the usable portion of the solar spectrum up to the near-infrared region and enhances the photocatalytic activity. At typical experimental conditions such as 25 mg/L of amaranth, 1 g/L of N-WO3, and pH 7, 100 % degradation of amaranth is achieved within 2 h under both visible and UVA light. The photocatalytic activity of N-WO3 is maintained in repeated cycles, indicating its exceptional photostability. To the best of our knowledge, this is the first time that a reusable, highly visible-light-active N-WO3 can be obtained through thermal decomposition of peroxotungstic acid–urea complex.  相似文献   

8.
Four composites of metal oxide doped with activated carbon with a metal oxide weight of 20% were prepared using mechano-mixing method. The nano-catalysts were characterized by N2-adsorption–desorption, X-ray diffraction analysis, transmission electron microscopy, Fourier-transform infrared spectroscopy, UV-diffuse reflectance, and photoluminescence spectroscopy. Photo-catalytic degradation of methylene blue dye under UV 254 nm and visible light was examined. In general, prepared catalysts are more active for degradation of dye under visible light than UV, reaching 96% within 180?min irradiation using the SnO catalyst. Photo-degradation of methylene blue followed pseudo first order reaction mechanism with a rate constant of 14.8?×?10?3?min?1, and the time required for removal of 50% of dye was 47?min.  相似文献   

9.
Advanced oxidation processes, such as photocatalysed oxidation, provide an important route for degradation of wastes. In this study, the lowest excited state (3MLCT) of Ru(bpy)32+ is used to break down chlorophenol pollutant molecules to harmless products. This has the advantage of using visible light and a short-lived catalytically active species. Photolysis of deaerated aqueous solutions of a variety of mono- and poly-substituted chlorophenols has been followed in the presence of Ru(bpy)32+/S2O82− with near visible light (λ > 350 nm) by UV/visible absorption spectroscopy, luminescence, potentiometry, NMR and HPLC techniques. Upon irradiation, a decrease is observed in the chlorophenol concentration, accompanied by the formation of Cl, H+ and SO42− ions as the main inorganic products. Benzoquinone, phenol, dihydroxybenzenes and chlorinated compounds were the dominant organic products. As the ruthenium(II) complex is regenerated in the reaction, the scheme corresponds to an overall catalytic process. The kinetics of the rapid chlorophenol photodechlorination has been studied, and are described quite well by pseudo-first order behaviour. Further studies on this were made by following Cl release with respect to the initial Ru(bpy)32+ and S2O82− concentrations. A comparison is presented of the photodechlorination reactivity of the mono and polychlorophenols studied at acidic and alkaline pH.  相似文献   

10.
The photocatalytic degradation of the organo-phosphorous pesticide phosphamidon at low concentration in aqueous solution on Ag-doped ZnO nanorods was investigated. Nanosized Ag-doped ZnO rods were synthesized by using a microwave assisted aqueous method. High molecular weight polyvinyl alcohol was used as a stabilizing agent. Composition and structure were investigated using energy-dispersive X-ray spectroscopy (EDAX) and X-ray diffraction (XRD). The XRD pattern reveals that ZnO nanorods are of hexagonal wurtzite structure. The average crystallite size calculated from Scherrer's relation was found to be 30?nm. The effects of catalyst loading, pH value, and initial concentration of phosphamidon on the photocatalytic degradation efficiency using Ag-doped ZnO nanorods as a photocatalyst have been discussed. The results revealed that Ag-doped ZnO nanorods with a diameter of 30?nm showed highest photocatalytic activity at a surface density of 1?g?dm?3. The catalyst doped with 0.2?mol% Ag is effective for the degradation of phosphamidon with visible light. This opens a new possibility to decompose pesticides that are present in wastewater.  相似文献   

11.
The photo-Fenton reactions, which could yield hydroxyl radicals via the catalytic degradation of H2O2 by Fe(II), were focused as one of the abiotic degradation processes of bisphenol A (BPA) in surface waters. At pH 6, in the presence of H2O2 only, 32% of BPA was degraded after 120?min of irradiation. However, 97% of BPA was degraded in the presence of both H2O2 and Fe(II). Without light irradiation, no BPA degradation was observed even in the presence of Fe(II) and H2O2. These results show that photo-Fenton processes are effective in the natural attenuation of BPA in surface water. In addition, the presence of humic acids (HAs), which were of more aliphatic nature, resulted in enhancing BPA degradation via the photo-Fenton processes. Therefore, HAs can be one of the important factors in enhancing the degradation of BPA in surface water via the photo-Fenton processes.  相似文献   

