首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract

The rate and product composition during photooxidation of aromatic hydrocarbons (toluene, o‐, m‐, p‐xylene and cumene) dissolved in n‐hexane and spread as a liquid film on water is reported. The photo degradability of these chemicals is 10–20%. The products identified are oxygenated aromatic compounds. It is observed that the absorption bands of the compounds under investigation depend upon the partial pressure of dissolved oxygen and these bands extend up to 290 nm. The new absorption band around 290 nm is probably due to broadening of 1Lb bands which is responsible for direct photolysis.

stream. We have been especially interested in investigating the rate of disappearance and distribution of main oxidation products in two phases. Besides that an attempt has been made to throw some light on the reaction mechanism.  相似文献   

2.
Abstract

In this study, the toxicity of CuO (40?nm), α-Al2O3 (40?nm), and α-Fe2O3 (20–40?nm) nanoparticles was comparatively investigated on Carcinus aestuarii. Crabs were semi-statically exposed to 1?mg/L of each for 14?days and their accumulation and distribution in tissue and hemolymph, potential oxidative stress mechanism, total hemocyte counts and types, and the osmoregulatory and ionoregulatory responses were determined. The tissue distribution of CuO nanoparticles was hepatopancreas?>?hemolymph?≥?gill?> muscle, for α-Fe2O3 gill?>?hepatopancreas?>?muscle?> hemolymph, and for α-Al2O3 gill?>?muscle?≥?hemolymph?> hepatopancreas. While α-Al2O3 and α-Fe2O3 NPs, induced lipid peroxidation and changes in antioxidant enzyme activity in the hepatopancreas tissue, the oxidative damage caused by the CuO nanoparticles was minimal. All three nanoparticles, copper in particular, elicit osmoregulatory and ionoregulatory toxicity at this concentration, due to the inhibition of Na+, K+-ATPase activity in the gill and depletion of hemolymph and carcass ion concentrations.  相似文献   

3.
The effects of mass transfer resistance due to the presence of a diffusive boundary layer on the photosynthesis of the epilithic algal community (EAC) of a coral reef were studied. Photosynthesis and respiration of the EAC of dead coral surfaces were investigated for samples from two locations: the Gulf of Aqaba, Eilat (Israel), and One Tree Reef on the Great Barrier Reef (Australia). Microsensors were used to measure O2 and pH at the EAC surface and above. Oxygen profiles in the light and dark indicated a diffusive boundary layer (DBL) thickness of 180–590 μm under moderate flow (~0.08 m s?1) and >2,000 μm under quasi-stagnant conditions. Under light saturation the oxygen concentration at the EAC surface rose within a few minutes to 200–550% air saturation levels under moderate flow and to 600–700% under quasi-stagnant conditions. High maximal rates of net photosynthesis of 8–25 mmol O2 m?2 h?1 were calculated from measured O2 concentration gradients, and dark respiration was 1.3–3.3 mmol O2 m?2 h?1. From light–dark shifts, the maximal rates of gross photosynthesis at the EAC surface were calculated to be 16.5 nmol O2 cm?3 s?1. Irradiance at the onset of saturation of photosynthesis, E k, was <100 µmol photons m?2 s?1, indicating that the EAC is a shade-adapted community. The pH increased from 8.2 in the bulk seawater to 8.9 at the EAC surface, suggesting that very little carbon in the form of CO2 occurs at the EAC surface. Thus the major source of dissolved inorganic carbon (DIC) must be in the form of HCO3 ?. Estimates of DIC fluxes across the DBL indicate that, throughout most of the daytime under in situ conditions, DIC is likely to be a major limiting factor for photosynthesis and therefore also for primary production and growth of the EAC.  相似文献   

4.
Abstract

Fusarubin analogues of Fusarium oxysporum f. sp. ciceris were investigated for antifungal activity in vitro against five soil borne phytopathogenic fungi. 3-O-Methyl-8-O-methyl-fusarubin was inhibitory towards S. sclerotiorum (EC50 0.33?mmol L?1) and Sclerotium rolfsii (EC50 0.38?mmol L?1). A structure–antifungal activity relationship of fusarubin analogues was established from their activity performance. Possible mechanism of action of these compounds was studied using molecular docking and simulations against three target enzymes which revealed receptor ligand binding affinity. Docking of 3-O-methyl-8-O-methyl-fusarubin into the succinate dehydrogenase site revealed formation of salt bridge, hydrogen bond, π–anion, π–alkyl, and Van der Waals interactions.  相似文献   