12.
Multi-walled carbon nanotubes (MWCNTs)/TiO2 composite photocatalysts with high photoactivity were prepared by sol-gel process and further characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared (FT-IR), and UV-vis absorption spectra. Compared to pure TiO2, the combination of MWCNTs with titania could cause a significant absorption shift toward the visible region. The photocatalytic performances of the MWCNTs/TiO2 composite catalysts were evaluated for the decomposition of Reactive light yellow K-6G (K-6G) and Mordant black 7 (MB 7) azo dyes solution under solar light irradiation. The results showed that the addition of MWCNTs enhanced the adsorption and photocatalytic activity of TiO2 for the degradation of azo dyes K-6G and MB 7. The effect of MWCNTs content, catalyst dosage, pH, and initial dye concentration were examined as operational parameters. The kinetics of photocatalytic degradation of two dyes was found to follow a pseudo-first-order rate law. The photocatalyst was used for seven cycles with photocatalytic degradation efficiency still higher than 98%. A plausible mechanism is also proposed and discussed on the basis of experimental results.  相似文献   

13.
Photocatalytic oxidation using semiconductors is one of the advanced oxidation processes for degradation of organic pollutants in water and air. TiO2 is an excellent photocatalyst that can mineralize a large range of organic pollutants such as pesticides and dyes. The main challenge is to improve the efficiency of the TiO2 photocatalyst and to extend TiO2 light absorption spectra to the visible region. A potential solution is to couple TiO2 with a narrow band gap semiconductor possessing a higher conduction band such as bismuth oxide. Therefore, here we prepared Bi2O3/TiO2 heterojunctions by the impregnation method with different Bi/Ti ratio. The prepared composites have been characterized by UV–Vis diffused reflectance spectra and X-ray diffraction. The photocatalytic activity of the heterojunction has been determined from the degradation of orange II under visible and UV light. Results show that Bi2O3/TiO2 heterojunctions are more effective than pure TiO2-anatase under UV-A irradiation, with an optimum for the Bi/Ti ratio of 5 %, for the photocatalytic degradation of Orange II. However, the photocatalytic activity under irradiation at λ higher than 420 nm is not much improved. Under UV–visible radiation, the two semiconductors are activated. We propose a mechanism explaining why our products are more effective under UV–visible irradiation. In this case the charge separation is enhanced because a part of photogenerated electrons from the conduction band of TiO2 will go to the conduction band of bismuth oxide. In this composite, titanium dioxide is the main photocatalyst, while bismuth oxide acts as adsorbent photosensitizer under visible light.  相似文献   

14.
Abstract

A metal-organic framework of iron-doped copper 1,4-benzenedicarboxylate was synthesized and, for the first time, utilized as a heterogeneous photo-Fenton catalyst for degradation of methylene blue dye in aqueous solution under visible light irradiation. The synthesized materials were characterized by scanning electron microscopy, Fourier-transform infrared spectroscopy, X-ray diffraction and energy-dispersive X-ray spectroscopy. The influence factors, kinetics, and stability of the synthesized catalysts were investigated in detail. Iron-doped copper 1,4-benzenedicarboxylate showed higher degradation efficiency than pure copper 1,4-benzenedicarboxylate. An almost complete degradation was achieved within 70?min under visible light irradiation at a solution pH of 6, a catalyst loading of 1?g?L?1, a H2O2 dosage of 0.05?mol L?1 and methylene blue concentration of 50?mg?L?1. Recycling studies demonstrated that the iron-doped copper 1,4-benzenedicarboxylate is a promising heterogeneous photo-Fenton catalyst for long-term removal of methylene blue dye from industrial wastewater.  相似文献   

15.
A photochemical model of benzene degradation compares well with experimental data obtained in the Lab. 62 reactions were needed to fully describe benzene degradation. A feasibility study shows that the photolysis of benzene is a cost-effective process. Experimental data and modeling results show that the degradation efficiency will increase when the combination of UV light and ozone is used. The degradation of benzene, a carcinogenic air pollutant, was studied in a gas-phase photochemical reactor with an amalgam lamp emitting ultraviolet light at 185 and 254 nm. Efficient benzene degradation (>70%) was possible for benzene mass flow rates of up to 1.5 mg·min−1. Adding ozone allowed benzene mass flow rates of up to 5 mg·min−1 to be treated with the same efficiency. In terms of energy consumption, ozone doubles the efficiency of the process. A comprehensive mechanistic simulation model was developed incorporating a chemical kinetics model (62 reactions involving 47 chemical species), a material balance model incorporating diffusion and flow, a flow velocity model, and a light field model. The model successfully predicted the efficiency of the reactor, generally within 20%, which indicates that the model is sound, and can be used for feasibility studies. The prediction of the reactor efficiency in the presence of ozone was less successful, with systematically overestimated efficiency. Condensation of reaction products in the reactor is thought to be the main cause of model inaccuracy. Both experimental data and model predictions show that there is a synergistic effect between ozonation and ultraviolet degradation.  相似文献   