5.
The cytotoxicity of 13 and 22 nm aluminum oxide (Al2O3) nanoparticles was investigated in cultured human bronchoalveolar carcinoma-derived cells (A549) and compared with 20 nm CeO2 and 40 nm TiO2 nanoparticles as positive and negative control, respectively. Exposure to both Al2O3 nanoparticles for 24 h at 10 and 25 µg mL?1 doses significantly decreased cell viability compared with control. However, the cytotoxicity of 13 and 22 nm Al2O3 nanoparticles had no difference at 5–25 µg mL?1 dose range. The cytotoxicity of both Al2O3 nanoparticles were higher than negative control TiO2 nanoparticles but lower than positive control CeO2 nanoparticles (TiO2 < Al2O3 < CeO2). A real-time single cell imaging system was employed to study the cell membrane potential change caused by Al2O3 and CeO2 nanoparticles using a membrane potential sensitive fluorescent probe DiBAC4(3). Exposure to the 13 nm Al2O3 nanoparticles resulted in more significant depolarization than the 30 nm Al2O3 particles. On the other hand, the 20 nm CeO2 particles, the most toxic, caused less significant depolarization than both the 13 and 22 nm Al2O3. Factors such as exposure duration, surface chemistry, and other mechanisms may contribute differently between cytotoxicity and membrane depolarization.  相似文献   

6.
Abstract

Airborne particulate matter PM2.5 was collected in an industrial, a low-density, and a high-density residential area of Lagos from December 2010 to November 2011, and elemental composition was determined by proton-induced X-ray emission. Across the months, mass concentrations ranged from 13 to 237?µg?m?3, exceeding the World Health Organization guideline value of 10?µg?m?3. Data on 24 elements were obtained, with maximum values during Harmattan season months; source identification and apportionment studies by positive matrix factorization suggested that petroleum oil combustion (70%) was the major source of PM2.5 and could pose a great hazard to Lagos receptors.  相似文献   

7.
Ostreobium sp. (Chlorophyta: Siphonales) can be found as green bands within the skeletal material of a number of stony corals in the Indo-Pacific and Caribbean regions. Many of these corals also contain symbiotic dinoflagellates in the overlaying coral polyps that effectively screen out all the typical photosynthetically active radiation from the algae in the green bands below. Ostreobium sp., nevertheless, grows photosynthetically. Its action spectrum and absorption spectrum have been shown to extend much further into the near infra-red compared to other green algae. In the present study, carried out in 1987, fluorescence excitation and emission spectra were measured in Ostreobium sp. and compared to spectra obtained from the green alga Ulva sp. and the brown alga Endarachne sp. Xanthophylls, probably siphonein and an unidentified xanthophyll probably related to siphonaxanthin, are photosynthetically active in Ostreobium sp., and can sensitize Photosystem II fluorescence at 688 nm and Photosystem I (PS I) fluorescence at 718 nm. The fluorescence emission spectra of Ostreobium sp. measured at 25° C and 77 K were not remarkably different from those of the green alga Ulva sp. Absorbance changes induced by light were measured in Ostreobium sp. from 670 to 750 nm and were like those normally seen in green plants except that, in addition to the minimum expected for the reaction-center chlorophyll of PS I (P700) at 703 nm, another minimum was seen at 730 nm. It is possible that this spectrumreflects the functioning of a reaction center of Photosystem I that has adapted to function in light highly enriched in far-red wavelengths.CIW-DPB Publication No. 1021  相似文献   

8.
Two independent digestion procedures for Antarctic krill samples were compared. Dry ashing (DA) and microwave (MW) acid‐assisted digestion were tested for decomposing the samples to determine essential (Cu, Fe, Cr) and toxic elements (Cd, Pb) by graphite furnace‐atomic absorption spectrometry (GF‐AAS). A mixture of HNO3 and H2O2 as digesting agent was used in the microwave procedure. For the dry ashing digestion, the organic matter was oxidated at 480°C in an open system. Both digestion methods were compared in terms of accuracy and applied to the analysis of a certified reference material: MURST‐ISS‐A2 (Antarctic krill).