16.
Rhodamine B can be degraded using Prussian blue as a photo-Fenton like reagent under λ > 420 nm visible irradiation. Kinetic studies show ln(C o/C t ) is linearly proportional to the reaction time during the photo-degradation process; thus, the degradation reaction obeys a pseudo-first order kinetic law. It is very interesting that the presence of salinity such as 0.1 M KCl can speed up greatly the degradation rate: the time to achieve 90.0% degradation ratio is shortened from 120.0 to 40.0 min under comparable conditions, which is very useful in the treatment of wastewaters with high content of salinity.  相似文献   

17.
The photocatalytic degradation of the herbicide isoproturon under solar light was investigated in aqueous solution containing a Bi–TiO2/zeolite photocatalyst. The catalysts were characterized using X-ray diffraction, UV-Vis diffuse reflectance spectroscopy, Fourier transform-infrared spectroscopy, scanning electron microscopy, and transmission electron microscopy. The effect of Bi–TiO2 loading onto the zeolite support and influence of the parameters such as catalyst amount, pH, and initial concentration of isoproturon on the degradation rate were evaluated. The recycling ability of the catalyst was found to be sustainable for elongated periods. The high activity of the Bi–TiO2/zeolite was attributed to its absorptivity of visible light and its high adsorption capacity for the pollutant molecules.  相似文献   

18.
以绢云母为载体,采用水解-沉淀法制备出了绢云母负载纳米TiO2粉体(TiO2/M),以尿素为氮源,采用后掺杂法制得具有可见光响应的N掺杂TiO2/M.采用XRD,XPS,SEM,DUV等手段对样品进行了性能表征;并以日光色镝灯为光源,甲基橙为模拟污染物检测其光催化活性.研究了N的掺杂对粉体中TiO2晶相结构,粒度和光催化性能的影响.结果表明,绢云母与TiO2通过桥氧相连形成包覆层,N的掺杂抑制了TiO2晶粒的长大,减缓锐钛矿向金红石相的转变,同时N的掺杂形成Ti—O—N键,形成新的能级结构,使样品对光的吸收边红移至440—550 nm,具有明显的可见光响应,对甲基橙的光催化降解率与没有掺N的样品相比,最高可达1.6倍.  相似文献   

19.
Contamination of groundwater by methyl-tert-butyl ether (MTBE) poses increasing problems to water companies. Here we demonstrate the feasibility of using a cylindrical, supported-catalyst reactor for photocatalytic degradation of MTBE in water. It was shown that photocatalytic degradation of MTBE follows pseudo first-order kinetics. The maximum reaction rate constant observed was 0.47 hr–1. The reaction rate increases linearly with increasing light intensity. It was also found that the reaction rate is linearly proportional to the ratio of catalyst surface area to volume of reactor. Complete degradation of MTBE was reached with an excess supply of oxygen.  相似文献   

20.
可见光下氮掺杂二氧化钛对有机污染物的降解动力学研究   总被引:1,自引:0,他引:1  
秦好丽  安娅  古国榜 《生态环境》2010,19(3):513-517
温和条件下以碳酸铵为氮源,采用溶胶凝胶法制备氮掺杂二氧化钛粉末,以XRD、UV-Vis漫反射吸收光谱以及BET等手段对掺杂二氧化钛进行了表征。通过吸附等温线的计算以及可见光催化活性的测定,考察了氮掺杂二氧化钛对巯基苯并噻唑的降解动力学。结果显示,实验范围内所制备的样品均为锐钛矿相,样品粒径随N/Ti配比的增加而增大;氮的掺杂产生更多的孔结构和多样孔型,增大了光催化剂对有机物的吸附能力,且氮的掺杂增强了二氧化钛在可见光区的光吸收。通过Langmuir-Hinshelwood积分动力学模型对表观速率常数、吸附平衡常数及反应速率常数的分析,表明氦的掺杂有效地改善了二氧化钛的可见光活性,其中吸附能力的增大对表观速率常数的提高有更显著的贡献。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号