The detection limits for the five elements analysed ranged from 3 to 150 ng g‐1. Both digestion procedures are suitable for the decomposition of krill samples. However, dry ashing is not recommended to determine Pb and Cd because losses can occur.  相似文献   

9.
Abstract

A metal-organic framework of iron-doped copper 1,4-benzenedicarboxylate was synthesized and, for the first time, utilized as a heterogeneous photo-Fenton catalyst for degradation of methylene blue dye in aqueous solution under visible light irradiation. The synthesized materials were characterized by scanning electron microscopy, Fourier-transform infrared spectroscopy, X-ray diffraction and energy-dispersive X-ray spectroscopy. The influence factors, kinetics, and stability of the synthesized catalysts were investigated in detail. Iron-doped copper 1,4-benzenedicarboxylate showed higher degradation efficiency than pure copper 1,4-benzenedicarboxylate. An almost complete degradation was achieved within 70?min under visible light irradiation at a solution pH of 6, a catalyst loading of 1?g?L?1, a H2O2 dosage of 0.05?mol L?1 and methylene blue concentration of 50?mg?L?1. Recycling studies demonstrated that the iron-doped copper 1,4-benzenedicarboxylate is a promising heterogeneous photo-Fenton catalyst for long-term removal of methylene blue dye from industrial wastewater.  相似文献   

10.
This work is dedicated to the removal of free cyanide from aqueous solution by oxidation with hydrogen peroxide H2O2 catalyzed by neutral activated alumina. Effects of initial molar ratio [H2O2]0/[CN?]0, catalyst amount, pH, and temperature on cyanide removal have been examined. The presence of activated alumina has increased the reaction rate showing thus, a catalytic activity. The rate of removal of cyanides increases with rising initial molar ratio [H2O2]0/[CN?]0 but decreases at pH 10 to 12. Increasing the alumina amount from 1.0 to 30 g/L has a beneficial effect, and increasing the temperature from 20 °C to 35 °C improves cyanide removal. The kinetics of cyanide removal has been found to be of pseudo-first-order with respect to cyanide and the rate constants have been determined.  相似文献   

11.
ABSTRACT

Lead (Pb) is one of the most toxic heavy metals that affect the physiological status of aquatic organisms. The present investigation evaluated the possible toxic effect of lead chloride (PbCl2) on biomarkers responses, DNA damage and histological alterations in Venus verrucosa gills and digestive gland. Three concentrations of PbCl2 (D1:1µgL?1, D2: 10µgL?1 and D3: 100µgL?1) were chosen for V. verrucosa exposure during six days. At the end of the trial, it was found that Pb tended to accumulate in both gills and digestive gland in a dose-dependent manner. However, gill tissues exhibited the highest metal burden. Our results showed an increase of malondialdehyde, protein carbonyls and advanced oxidation protein product levels in both organs following PbCl2exposure. The induction of both non-enzymatic and enzymatic antioxidant systems; as well as the decrease of the acetylcholinesterase activity and degradation of DNA structure was recorded in the gills and digestive gland. The histopathological alterations observed in gills (disruption of lamellas and cilia filaments?…) and digestive gland (lumens occlusion, necrosis and fibrosis) confirmed the aforementioned results. Our data highlighted the short-term toxicity effects of PbCl2 on V. verrucosa and pointed out a high sensitivity of gills towards this metal.  相似文献   

12.
Zhang  Chao  Li  Sha  Guo  Gan-lan  Hao  Jing-wen  Cheng  Peng  Xiong  Li-lin  Chen  Shu-ting  Cao  Ji-yu  Guo  Yu-wen  Hao  Jia-hu 《Environmental geochemistry and health》2021,43(9):3393-3406

Numerous studies had focused on the association between air pollution and health outcomes in recent years. However, little evidence is available on associations between air pollutants and premature rupture of membranes (PROM). Therefore, we performed time-series analysis to evaluate the association between PROM and air pollution. The daily average concentrations of PM2.5, SO2 and NO2 were 54.58 μg/m3, 13.06 μg/m3 and 46.09 μg/m3, respectively, and daily maximum 8-h average O3 concentration was 95.67 μg/m3. The strongest effects of SO2, NO2 and O3 were found in lag4, lag06 and lag09, and an increase of 10 μg/m3 in SO2, NO2 and O3 was corresponding to increase in incidence of PROM of 8.74% (95% CI 2.12–15.79%), 3.09% (95% CI 0.64–5.59%) and 1.68% (95% CI 0.28–3.09%), respectively. There were no significant effects of PM2.5 on PROM. Season-specific analyses found that the effects of PM2.5, SO2 and O3 on PROM were more obvious in cold season, but the statistically significant effect of NO2 was observed in warm season. We also found the modifying effects by maternal age on PROM, and we found that the effects of SO2 and NO2 on PROM were higher among younger mothers (<?35 years) than advanced age mothers (≥?35 years); however,?≥?35 years group were more vulnerable to O3 than?<?35 years group. This study indicates that air pollution exposure is an important risk factor for PROM and we wish this study could provide evidence to local government to take rigid approaches to control emissions of air pollutants.

  相似文献   

13.
The kinetics of the oxidation of endocrine disruptor nonylphenol (NP) by potassium ferrate(VI) (K2FeO4) in water as a function of pH 8.0–10.9 at 25°C is presented. The observed second-order rate constants, k obs, decrease with an increase in pH 269–32 M?1 s?1. The speciation of Fe(VI) (HFeO 4 ? and FeO 4 2? ) and NP (NP–OH and NP–O?) species was used to explain the pH dependence of the k obs values. At a dose of 10 mg L?1 (50 μM) K2FeO4, the half-life for the removal of NP by Fe(VI), under water treatment conditions, is less than 1 min.  相似文献   

14.
This paper presents pilot‐scale membrane treatment results performed on biologically treated effluents from fermentation industry and ozone oxidation on concentrates from the same membrane treatment system. The results obtained from the ultrafiltration (UF) and/or the reverse osmosis (RO) systems indicate that membrane treatment are very effective for COD, Color, NH3‐N and conductivity removal. Ozone oxidation of the membrane concentrates was tested to increase biodegradability of the wastes. The initial ratios of Biochemical oxygen demand (BOD5) to Chemical oxygen demand (COD) were increased significantly by applying chemicaloxidation with O3 and O3 + H2O2.  相似文献   

15.

A resin synthesized from tamarind kernel powder possesses high selectivity for metal ions. Distribution coefficients for some metal ions has been determined by the batch method. The influence of pH on ion exchange capacity and K d value of metal ions were studied. The resin has been characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis, chemical composition and ion exchange capacity (IEC). The selectivity order is Pb2+?>?Cu2+?>?Fe2+?>?Zn2+?>?Ni2+. Removal of metal ions from the aqueous solution and from effluents of a steel mill has been studied.  相似文献   

16.
In this investigation, Fe3O4 magnetic nanoparticles (MNPs) were prepared by the alkalinization of an aqueous medium containing ferrous sulfate and ferric chloride. In the next step, a Fe3O4–AgCl magnetic nanocomposite was fabricated by the drop-by-drop addition of silver nitrate solution into a NaCl solution containing Fe3O4 MNPs. All prepared nanoparticles were characterized by transition electron microscopy (TEM), X-ray diffraction (XRD), and energy-dispersive X-ray spectroscopy (EDS). Both particle types varied in size from 2.5 to 20?nm, with an average size of 7.5?nm for Fe3O4 MNPs and 12.5?nm for Fe3O4–AgCl nanocomposites. The antibacterial effect of the Fe3O4 MNPs and fabricated Fe3O4–AgCl nanocomposites against Escherichia coli (ATCC 35218) were investigated by conventional serial agar dilution method using the Müller–Hinton Agar medium. The minimum inhibitory concentration was 4?mg?mL?1 for Fe3O4 MNPs and 2?mg?mL?1 for the Fe3O4–AgCl magnetic nanocomposites. Time-kill course assays showed that the Fe3O4–AgCl magnetic nanocomposites successfully killed all inoculated bacterial cells during an exposure time of 60?min. The antibacterial activity of recycled Fe3O4–AgCl magnetic nanocomposites over four 60?min cycles of antibacterial treatment was further tested against E. coli by the colony-forming unit (CFU) method. The antibacterial efficiency of the nanocomposites was constant over two cycles of antibacterial testing.  相似文献   

17.
Photoelectro-Fenton was applied for the removal of acid yellow 36 (AY36) from synthetic aqueous solution using iron electrodes. A Box–Behnken design was used for optimization of the effects of pH, H2O2 concentration, current density, and reaction time. Individual effects of these variables were more important than their interaction effects. The derived model was in good agreement with the experimental results. Total organic carbon was determined in solution and sludge in order to clarify the removal mechanism. Increase of H2O2 concentration and current density led to domination of oxidation and coagulation mechanisms, respectively. The effects of scavenging and inhibiting agents were also investigated: (1) presence of alcohols can reduce the efficiency through competition with dye for reaction with hydroxyl radicals; (2) anions (NO3?, HCO3?, and H2PO4?) scavenged hydroxyl radicals and reduced decolorization of AY36.  相似文献   

18.
The kinetics of famotidine (FAM) transformation under the influence of various factors, important from the environmental point of view, was investigated in aqueous solutions. The degradation processes using UV, H2O2, UV/H2O2, H2O2/Fe2+, and UV/H2O2/Fe2+ were studied. Direct photolysis and H2O2-assisted photolysis showed a pseudo-first-order kinetics, while the Fenton and the photo-Fenton processes fit second-order kinetics. The provided experiments proved a high resistance of FAM to direct photolysis. Its stability depends highly on the pH of the reaction solutions. The rate of FAM direct photolysis in acidic solutions was almost negligible. The reaction rate of FAM photolysis at pH 8–9 was 3.7 × 10?3 min?1 with DT50 about 3 h 7 min. It was found that the presence of H2O2 in the reaction environment enhances the rate of photolysis of FAM. The observed rates of reaction were 5.1 × 10?3 min?1 and 3.7 × 10?3 min?1 in acidic and basic solutions, respectively. The used Fenton systems appeared to be the most efficient in FAM removal. The rate of reaction depends on concentration of Fe2+ and H2O2. It was observed that the presence of UV-light enhances the reaction rate by two to six times in comparison to the classical Fenton system. Additionally, FAM behavior in natural water under solar irradiation was examined. The irradiation experiments were carried out in batch experiments with simulated sunlight.  相似文献   

19.
Singlet oxygen (1O2) and hydroxyl radical (·OH) play an important role in the degradation of pollutants in surface waters. However, the mechanism underlying the photochemical generation of 1O2 and ·OH in wastewaters is poorly known. Here we studied the photo-induced generation of 1O2 and ·OH in different sewage treatment plant units. The correlation between the generation of 1O2 and ·OH and the water constituents was discussed. Our results show that in sewage units the 1O2 formation rate ranges from 2.19 × 10?8 to 6.74 × 10?8 mol L?1 s?1, and the ·OH formation rate ranges from 1.7 × 10?11 to 3.06 × 10?10 mol L?1 s?1. The average 1O2 formation rates in the various sewage units are similar to those in wetland and estuarine waters containing rich dissolved organic matter and 2–4 times higher than those in lake and seawater samples. The average ·OH formation rates of the sewage units are 5–50 times higher than for other water samples reported. The ·OH generation rate increased with the iron content with a correlation coefficient of 0.85, which indicates that the photo-Fenton reaction plays a dominant role in ·OH generation in sewage wastewater.  相似文献   

20.
The effect of the Superoxide radical (O2 )‐, hydroxyl radical (HO')‐inhibitors, singlet oxygen (1O2)‐quenchers and catalase on the light emission during autoxidation reaction of oxytetracycline was measured. The influence of the 1O2‐quenchers was investigated quantitatively and the rate constants were established.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号